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INEQUIVALENT EMBEDDINGS AND PRIME ENDS 

John C. MJlyer 

1.	 Introduction 

In [B-M] Brechner and Mayer show that equivalent 

ernbeddings of a nonseparating plane continuum have the same 

prime end structure (Theorem 2.11). Though not explicitly 

stated, this fact has been used previously in the literature. 

For instance, M. Smith [Sm] and W. Lewis [L] have inde­

pendently shown that there are uncountably many inequivalent 

ernbeddings of the pseudo arc into the plane. This result 

was achieved by exploiting different prime end structures 

(directly in Lewis' case, indirectly, in terms of differing 

accessibility of composants by Smith) to distinguish dif­

ferent ernbeddings. 

In this paper we show that the converse of Brechner and 

Mayer's theorem is false: there are inequivalent ernbeddings 

of a nonseparating continuum into the plane that have the 

same prime end structure, and indeed, that have the same set 

of accessible points. The following theorems stand in par­

tial contrast to the methods of Smith and Lewis: 

1.1 Theorem. There exist uncountably many inequiva­

Zent embeddings of the sin l/x continuum ,into the plane 

with the same prime end structure and the same set of acces­

sibZe points. 

1.2 Theorem. There exist uncountably many inequiva­

lent embeddings of the Knaster V-continuum) (bucket handle) 
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into the plane with the same prime end structure. Moreover, 

the set of accessible points in each of these embeddings is 

exactly the composant of the U-continuum that contains the 

endpoint of the U-continuum. 

In Section 2, we show how to construct uncountably 

many embeddings of the continuum formed by the sin l/x 

curve plus its limit segment. Thereafter, we show these 

embeddings have the same prime end structure and the same 

set of accessible points, but that any two are inequivalent, 

proving Theorem 1.1. 

In Section 3, we proceed similarly to prove Theorem 

1.2, showing the Knaster U-continuum also has uncountably 

many inequivalent embeddings with the same prime end struc­

ture and the same set of accessible points. 

In Section 4, we indicate how Theorem 1.2 can be extended 

to each of the uncountable class of U-type Knaster continua 

identified by W. T. Watkins [W]. 

This paper, together with [M-l] and [M~2], comprise 

the major portion of the author's dissertation. Section 3, 

in particular, has benefited from numerous discussions with 

the author's advisor, Beverly Brechner. 

2.	 The Sin l/X Continuum 

The standard embedding of the sin l/x continuum 

(Figure 1) consists of a ray R, the graph of (0,1] under 

the function y = sin l/x in the xy-plane, plus the limit 

segment [p,q], the interval [-1,1] on the y-axis. The ray 

R consists of a number of loops, where a loop is a segment 
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of R with exactly one peak and one trough in the standard 

embedd~ng. For simplicity, we will fix the set of loops 

as the segments of R between alternate successive points of 

zero amplitude in order from 1 to 0 on the x-axis. The 

endpoints of loops limit on (0,0) in the standard embedding, 

so on the "midpoint" (or, more precisely, some interior 

point) of [p,g] in any other embedding. Endpoint p of 

limit segment [p,g] is the limit point of points on R 

selected from successive troughs, and endpoint g is the 

limit point of points selected from successive peaks. We 

suppose R to be coordinatized by the function g: [0,00) ~ R 

so that the endpoint of R is g(O) and for x E (0,1], odd 

positive integers correspond to {(x,l): sin l/x = I}, even 

positive integers correspond to {(x,-l): sin l/x = -I}, and 

fractions with denominator 2 and odd numerator greater than 

1 correspond to {(x,D): x = l/(nn), for positive integers n}. 

This embedding, denoted K, and its coordinatization by g 

are illustrated in Figure 1. 

An embedding e: X ~ E2 of a continuum X is a homeo­

morphism into the plane; however, we shall somewhat loosely 

suppress reference to an embedding function and refer to the 

image in the plane of a continuum X as the embedding of X. 

An embedding of the sin l/x continuum can be described 

in terms of how the limit segment and ray is embedded in the 

plane. We will continue to designate the image of R, [p,g], 

or a point x in the sin l/x continuum as R, [p,g], or x, 

suppressing reference to any particular embedding function. 
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2.1 Embeddings of the sin l/x continuum. Let [p,q] 

be the vertical line segment between (0,1) and (0,-1) on 

the y-axis in the xy-plane, identifying (0,1) with q and 

(0,-1) with p. For each integer i > 1, let Li(R ) be the
i 

vertical segment between (-l/i,-l) and (-l/i,l) (between 

(l/i,-l) and (l/i,l)). The upper endpoint of Li(R ) isi
 

(-l/i,l) ((l/i,l)), and the lower endpoint of L (R ) is
i i
 

(-l/i,-l) ((l/i,-l)). For each i, connect the upper end­

points of L and R by a semicircle, called an upperi i 

semicircle, centered at q and lying, except for endpoints, 

above the line y = 1. We will connect the lower endpoints 

of the Li and Ris in some specified order to produce a ray 

converging to [p,q]. 

