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TOTALLY DISCONNECTED SPACES AND
 

INFINITE COHOMOLOGICAL DIMENSION
 

Leonard R. Rubin l 

1.	 Introduction 

Do all infinite dimensional (separable metric) spaces 

have infinite cohomblogical dimension? This question has 

been of recent interest, especially in the case of compacta, 

although it is no less interesting for the case of arbi­

trary spaces. In [WI] John Walsh showed the existence of 

a wide class of compacta having infinite cohomological 

dimension (this was somewhat generalized in [Bo]). From 

Walsh's work in [W2] it can be deduced that any space con­

taining subspaces of arbitrarily high finite dimension 

must itself have infinite cohomological dimension. In 

general it seems to be difficult to determine the cohomo­

logical dimension of a space that "does not contain finite 

dimensional subspaces" unless it is constructed according 

to the principles described in [WI]. 

The study of eohomological dimension has been moti­

vated very much by results of R. D. Edwards. These are 

discussed in the a~orementioned paper [W2] to which the 

reader may turn for more enlightenment. To review the 

matter, recall that it is an open problem whether there 

exists a cell-like map between compacta that raises dimen­

sion. In Section 6 of [W2] we have the beautiful theorem, 

IThe author was partially supported by a grant from 
the College of Arts and Sciences of the University of 
Oklahoma. 
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1 • 1 . The 0 T' e·m . (Vietoris; R. D. Edwards) A compactum 

has cohomological dimension ~n if and only if it is the 

image of a cell-like map defined on a compactum having 

dimension <n. 

For finite dimensional spaces, cohomological dimension 

agrees with dimension (see Theorem 3.2 (b) of [W2]). We 

are left with the possibility of the existence of an 

infinite dimensional compactum (noncompact space?) with 

finite cohomological dimension; by 1.1 that compactum 

would be the image of a dimension raising cell-like map. 

~esults in Section 3 below will show that there is a 

connection between compacta and noncompacta in the study 

of cohomological dimension. In Section 4 three classes 

of hereditarily strongly infinite dimensional spaces will 

be introduced~ One of these will be demonstrated to have 

infinite cohomological dimension. For the other two our 

techniques do not seem to prevail--thus, calculating their 

cohomological dimension remains an open problem. 

I wish to thank my colleagues F. D. Ancel and Darryl 

McCullough for many helpful and critical discussions. 

2. Preliminaries 

The Hilbert Cube Q is TT{Iklk = 1,2,···} where 

[-1,1] • Let TI k : Q ~ I be the coordinate projection,k 
-1 -1 1 At = Ak TI (-1), B = TI k (1). For 0 < t ~ 2' let kk k 

t -1n~l([-l,-l+t]) ~nd Bk = TI ([l-t,l]). As usual we treatk
 

the n-cube In as a subspace of Q, and Sn = dln +l • Then
 

sometimes we write A for Ak n In and B for Bk n In. Thek k 
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Ei1enberg-MacLane space K = K(Z,n) is described in [W2].n 

We treat K as a CW-comp1ex such that sn C K and,n n 

TIk(Sn,*) k < n 
TIk(Kn ,*) ~ 0j
 k > n + 1. 

I n+12.1. Definition. A map f: X -+ is stable if 

f If-1 (Sn) : f-1 (Sn) -+ Sn does not extend to a map of X to 

Sn. It is called cohomologically stable if it does not 

extend to a map of X to K . n 

2.2. Note. The existence of a stable map is equiva­

lent to dim X > n + 1, while that of a cohomo1ogica11y 

stable map implies c-dim X ~ n + 1 (c-dim means cohomo1ogi­

cal dimension). See [W2] pp. 106-107. 

2.3. Notation. If r is a set of natural numbers, 

then by Q we mean the set of all (x1 ,x2 ,···,xi ,···) E Qr 
such that x. 

1 
= 0 if i ¢ r. Thus if r is finite, then Qr 

is a copy of In for some n. 

2.4. Definition. A collection {(Ak,Bk)Ik E r} of 

disjoint pairs of closed subsets of a space X is called an 

essential family for X provided that if Sk is a closed set 

separating Ak and Bk in X for each kEf, then 

(This implies dim X ~ card r.) A set 

such as Sk is often called a separator of (Ak,Bk). 

The folloiwng Proposition is similar to 5.5 of [R-S-W]i 

the first part does not require compactness. 

2.5. Proposition. Let {(Ak,Bk) Ik E r} be an essen­

tial family for a space X and let J c f. If for each 
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j E J, S. is a 3eparator of (A~,B~) and x* = n{s.lj E J}~ 
]	 ] ] ] 

then	 {(Ak n X*,Bk n x*) Ik E r - J} is an essential family 

for X*. If in addition X is compact~ then for each 

k E r - J, X* contains a continuum meeting Ak and Bk. 

2.6. Definition. A space is called strongly infinite 

dimensional if it has an infinite essential family. It is 

hereditarily strongly infinite dimensional if in addition 

each subspace is either Q-dimensional or strongly infinite 

dimensional. Such spaces are constructed in [Rul, Ru2]. 

