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TREE-LIKE CONTINUA AND SIMPLE BONDING MAPS 

Sam W. Young 

1.	 Introduction and Definitions 

The purpose of this paper is to demonstrate a class of 

mappings J, called simple folds, on trees such that every 

tree-like continuum has an inverse limit representation for 

which every bonding map is in the class J. Furthermore, J 

is, in a sense, the simplest such class. In terms of the 

structure of finite covers of tree-like continua, it could 

be said that this paper concerns the subject of "amalgama­

tions." See for example [L] and [M]. 

A continuum is a compact connected metric space. A 

tree is a non-degenerate, connected, finite acyclic graph. 

If P is a point of the tree T, then order(P) = the number 

of components of T - {P}. A mapping is a continuous func­

tion and is considered to be onto unless otherwise indicated. 

A mapping f of a tree Tl onto a tree T2 is called p.Z. if 

and only if there exists a finite V c T such that if C isl 

a component of T1 - V, then e is an arc and fie is a homeo­

morphism. Two mappings, f: X ~ Y and g: X ~ Yare called 

topologically equivalent if there exist homeomorphisms 

h: X	 ~ X and k: Y ~ Y such that kfh = g. 

If T is a tree, then the continuum M is T-like if and 

only if for each € > 0, there exists an €-map TI: M ~ T. The 

continuum M is tree-like if and only if for each € > 0, 

there exists a tree T and an €-map TI: M ~ T. 
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2.	 Simple Folds 

Definition. Suppose that each of T and T is a tree,l 2 

P E T T and T are subtrees of T T U T = T andl ,	 
l ,a b	 a b l 

T n	 T = {Pl. If B: T ~ T is not a homeomorphism but a	 b l 2 

each	 restriction BIT and SITb is a homeomorphism, then a 

B is called a fold. If furthermore, one of the trees T a 

or Tb is the closure of a component of Tl - {P}, then B is 

called a simpZe foZd. 

We make the following observations concerning the 

foregoing definitions: 

obs. 1) If B: ~ T is p.l., then B is a fold ifTl 2 

and only if there is only one point of T at which B is notl 

locally 1-1. 

obs.	 2) If B: Tl ~ T is a fold and order(P) 2, then2 

B is a simple fold. 

obs. 3) If B: T ~ T is a simple fold, then on anl 2 

open set containing P, B identifies two components and only 

two components of T n O~{p} and order(B(P)) = order(P) - 1.l 

The examples in diagram 1 serve to illustrate some of 

the types of folds. The mappings 61 and 62 are the "simplest" 

of the simple folds and will be referred to again later. 

The mapping 6 is a simple fold of a triod onto an arc and1 

6 is a simple fold of an arc onto a triode with the proper2 

choice of T and T 6 is a fold but cannot be a simpleb ,a 3 

fold. 64 is a simple fold. 

3. The Factorization Theorem 

In this section we will prove a general theorem about 

the factorization of mappings' by folds and then make some 
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observations based upon the proof. 

Theorem 1. Suppose each of Tl and T
2 

is a tree and 

f is a light mapping of T onto T2 which is not a homeo­l 

morphism. Then there exists a tree T3~ a map a: T + T and
l 3 

a fold B: T + T such that f = Ba.3 2 

Proof. Let a and b be two points of T such thatl 

f(a) = f(b). Since f is light, there exists a point P 

which separates a from b in Tl and such that f(P) 1 f(a). 

Let T and T be two trees which contain the points a and a b 

b respectively and such that T U T = T and T n T = {p}.a b l a b 

Now each of f(T ) and f(T ) is a nondegenerate subtree of a b 

T and f(T ) U f(T ) = T2 .2 a b 

We construct the tree T as the union of a homeomorph
3 

of f(T ) and a homeomorph of f(T ) joined only at the pointa b 

f(P). Thus we define homeomorphisms B and B such that a b 

Sa: f(T ) + Baf(T ) C T3 and Bb : f(Tb ) + Bbf(Tb ) C T3 ,a a 

Saf(T ) U Bbf(Tb ) = T3 and Baf(T ) n Bbf(Tb ) = {Baf(P)a a 

Bbf (P) } · 

The mapping a: T + T is defined byl 3 

l

Saf(X) for x E T
 
a(x) = a
 

Sbf(x) for x E Tb
 

The continuity of a is assured since T n T = {p} and a b 

Saf(P) = Bbf(P). The mapping B: T3 + T is defined by2 

s~1(X) for x E Saf(T )
 