A subschema is a set of directions for connecting a 

finite number of lower endpoints of Lis and Ris by semi­

circles lying, except for endpoints, below the line y = -1, 

called lower semicircles. In a subschema, connect Lk to 

L means that we connect the lower endpoints of L andk+r k 

Lk + by a semicircle centered midway between these end­r 

points on the line y = -1, and lying, except for these 

endpoints, below the line y = -1. We similarly define 

connect to R . By start at L we mean that the sub­Rk k +r k 

schema begins with a semicircle from L to some Lk + . Ifk r 

a subschema begins with a semicircle from L to L + , then
k k r 

the last connection instruction will be "connect R tok +l 

Rk + + l ." We say end at Lk + + l to indicate that in executingr r 

the subschema, the connecting lower semicircles, together 

with the Lis and Ris connected, together with the upper 
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semicircles previously constructed connecting Lk + tol 

Rk+l,···,Lk+r+l to Rk+ +l , comprise an arc from the lowerr 

endpoint of L to the lower endpoint of L - The follow­k k +r +l 

ing is a countably infinite list of subschemata: 

SO: Start at Lk ; 

Connect Lk to Lk +1 ; connect Rk +l to ~+2; 

End at Lk+2 ­

Sl: Start at Lk ; 

Connect: Lk to Lk +3 ; Rk +3 to ~+2; Lk+2 to Lk +1 ; 

Rk+1 to Rk+4 ; 

End at Lk +4 ­

S2: Start at Lk ; 

Connect: LkLk +S ; ~+SRk+4; Lk +4Lk+3 ; ~+3Rk+2; 

Lk+2Lk +1 ; Rk +l Rk+6 ; 

End at Lk +6 ­

Sn Start at Lk ; 

Connect: LkLk+2n+l; ~+2n+lRk+2n; ••• ; 

Lk+2n-iLk+2n-i-l; ~+2n-i-lRk+2n-i-2; 

Lk +2Lk +l ; Rk+l~+2n+2; 

End at Lk +2n+2 ­

By executing Sn' the lower endpoints of L throughk 

L inclusive are connected in pairs by non-intersectingk +2n+l 

semicircles: one connects L to Lk + and the others con­k 2n+l 

nect adjacent pairs of Li's- Similarly, ~+l is connected 

to Rk +2n+2 by one semicircle and the intervening Ris are 
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connected in adjacent pairs by the remaining semicircles. 

The result is that we have constructed an arc from the lower 

endpoint of L to the lower endpoint of L + comprisedk k 2n+2 

of vertical segments, semicircles above y = 1, and semi­

circles below y = -1. By subschema Sn we will, somewhat 

ambiguously, refer to the directions for making connections 

and the resulting arc from L to Lk k +2n+2 . 

Let N = {al ,a2 ,a3 ,---} be an infinite sequence of a 

nonnegative integers. A schema P = {S ,S ,S ,---} is 
a a a al 2 3 

an infinite sequence of subschemata S arranged so that a. 
1 

S begins where S ends. That is, if k = 1 + 2(a +l) +
la i +l a i 

2(a +l) + --- + 2(a +l), then S begins at L and ends2 i ka i +l 

at Lk +2 (a + +l). Executing each subschema of P in order 
i l a 

results in a ray R which contains every L and R and 
a i i 

converges to [p,q]_ 

We coordinatize R by identifying the lower endpointa 

of R with 0, the midpoint of each semicircle above y = 1l 

with an odd integer, and the midpoint of each semicircle 

below y -1 with an even integer, in an order-preserving 

manner on R . The order for the correspondence is, in fact,a 

built into the order in which the connection instructions 

of Sn are stated. Figure 2 illustrates the embedding MO 

of the sin l/x continuum produced by executing the schema 

Po = {SO,SO,SO,---}· Figure 3 illustrates an embedding M a 

produced by executing the schema P = {S2,Sl'---}.a 

Note that for n > 0, the first (last) semicircle of 

schema Sn "skips over" 2n vertical segments to connect Lk 
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to (~+l to Rk+2n+2 ). The segments skipped overLk +2n+l 

are connected in adjacent pairs on each side of [p,q]. 

We call the first (last) semicircle of Sn' for n ~ 0, a 

bend toward Pi we call the n intervening semicircles on each 

side of [p,q] bends away from p. By an outer loop we mean 

a loop of R which contains a bend toward p, and by an a 

inner loop we mean a loop of R which contains a bend awaya 

from p. 

2Observe that in E outer loops locally separate inner 

loops from p. By this we mean that for a sufficiently 

small s-ball S(p,s) about p, each arc in S(p,s) from p to 

an inner loop must meet some outer loop. (In fact, it 

must meet an outer loop of the subschema that contains the 

inner loop.) 