Throughout this paper, spaces are separable and metriza­

ble. Thus they all can be embedded topologically in Q. 

3.	 A Totally Disconnected Space 

There exists a totally disconnected, strongly infinite 

dimensional Go-space Y having the property that every 

strongly infinite dimensional compactum contains a copy of 

a closed, hereditarily strongly infinite dimensional sub­

space of Y. Hence if every hereditarily strongly infinite 

dimensional closed subspace of Y were of infinite cohomologi­

cal dimension, then every strongly infinite dimensional com­

pactum would have infinite cohomological dimension. 

1 1
Let CeIl be a Cantor set in the interior of [-2'2]' 

and let Y c Q be a space consisting of at least one point 

from each continuum in Q that meets both Al and BI and such 

that TIl: Q + II' when restricted to Y, is a bijection of Y 

onto C (see 4.5 of [R-S-W]). Thus Y is a totally discon­

nected space, and it is "known that Y can be chosen to be 

topologically complete; i.e., Y is a Go-space [Pol]. Such 
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are the spaces from which Roman Pol constructed his amazing 

example of an infinite dimensional compactum whicli is 

neither countable dimensional nor strongly infinite dimen­

sional. The family {(A~ n Y ,B~ n Y) Ii = 2,3,···} for any
1 1 

o < t < ~ is an essential family in Y, and so Y is strongly 

infinite dimensional. To see why this is so, let Si' 

i ~ 2, be a separator in Y of (Ai n y,Bi n Y). As in the 

proof of Theorem 6.2 of [Rull, there are sets S. closed in 
1 

Q, separating A . and B. in Q, and such that S. n Y = S .• 
l 111 

By 2.5, n{S. Ii 2,3,···} contains a continuum meeting Al 
1 

and Bl , so ~ =I Y n (n {s. Ii = 2,3···}) = n{.(Y n S.) Ii = 
1 1 

2,3, • • .} = n{S. Ii = 2,3···}. Thus by definition, {(A~ nY,
1 1 

B~ n Y) Ii = 2,3,···} is an essential family for Y. 
1 

For any subset r of the set of natural numbers, let 

Y = Y n Q (see 2.3). Then an argument similar to thatr r 
just given proves the following. 

3.1. Proposition. For 0 < t < 21 
and any subset r of 

the natural numbers such that 1 E r~ the collection 

{(Ai n yr,Bi n Y ) Ii E rand i > 2} is an essentiaZ famiZyr 
for the totally disconnected space Yr. 

3.2. Proposition. Let be an infinite subset ofNO 

the set of natural numbers with 1 NO and suppose~ 

0 < t < 1 Then there exists a set {Zk1k E NO} of closed2· 
subsets of Q satisfying~ 

3.2.1. Zk continuum-wise separates A~ and B~~ 

~~ and 
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3.2.3. Z = n{Zk 1k E NO} is hereditarily strongly 

infinite	 dimensional.
 

Proof. See the proof of 3.1 of [Ru2].
 

3.3. Theorem. If K is a strongly infinite dimensional 

compactum, then K contains a totally disconnected subspace 

homeomorphic to a hereditarily strongly infinite dimensional 

closed subspace of Y. 

Proof· Let K have essential family {(A! ,B!) Ii > I}.
1 1 ­

Embed K in Q so that AI c AI' Bi c B
l 

, while Ai c A2 (i-l)'I 

i > 2. For example, one may use the ErnbeddingBi c B2 (i-I)' 

Lemma 3.5 of [K] and then perhaps some renaming of coordi­

nates. Let Na = {2klk 2. 2} and choose {Zk1k E NO} and 

1 
t = '2 as in 3.2. Let X = Y n Z n K. If X is not O-dimen­

sional then 3.2.3 implies that X is hereditarily strongly 

infinite dimensional as required. So we need only show that 

x is not ·O-dimensional. 

tTo this end it will be demonstrated that {(A2 n X,
 

t

B n	 X) } is an essential family for x. For let 8 2 be a2 

separator of (At
2

n X,Bt
2 n X) in X. Extend S2 to a set Z2 

closed in Q so that X n Z while is a separator of2 S2' Z2 

A 2 and B in Q. By 2.5, Z n K n Z2 contains a continuum2 

meeting Al and BI , so ~ ~ y n Z n K n Z2 = X n Z2 = S2. 

Hence {(At n X,Bt n X)} is an essential family for X, and
2 2
 

the proof is complete.
 

4. Calculating Cohomological Dimension 

Let Y be a strongly infinite dimensional, totally 

disconnected space chosen as in Section 3. Let 
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NO = {2klk > l} and t 

3.2. With X = Y n Z, then using 3.1, 3.2 and 2.5 we see 

that X is a hereditarily strongly infinite dimensional, 

totally disconnected space. Define Xl to be the closure 

of X in Q, and then let X2 = n{clQ(Zk n Y) [k E NO}. Then 

Xl' X are hereditarily strongly infinite dimensional com­2 

pacta. 