S (x) -1 

a
 

Sb (x) for x E Sbf(Tb )
l 
Likewise, 8 is continuous since Baf(T ) n Sbf(Tb)a 

{Saf(P) = Bbf(P)}. 
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It is easy to check now that Sa(x) = f(x) for all 

x E Tl . It remains now to show that S is a fold. S is 

obviously the union of two homeomorphisms joined at a 

point. 

Now consider the points a(a), a(b) E T . We have
3 

a(a) = Saf(a) E Saf(Ta ) and a(b) = Sbf(b) E Sbf(Tb). It is 

not possible for a(a) = a(b) since this would imply that 

a(a) = Saf(P) which is the only point in Saf(Ta) n Sbf(T ).
b 

If so, then f(a) = Sa(a) S Saf(P) = f(P) contrary to the 

way that P was chosen. 

We now have a(a) ~ a(b) but Sa(a) = Sa(b). Since S is 

not a homeomorphism, S satisfies the definition of a fold 

and the proof is complete. 

The proof of Theorem 1 is really quite simple. The 

mapping a splits the image of f into two parts and the 

mapping S mends the parts back together. It is hoped, how­

ever, that the more detailed argument given will facilitate 

our making a few more observations based upon the proof. 

obs: 4 ) The mapping a is a homeomorphism if and only 

if each of fiT and flTb is a homeomorphism.a 

obs. 5) If f is p.l. , then each of ex, and S is p.l. 

obs. 6) Let [a,b] denote the subarc of T joining al 

and b. The point P could have been chosen so that f(P) is 

an end point of the subtree f([a,b]) and f(P) is different 

from f (a) . In such a case, f is not locally 1-1 at P. 

obs. 7) If order(P) = 2 and f is not locally 1-1 at P, 

then a is locally 1-1 at P. 

obs. 8) If f is a fold, then f is a finite composition 

of simple folds. To prove this, we choose P to be the 
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unique point at which f is not locally 1-1 and apply 

Theorem 1 to obtain f Sa. In this case, a will be a fold 

and so if either a or S is not a simple fold, then Theorem 

1 can be applied again to a using the point P or to S using 

the point a{P) and so on. If f locally maps m arcs onto n 

arcs, then each simple fold factor merely splits one iden­

tification. The result will be a composition of m - n simple 

folds. 

We now have a slight improvement upon Theorem 1. 

Theorem 2. Suppose each of T and T is a tree andl 2 

f is a light mapping of T onto T which is not a homeo­l 2 

morphism. Then there exist a tree T3~ a map a: T + T andl 3 

a simple fold S: T 3 + T2 such that f = Sa. 

Proof. The proof follows from Theorem 1 and obs. 8. 

Theorem 3. If f is a p.l. mapping of a tree onto a 

tree then f is either a homeomorphism or is a finite com­

position of simple folds. 

Proof. We will first show that f is a finite composi­

tion of folds. If f: T + T is p.l. and not a homeomorphism,l 2 

then we choose a point P of T at which f is not locally 1-1l 

(as in obs. 6) and apply Theorem 1 to obtain f Sa where 

S is a fold and a is p.l. (obs. 5). If a is a homeomorphism, 

then f = Sa is a fold. And if a is not a homeomorphism, then 

one of two cases must occur: First, a performs at least one 

identification of a pair of subarcs in a neighborhood of P 

but fewer such identifications than f does, or second, a is 

locally 1-1 at P but fails to be locally 1-1 at some other 

point. 



186 Young 

In the first case we can choose the point P again and 

apply Theorem 1 to the map a. In the second case, we 

choose another point Q ~ P such that a fails to be locally 

1-1 at Q and apply Theorem 1. We obtain a 13 ' a' where 13' 

is a fold and a' is p.l. We apply Theorem 1 to a' and con­

tinue in this manner. 