2.2 Definition. Let N represent the set of nonnegative 

integers. Two infinite sequences A and B selected from N 

(with replacement) are distinct iff after removing any 

finite (possibly null) initial subsequence from A and any 

finite (possibly null) initial subsequence from B, the 

remaining infinite sequences AI and B I are not identical. 

For example, {1,3,5,---} and {2,4,6,---} are distinct; 

{O,O,O,---} and {l,l,l,---} are distincti {1,2,3,---} and 

{4,5,6,---} are not distinct. The definition of distinct 

sequences generalizes to infinite sequences selected from 

any set indexed by N. 

2.3 Lemma. There exist uncountably many distinct 

infinite sequences selected from N. 
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2.4 Lemma. There exist uncountabZy many distinct 

schemata for embedding the sin l/x continuum. 

Proof. We use the notation of Section 2.1 and Defini­

tion 2.2. Let {SO,Sl'S2'···} be the set of subschemata 

and let {Na}aEA be the set of distinct infinite sequences 

selected from N. Suppose that N = {al ,a2
,a ,···} and let a 3 

P = {S S ,S , ••• } be a schema for embedding the sin l/xa a a al 2 3 

continuum. It follows that {Pa}aEA is uncountable, and 

that for all a ~ b E A, P and P are distinct lists of a b 

subschemata. 

2.5 The prime end structures of K and MO. Before 

proceeding to construct our uncountably many embeddings of 

the sin l/x continuum,we illustrate some of the concepts 

involved in prime end theory by applying them to K and MO. 

Definitions and further references may be found in [Br]. 

Prime ends are a way of looking at and classifying 

the approaches to the boundary of a simply connected domain 

with nondegenerate boundary. The complement in S2 of a non­

separating nondegenerate plane continuum X, denoted s2_x, 
2is a simply connected domain. While E _X is not simply 

2connected, as E U {ro}, the one-point compactification	 of 

2E2 , is S2, we can refer to the prime end structure of E -X 

by associating it with the prime end structure of s2_x, 

where the embedding of X misses the point at infinity. 

2A prime end of E -X is defined by a chain of crosscuts 

converging to a point of X, where a crosscut is an open 

arc in E2-X whose endpoints lie in X. If Q is a crosscut 

2	 2of E -X, then Q U X separates E. A sequence of crosscuts 
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{Qi}:=l is a chain provided that Q converges to a point,i 

that no two crosscuts have a common endpoint, and that Q
i 

2
separates Qi-l and Qi+l in E _X. So, for example, the 

2prime ends E and F of E -K in Figure 1 are defined. by 

chains of crosscuts {Q.}~ 1 and {Q!}~ l' respectively,
1 1= 1 1= 

2
while in Figure 2, {Ti}~=l defines prime end H of E -MO. 

The impression of a prime end E, denoted I(E), is the 

intersection of the closures of the bounded domains cut 

off by the crosscuts in a chain defining E. For example, 

in Figure 1 it can be noted that I(E) = [p,q] = I(F), while 

in Figure 2, I(H) = [p,q]. 

The set of principal points of a prime end E, denoted 

P(E), is the collection of all points in X to which some 

chain of crosscuts defining E converges. For example, in 

Figure 1, P(E) = {p}, and P(F) = {q}, while in Figure 2, 

P(H) {pl. 

A prime end E is of the first kind if I(E) = P(E), 

both degenerate, of the second kind if I(E) ~ P(E), only 

P(E) degenerate, of the third kind if I(E) = P(E), both 

nondegenerate, and of the fourth kind if I(E) ~ P(E), both 

nondegenerate. It can be shown that P(E) ~ I(E) in any 

case, and that both are continua in X. Thus prime ends E, 

F, and H of Figures 1 and 2 are all of the second kind. 

Any other prime end G, of either E
2

-K or E
2

-MO' will be 

of the first kind, or trivial. Thus we can say that the 

2prime end structure of E -K consists of two prime ends of 

the second kind and all other prime ends trivial. 

A more pricise description of prime end structure is 

afforded by tne notion of a C-map. A C-map ¢ is a 
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homeomorphism of s2_x onto Ext B, where Ext B is the comple­

mentary domain of the unit disk B in s2 which contains the 

point at infinity, which (map) satisfies the conditions: 

(1) if Q is a crosscut of s2_x, then ~(Q) is a crosscut 

of Ext B, and 

(2) the endpoints of images of crosscuts are dense in 

Bd B, the boundary of B. 