4.1. Theorem. For any space X chosen as in the
2 

preceding paragraph, c-dim X = 00.2 

In order to prove 4.1, we will need some preliminary 

lemmas. The reader who is familiar with the proof of 

Theorem 3.1 of [WI] will see interesting parallels in 

what follows. 

4.2. Lemma. Let A,B be disjoint closed subsets 

of a space X, let S be a separator of (A,B) in X, and let 

U be an open neighborhood of S in X. Then for each 

O-dimensional subset P of X there exists a separator S* 

of (A,B) in X such that S* c U - P. 

Proof. Let X - S = VI U V2 where A C VI' B c V2 , 

both Vl 'V2 are open and VI n V2 = J!J = VI n V2 · Choose an 

open set W so that SeW c U - (A U B) • The sets VI - W 

and V2 - W are closed in Xi for example VI - W = X ­

(W u V2 ) · Hence there exists a separator S* of (VI - \"J , 

W) in X such that S* n P J!J. Since A c VI - W, 

B c V - Wand S* eWe U, the proof is complete.2 
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4.3. Lemma. Let K c X be such that dim K < m < 00. 

Suppose {(A!,B!) 11 < i < n} is a collection of disjoint
1 1 

pairs of closed subsets of X and that for each i~ Si is a 

separator of (Ai,Bi) in X. Let U be a neighborhood of 

S = n{Sill < i < n}. Then for each i there exists Si so 

that S~ is a separator of (Ai, Bi) in X~ S* = n{S~ll < 
1 1 ­

i < n} c U~ and dim(S* n K) < m - n. 
-

Proof· Write K = U {K. 11 < j < m + I} with the pro-
J 

perty that dim K < 0 for each j. Let S' Sl - U and letj 

SIt = n{s. - uI2 < i < n}. Then S' n SIt = ~ so there is an 
1 ­

open set U' with S' c U' and U' n SIt ~. Let U = U U U';l 

hence Sl cUI· Use 4.2 to choose Si c Ul so that Si is a 

separator of (Ai,Bi) and Si n Kl =~. We see that 

Si n S2 n ••• n Sn c U and dim(Si n S2 n ••• n Sn n K) ~ 

m - 1. This process can be repeated recursively to obtain 

the desired result. 

Proof of 4.1. We shall find a closed subset A of 

X and a map f of A to Sn that cannot be extended to a map2 

of X to K . Let r = {1,3,···,2n+3}. Then Q is a copy of2 n r 
I n + 2 which we choose to write in the form II x I n +l . Let 

n l n l 
TI: Q ~ r + c II x r + be the projection, and choose C to 

be a closed collar neighborhood of Sn = dIn +1 . Define A 

-1to be X n TI (C). The map f on A is given by TI followed2 

by a retraction p of C to Sn. Suppose f extends to a map 

F: X ~ K ; then using the fact that K is an ANE, assume
2 n n 

F is defined on a neighborhood V of X in Q.2 

There exists r such that n{clQ(Zk n y) Ik 2,4,···,2r} 

c V. Hence [n{Zk1k = 2,4,···,2r}] nyc V. We may as well 
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assume 2r > 2n + 3, and we define A to be {1,2,---,2r}. 

Let U = V n and let S = n k = 2,4,---,2r. WeQA' k Zk QA' 

have [n{Zk 1k = 2,4,- - - ,2r}] n Y n Q [n{Sk 1k = 2,4,---,2r}]A 

n YA c V n Q = U. Note that dim Y 2r - 1. SinceA A 

Sk n Y is a separator of (At n Y,Bt n Y ) in YA, use 4.3A k k A

to select separators Sk in Y so that S* c U and dim S* <A 

r - 1. If there exist odd numbers k so that 2n + 3 < k < 2r, 

then for those k choose separators Sk of (A~ n YA,B~ n YA) 

in Y so that dim So 2 n + 1 where So is the intersectionA 
ttlof all Sk. Employing 3.1 and 2.5, {(A n SO,B n SO) j = j j 

3,5,---,2n + 3} is an essential family for SO' so dim So = 

n + 1. 

The map F restricted to So is homotopic to a map 

H: So + K that carries So into the (n+l)-skeleton of K ,n n 

i.e., into Sn itself. This map H can be chosen so that for 

some co11ar Ca 0 f Sn.ln I n +l 
, H F on	 TI -l(Ca) n So. There 

sexists a < s < t so that (A~ n S ) U (B n S) -l(C)J a j a cn a 
s s Ifor all j = 3,5,---,2n + 3. The set { (A n SO,B n SO)
j j 

j = 3,5,---,2n + 3} is an essential family for SO. The 

existence of the map H is contradictory to Proposition 4.3 

of [WI]. For convenience, that Proposition is now stated 

(compactness in the hypothesis is unnecessary). 

4.4. Proposition. Let X be a spaae~ let {(Ak,Bk) I 

1 < k < n + I} be a family of disjoint pairs of closed sub­

sets of X~ and let f : X + I with Ak f~l(-l) andk k 
-1

B f (1). The family {(Ak,Bk) 11 .2. k < n + I} is essential
k k 

I n lif and only if the mapping f: X + +	 defined by f 
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