Since f fails to be 1-1 at only finitely many points 

and makes only finitely many identifications at each such 

point, this process must terminate. Now that f is a compo­

sition of finitely many folds, we can factor each fold into 

finitely many simple folds (obs. 8). This completes the 

proof. 

Each simple fold in the factorization of f can be 

thought of as performing one of the local identifications 

done by f. The factorization obtained will only depend 

upon the order in which the identifications are to be re­

moved. Thus if f performs n local identifications, then 

the number of possible factorizations of f into simple 

folds would seem to be n! In general, however, some dupli­

cations will occur. 

It should also be pointed out that simple folds are not 

"indivisible." The simple fold 6 (see diagram 1) is the2 

composition of two simple folds. Let 13 2 = 132132 where 13 2 
is topologically equivalent to 13 and 13 2 identifies parts2 

of the two bottom legs of the triode 

4. Applications 

In this section we give some applications to inverse 

limit spaces. We begin with a corollary to Theorem 3. 
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Corollary 1. If f is a map of a tree T onto a tree
l 

T2 and E > 0, then there exist simple folds Sl,S2,··.,6 such n 

that d(f,6 l S2 ···Sn) < E. 

Proof. The proof follows from Theorem 3 and the fact 

that any map can be uniformly approximately by p.l. maps. 

Corollary 2. If M is a tree-like continuum, then M is 
. . 61 62 6 3the limit of an inverse l~m~t system T + T + T + ••• M

l 2 3 

where each of the bonding maps is a simple fold. 

Proof. It follows from the basic theory contained in 

[M-S], the approximation theorem of [B] and Corollary 1 that 

every tree-like continuum M has an inverse limit representa­
. f l f 2 f 3tlon T + T + T + ••• M where each bonding map is a

l 2 3 

finite composition of simple folds. The inverse limit 

space is the same after taking as bonding maps the individual 

simple fold factors. 

Even though the bonding maps in the representation given 

by Corollary 2 are relatively simple, there is not, in gen­

eral, any control over the complexity of the trees which 

appear as factor spaces. Of course the number of endpoints 

of the trees must be unbounded if M is infinitely branched 

[Y ]. In case M is arc-like, we can offer the following:2

Theorem 4. There exists a simple fold 6
1 

: triod ~ arc 

and a simple fold 6 : arc 7 triod such that if M is an arc­
2 

like continuum, then M is the inverse limit of the inverse 
61 62 63

limit system T + T + T + ••• M such that for each
l 2 3 

i ~ 1, S2i is topologically equivalent to and is62 62i+ l 

topoZogicalZy equivalent to 61 " 
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Ppoof. The mappings 8 and 8 are the same as in1 2 

diag.ram 1. 

In Corollary 3.7 of [Y ] it is shown that there arel 

two maps of the unit interval onto itself, Land Z such that 

every map of the unit interval onto itself can be uniformly 

approximated by a composition of maps each of which is 

either L or Z or a homeomorphi sm. In other words, every nlap 

of the unit interval onto itself can be uniformly approxi­

mated by a composition of maps each of which is topologically 

equivalent to either L or Z. See diagram 2 for a description 

of the maps Land Z. 

As was pointed out in the proof of Corollary 2, it 

follows that every arc-like continuum M has an inverse limit 

representation 
f l f2 f3 

arc +- arc +- arc +- ••• M 

where each bonding map is topologically equivalent to 

either L or Z. Now the map Z is the composition of 82 

followed by 8 if 8 is carefullY\ppplied so that the leg
1 1 

of the triod which receives the int~7ior point of the arc 

is folded down into one of the other two legs. The map L 

is also the composition of 82 followed 'QY 81 . Take one 

of the legs of the triod which receives an endpoint of the 

arc and apply 8 to fold that leg into the leg which received1 

the other end point. 

So if M is an arc-like continuum, then M has an inverse 

limit representatio~ 

81 . S2 83. d arc +- tr~od +- arc +- tr~o +-. •• M 

where for each i, S2i+l is topologically equivalent to 81 and 

a2i is topologically equivalent to 82 • This completes the proof. 
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DIAGRAM I 

81 : ---L~ t ( C ) 
P 

I ~ I 
B2 : Ip ~...L 

DIAGRAM II 

L: , ~ t « ) 

z: I ~ , ( < .) 
,) 
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