If we require, as we may, that take the point at infinity 

in s2_x to the point at infinity in Ext B, then we can regard 

2 2 

~ 

the restriction of to S -{co} = E as a C-map also.~ 

Suppose a chain of crosscuts defines a prime end E of
 

2
E -X. Then the images of the crosscuts under a C-map ~ will 

converge to a single point e in Bd B. We say e corresponds 

to E. In fact, there is a one-to-one correspondence between 

2the prime ends of E -X and the points of Bd B. For example, 

in Figure 1, points e and f in Bd B correspond to prime 

ends E and F, respectively. In Figure 2, h corresponds to 

H. There is no homeomorphism g: Bd B ~ Bd B such that 

both g(e) and g(f) are points corresponding to prime ends 

of the second kind, since h corresponds to the only such 

. d' 2prlme en ln E -MO. Hence the prime end structures of K 

and MO are not identical [B-M, Definition 2.10]. Conse­

quently, K and MO are inequivalently embedded [B-M, 

Theorem 2 .11] . 

In the general result which follows, each embedding 

of the sin l/x continuum will have the same prime end 

structure as MO. Note that the accessible points of MO 

are the ray R and point p of [p,q]. A point of a plane 
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continuum X is accessible if it can be reached by a half 

open arc in the complement whose closure adds exactly that 

point. Such a half open arc is called an endaut. Each of 

our uncountably many embeddings of the sin l/x continuum 

will have the same set of accessible points as MO. The 

significance of this result is the contrast it provides 

to the usual procedure for producing inequivalent ernbeddings 

of a plane continuum: produce ernbeddings with different 

points accessible. Such a procedure is a sufficient, but 

not a necessary, condition for producing inequivalent 

2err~eddings of a continuum in E . 

2.6 Proof of Theorem 1.1. Let {Pa}aEA be the uncounta­

ble set of distinct schemata demonstrated in Lemma 2.4. 

For each a E A, let M be the embedding of the sin l/xa 

continuum according to schema P . We claim the prime end a 

structures of M and ~ for all a ~ b E A are identical. a 

Any chain of crosscuts converging to p in M (Mb ) defines a 

a prime end E (E ) of the second kind, for which [p,q] is a b 

the impression and p is the only principal point. Any other 

prime end of M (~) is trivial. Moreover, the set of a 

accessible points of M (M ) is the ray R (~) and the a b a 

point p of [p,q]. Hence M and ~ have the same prime end a 

structure and the same set of accessible points. 

We claim that M and M are inequivalent embeddings.a b 

By way of contradiction, suppose that M and ~ are equiva­a 
2 2lently embedded. Then there is a homeomorphism h: E ~ E

onto the plane such that h(Mb ) = M . Then h(~) = R ,a a 

and h must be order-preserving on ~. 
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In ~ let {Pj}j=l be those even integer points on lb 
which lie on outer loops; that is, those integer points of 

R for which a sequence of crosscuts {Q.}~ l' each Q. J'oin­
--b J J= J 

ing p. to p, can be chosen so that diam Q. ~ a as j ~ 00. 

J J 

(These points are on the bends toward p in each subschema. 

Note that this sequence of crosscuts is not a chain.) For 

odd j, each pair Pj,Pj+l of outer loop points is separated 

on R· by a finite set {p.(1),p.(2),.··,p.(n.)} of even 
-b J J J J 

integer points of lb which lie on inner loops. (These 

points are on the bends away from p of each subschema.) 

For even j, PJ' and P'+l are in succession on lb, with no 
. J 

inner loops between them. Note that any crosscut joining 

p. (i) to p has diameter no less than that of [p,q].
J 

For odd j, let A. = {p.,p.(1),p.(2), ••• ,p.(n,),p·+1}
J J J J J J J 

be the sequence of even integer points in order on lb 
described in the preceding paragraph. Consider h(A.).

J 

Since diam Q. ~ 0, diam h(Q.) ~ 0, as well. Hence outer 
J J 

loop points Pj,Pj+1 cannot infinitely often be carried to 

loop ends of R in the neighborhood of p which contain 
a 

inner loop points. Similarly, inner loop points of ~ 

cannot infinitely often be carried onto loop ends of R a 

that contain outer loop points. As the even integer points 

converge to p, and h is order-preserving on lb' there is a 

positive odd integer n, such that for all j ~ n, the set 

A., consisting of two outer loop points and n. inner loop
J J 

points between them, must be carried into a set of loop 

ends of R in the close neighborhood of p consisting of two 
a 

outer loop ends and n. inner loop ends between them. 
J 
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Each loop end of R in the neighborhood of p contains a 

an even integer point of R . For simplicity we may assume a 

that h carries, from Pn onward, even integer points of ~ 

to even integer points of R , one-to-one and orde~-preserving.a 

If {Pk}~=l is the set of ~ven integer points of R on outer a 

loops, then our preceding remarks require that there be a 

positive odd integer m such that there is a set of even 

integer points B = {p~,p~(l) ,p~(2) , ••• ,p~(nn),P~+l} that m 

corresponds one-to-one to the set An' including p~(i) being 

an inner loop point. Thereafter, B + corresponds one-to­m 2 

one to A +2 , B +4 to A +4 , etc. n m n 

Each subschema contains only two outer loops. Hence 

An and B each correspond to a listing of the even integerm 

points in a single subschema, S and S , 
a(n+l)/2 b(m+l)/2 

respectively. Likewise for A + and B + etc. This implies2 ,n 2 m 

that in P and Pb' S = Sb ' for all odd r > 1. 
a a(n+r)/2 (m+r)/2 

Thus P is identical to P after the removal of some finite a b 

initial subsequence from one and some finite initial sub­

sequence from the other. This contradicts our choice of 

P and P distinct. a b
 

Therefore, no such homeomorphism h can exist. Hence,
 

M and M are inequivalently embedded, but have the same a b 

prime end structure and same set of accessible points. 

2.7 Remark. The uncountable class above does not 

exhaust the inequivalent embeddings of the sin l/x continuum. 

All the embeddings we have considered have the prime end 

structure of Figure 2. There are also uncoutably many 
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inequivalent embeddings of the sin l/x continuum with the 

prime end structure of Figure 1, and every point accessible. 

Additional embeddings with the prime end structure of Figure 

1 are illustrated in Figure 4. In Figure 5(a) we show an 

embedding with a prime end G defined by any chain of cross­

cuts converging to some point of [p,q]; for example, chain 

{Pi}~=l. Note that I(G) = P(G) = [p,q]. Figure 5(b) is 

another embedding with the same prime end structure. In 

these embeddings, only points of the ray R are accessible. 

3. The Knaster U-Continuum 

The Knaster U-continuum K can be represented abstractly 

as the inverse limit system K = lim{I.,f.}~ l' where
*" 1. 1. 1.= 

i i 1 iIi = [O,2 j and f i : [O,2 + j -- [O,2 j is the rooftop 

function defined by 

1 i , if ° < x < 2
f i (x) = X +l2i -x, if 2 i < x < 2 i +l 

This representation, used by Watkins in [W], has the 

advantage of providing a convenient coordinatization of the 

endpoint composant of K. The endpoint of K is (0,0,0,···), 

and the composant of the endpoint is that set of points in 

K whose coordinates, from some i th coordinate onward, are 

constant. 

23.1 Standard embedding K of K in E . We constructO 

Lhe standard embedding K of K in E2 below. Let Cbe theO 

middle third Cantor set constructed on the unit segment I 

between (0,0) and (1,0) in the xy-plane. By a deleted 

interval we mean a complementary interval of I-C. By a 
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subinterval of Cwe mean a first or last third interval at 

the k
th 

stage in the construction of C intersected with C, 
that is any	 [m/3k , (m+l)/3k ] n Cwith non-empty interior in 

C. 
Connect the points of [0,1/3] n C to the points of 

[2/3,1] n [by a Cantor set of semicircles lying above the 

x-axis (except for their endpoints in [) and centered at 

(1/2,0).	 For each k 2,3,···, connect the points of sub­

k k
interval [6/3 ,7/3 ] n C= Dk - l ,2 with the points of sub-

kinterval [8/3k ,9/3 ]	 a Cantor set of semi-n C= Dk-l,l by 

circles lying below the x-axis (except for their endpoints 

in C) and centered at the point midway between these sub­

intervals. The union of all semicircles thus constructed 

is a continuum K
O 

c E2 , with we call the standard embedding 

of K. In fact it is Knaster's original construction. See 

Figure 6. 

In this and sUbsequent sections, semicircles lying 

above the x-axis, except for their endpoints, we term upper 

semicircles, and semicircles lying below the x-axis, except 

for their endpoints, we term lower semicircles. Concentric 

semicircles are said to be parallel semicircles. We extend 

this term to apply to a collection of arcs which are piece­

wise composed of concentric semicircles. Among a closed 

collection of concentric semicircles, we call that with 

largest radius an outer semicircle, and that with smallest 

radius an inner semicircle. 

3.1.1 Topological' equivalence of K and KO. We claiIr 

that K and KO are homeomorphic (so that KO is indeed an 
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embedding of K). First note that there is a ray Co c K
O 

whose endpoint is (0,0) and which includes (1,0) and the 

endpoints of every deleted interval. Now Co is the composant 

of (0,0) in KO• We will coordinatize Co by [0,00) in such 

a way that 0 corresponds to (0,0), each odd positive integer 

corresponds to the midpoint of an upper semicircle, and each 

even positive integer corresponds to the midpoint of a 

lower semicircle. Not all upper and lower semicircles are 

involved, but only those in CO. We will also show that there 

is a retraction r k : KO ++- [0,2k ] c CO' for each k = 1,2,3,···, 

so that 

(1) r moves no point more than 1/2k , andk 

(2) r k = f k 0 r k+l • 

It then follows that lim r = r: KO ++- K is a homeomorphism.k 

For each k = 1,2,3,···, let a denote the midpoint ofk 

the outer semicircle in the collection joining Dk,l to 

Dk ,2' and let d denote the midpoint of the inner semicircle.k 

Let L be the vertical segment joining a to d Note thatk .k k 

Lk n KO is a aut of KO• That is, Lk n KO is an irreducible 

separator of KO. Necessarily, a cut of KO is a Cantor set. 

For nonnegative reals x and y, x < y denotes, in the 

usual order, that x is less than y. For any ray R, for 

-1 -1 x,y E R, x < y denotes that f (x) < f (y) for any coordi­

natization f of R by [0,00). For subsets A,B of a ray R 

(or of [0,00)), A < B denotes that x < y for all x E A and 

Y E B. The symbols >, 2' and ~ are similarly defined. 

For any ray R, for any x < y E R, let [x,y] denote that 

interval in R between x and y, inclusive; that is, 

{z E Rlx < z < y}. 
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If S is a continuum separating E2 into exactly two 

components, we let Int(S) denote the bounded complementary 

domain of S and we let Ext(S) denote the unbounded comple­

mentary domain of S. 

Let 0 denote the point (0,0) € CO. Note that 

Lk U [ak,dk ] is a simple closed curve. Define the follow­

ing closed subsets of K which meet only in the cut L :O k 

[O,Lk ] = Cl(Ext(L U [ak,d ])) n Kk k O 

[Lk,Lk +l ] = Cl(Int(L U [ak,dk ])) n KOk 

The notation is meant to suggest that the first set con­

tains 0, the second set contains the next cut, and that the 

cut L lies between them.k 

Observe that [O,ak ] c [O,L ] and that [ak,ak +l ] Ck 

[Lk,Lk +l ]. It is not hard to see that we should coordina­

k k+l k .
tize Co by identifying 2 with a and 2 +2 wlth d k , and

k 

that we can extend the coordinatization to intervening 

points in such a way that a retraction r can be definedk 

satisfying (1) and (2). We omit details as we shall carry 

out a similar process in Section 3.2.5 for more complicated 

embeddings. Note, however, that the order of points on 

< ••• 

3.2 Embeddings of the Knaster U-aontinuum. For each 

sequence N = {al ,a ,···} of integers such that a k ~ 2, we a 2 

will define an inverse limit system K = l1m{Ak,gk}~=l' and a 

we will construct what we call the naturaL embedding K of a 

K in E
2

• a 
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\k-l
Let n l = 1, and let n k =	 1 + Lj=la j , for k = 2,3,···. 

nk
For k = 1,2,···, let A = [0,2 ]. Henceforth, unless

k 

otherwise stated, let k range over 1,2,3,···. Recall the 

k ldefinition of the rooftop functions f : [0,2 + ] ~ [0,2k ],
k 

o •••and define gk: Ak +l ~ Ak by gk = f o f 1. n k n k+l ­

Since each gk is a composition of the next a unused fj's,k 

it is clear that K is homeomorphic to K. a 
2We define the embedding K ofR in E below, coordi­a a 

natize the composant C of the endpoint of K , and at the a a 

same time construct small retractions r from K onto sub­
k a 

arcs of C that correspond to the factor spaces of K so a a 

that the retractions commute with the gk's. Thus we show 

that K and K are homeomorphic. We also develop notation 
a a 

and concepts which will be used in subsequent sections to 

show that there are uncountably many inequivalent embeddings 

2
of K in E , each the natural embedding of an inverse limit 

system based upon a sequence of integers like N . It turns a 

out that if two sequences of integers are distinct, the 

natural ernbeddings of the corresponding inverse limit systems 

are inequivalent. 

3.2.1 Constructing the embedding K of K in E2 . a a 

Let Cbe the middle third Cantor set on the unit segment 

I = [0,1] from (0,0) to (1,0) in the xy-plane. Connect 

points of [0,1/3] n Cwith points of [2/3,1] n Cby a Cantor 

set of upper semicircles centered at (1/2,0). We connect 

the points of certain subintervals of Cby Cantor sets of 

lower semicircles by executing the recursive procedure below 
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Subintervals of Care said to be equal provided that 

the corresponding intervals of I have equal length. Ini­

ltially, let D~ = Cn [0,1/3] and D = Cn [2/3,1] be equal1 

subintervals of C. Iterate for each a E N the followingk a 

steps: 

k k(1) Assume D > D are equal subintervals of C, as yetl 2 
ak- l 

unconnected by lower semicircles. Let m = 2 .
k 

(2) In Df identify 2m equal subintervals of C:k
 
k k Dk
Dl,l > Dl ,2 > ••• > 1,2m (ordered from right-to-left on 

k 
the x-axis). 

(3) Connect by lower semicircles centered midway 

between	 them, the following pairs of subintervals of C: 
k k k k Dk 

Dl,l to Dl ,2' Dl ,3 to Dl ,4' , 1,2m -l to Dk 
1,2mk k 

(4) In D~ identify 2m equal subintervals of C:k 

Dk > Dk > ••• > Dk 
2,1 2,2 2,2mk · 

(5) Connect by lower semicircles centered midway 

between	 them, the following pairs of subintervals of C: 
k k k k k Dk. 

D2 ,2 to D2 ,3' D2 ,4 to D2 ,5' , D2,2mk~2 to 2,2m -l 
k 

k+l k k+l k
(6)	 Let Dl = D2 ,1 and D2 = D2 ,2m .
 

k
 

The union of all upper and lower semicircles thus constructed 

is a continuum K C E2 . Sig Figure 7 for K based upon the a a 

sequence N = {2,2,···}.a 

We make the following observations about the way in 

which points of Care connected by arcs consisting piecewise 

of concentric upper and lower semicircles: 

(a) D~ and D~ are connected by a Cantor set of parallel 

arcs consisting of upper semicircles, and concentric lower 

semicircles constructed in previous stages, in alternation. 



118 Mayer 

k k(b) The partitions of 01 and 02 in steps (2) and (4) 

induce a partition of the Cantor set of arcs in (a) into 

2m Cantor sets of (piecewise semicircular) arcs.k 

(c) 01
k is connected to ok by the mth element ,m 2,2m -m+lk

of the induced partition in (b) . 

.(d) The concentric lower semicircles constructed in 

steps (3) and (5) result in o~,l being connected to o~ , 2m
k 

by a Cantor set of piecewise semicircular arcs in which 

elements of the partition in (b) alternate with the sets 

of concentric lower semicircles constructed in (3) and (5). 

k(e) The order in which the 0. 's appear in the Cantor1,m 
. k k. 

set 0 f arcs connectlng 02 , 2m to 02,1 lS: 
k 

k k k k k 
°2,2m ,01,1,01,2,02,2m -l,02,2m -2'···' 

k k k
ok ok ok ok 

2,2m -m' l,m+l' 1,m+2' 2,2m -m-l'k k


Ok ok k k
 
2,2' 1,2m -l,01,2m ,02,1


k k 

Our conclusions in Section 3.2.2 below concerning the order 

in which certain points lie on C follow from the above a 

observations. 

3.2.2 Composant C of Kae Composant C of K is a a a a 

ray whose endpoint is (0,0) and which includes (1,0) and 

the endpoints of all deleted intervals, but does not include 

any other point of C. (The other points of C are in the 

uncountably many other composants of Ka , each of which is 

a one-to-one continuous image of the reals.) We will 

coordinatize C by [0,00) by identifying (0,0) with 0, mid­a 

points of upper semicircles in C with odd positive integers,a 

and midpoints of lower semicircles in C with even positivea 
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integers, in a manner to be described more fully below. 

2Let TI denote projection from E into the x-axis. For 

2 
x,y E E , we say x < y in projection order, meaning that 

TI (x) < 'IT (y) • 

Note that all inner and outer semicircles are contained 

in Ca. We identify the midpoints of inner and outer semi­

circles as follows: 

Let ak,m (m = l, ••• ,m ) denote the midpoint of thek 

outer semicircle in the collection of concentric lower 

semicircles joining Dk
1,2m-l to D

k
l ,2m. Call such points 

collectively a-points. Let c (m = l,···,~ -1) denotek,m K 

the midpoint of the inner semicircle in the concentric col­

lection joining Dk to Dk . Call such points2,2m -2m 2,2m -2m+l
k k

collectively c-points. Note that the projection order of 

a- and c-points consists (after a > ••• > a ) of
1,1 l,ml 

repeated sequences of the form: 

> a > c >••• > ak,l > a k ,2 > k,mk k-l,mk_l-l 

> ••• >c k-l,m _ -2 ck-l,l > ak+l,l > ••• > 
k 1

ak+l,m + > ck,mk-l > ••• > ck,l > a k + 2 ,1 > 
k l 

in which the c-points of stage k-l are to the left (in the 

projection order) of the a-points of stage k, and therefore 

to the left of the a-points of stage k-l. However, in the 

order on C we have the alternating sequence:
a 

< ••• <••• < ak,l < ck,l < a k ,2 < c k ,2 

c < a < a <
k,mk-l . k,m k+l,lk 

Let bk,m (m = l,···,mk-l) denote the midpoint of the 

outer semicircle in the collection joining D~,2m to D~,2m+l. 
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Call such points collectively b-points. Note that the 

b-point b . lies directly below the c-point c . Letk ,m k ,mk-m 

d (m l,···,m ) denote the midpoint of the inner semi-k ,m k 0
 

k k

circle in the collection joining Dl ,2m -2m+l to D1,2m -2m+2·

k k

Call such points collectively d-points. Note that d
k ,m 

lies directly above a _ +1. The projection order of b­
k ,m mk 

and d-points consists (after d > ••• > d 1) of repeated
l ,ml l ' 

sequence of the form: 

> d > d 1 > ••• > d > b >
k ,mk k,m

k 
- k,l k-l,l 

> bk-l,mk_l-l > dk+l,m + > ••• > dk+l,l >
k l 

> •••bk,l > ••• > bk,mk-l > dk+2 ,m + 
k 2 

in which the d-points of stage k are to the right (in pro­

jection order) of the b-points of stage k-l, and therefore 

to the right of the b-points of stage k. 

Observe that the b- and d-points of stage k lie 

between ak+l,m + and a k+2 ,1 on Ca. Consequently, in the 
k 1 

order on C , we have repeated sequences of the form: a 
••• < • •• <ak+1,1 < ck+1,1 < a k+1 ,2 < 

a < c < a < < 
k+l,mk+l-l k+l,mk+l-l k+l,mk+l dk,l 

< ••• < 

a < •••
k+2,1 

23.2.3 Pockets in K • Let A be an arc in E . We say
a 

2that A is an E-pocket iff there is an endcut B c E - A to 

a point a E A such that 
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(1) For each b E B, there is a crosscut Q to A, 

transverse to B at b, with diam(Q) < s. 

(2) For each x E A, there is ayE A such that 

x < a < y in some natural order on A, d(x,y) < s, and there 

is a crosscut Q from x to y such that Q is transverse to 

B at some point b E Band diam(Q) < s. 

A crosscut Q is transverse to B at b iff Q n B = {b}, and 

for a sufficiently small open disk neighborhood U of b, 

each component of U-Q contains exactly one component of 

(U n B) - {b}. By pocket we mean an £-pocket for some s, 

usually small compared to diam(A). 

2Suppose that X is a connected subset of E and A c X 

is an s-pocket. Suppose there is a crosscut Q of X joining 

the endpoints of A, with diam(Q) < s. Then QUA is a 

simple closed curve. If X c Cl(Ext(Q U A» for each suf­

ficiently small crosscut Q, we say that A is a pocket in X. 

If A is a pocket in X, Q is a crosscut of X joining the 

endpoints of A so that X c Cl(Ext(Q U A» and diam(Q) < s, 

and B is an endcut to" A at point a satisfying conditions 

(1) and (2), then we call Int(Q U A) the inside of the 

pocket and Ext(Q U A) the outside of the pocket. We call 

the endpoints of the pocket the open end of the pocket, and 

we call the point a E B n A the closed end of the pocket. 

We call the components of A - {a} the sides of the pocket. 

(Strictly speaking, the inside, outside, sides, and closed 

end of a pocket depend upon the choices made for Q and B. 

In practice, this ambiguity will make little difference as 

s is usually very small compared to diam(A).) 
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As we shall show in Section 3.3, the accessible points 

of K are precisely the points in Ca. Thus pockets in K a a 

are subarcs of ray Ca. We will show that the following 

four types of pockets occur in C : a 

aca-pockets: a subarc of C between two consecutive a 

a-points of a given stage of construction, and 'the c-point 

between them as the closed end. 

adb-pockets: the subarc of C between the last a-pointa 

of stage k+l and the first b-point of stage k, and the 

d-point between them as closed end. 

bdb-pockets: a subarc of C between two consecutive a 

b-points of a given stage of construction, and the d-point 

between them as closed end. 

bda-pockets: the subarc of C between the last b-pointa 

of stage k and the first a-point of stage k+2, and the 

d-point between them as closed end. 

Note that given k, there are mk-l aca-pockets between 

successive a-points of stage k; there are mk -2 bdb-pockets 

between successive b-points of stage k; there is one 

adb-pocket, namely the subarc [ak+l ,dk l,bk 1]; there 
,mk+l ' , 

We show 

n
kbelow that each of the above-mentioned pockets is a 2/2 ­

pocket in K • a 

Let 0 be the collection of midpoints of deleted 

intervals. Connect the points of 0 in pairs by a countable 

collection of upper semicircles centered at (1/2,0). At 

ththe k stage in the construction of K via the recursive a 

procedure of Section 3.2.1, if D~ is connected to D
k 

1,m i,m+l 
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by lower semicircles, then connect the points of V that lie 

between p01nts'f0 Di,mk to t hose t h at l'1e between p01nts'f0 

D~ +1 by lower semicircles centered midway between D~1,m 1,m 

and D,k +1. Let r be that point in V which lies midway1,m k ,m 

between TI(ak,m) and TI(ak,m+l) and let sk,m = TI(ck,m)' which 

is in V, for m = l, ••• ,mk-l. We obtain, for each k, and 

2each m, an arc A' c E - K from r to sk which isk ,m a k ,m ,m 
n -1 

the union of 2 k -1 semicircles, alternating upper and 

lower. Let A be the endcut from r to c obtainedk ,m k ,m k ,m 

by extending A' by a vertical segment straight down to
k ,m 

ck,m. Then Ak,m is clearly an endcut which shows that 

n 
subarc [ak,m,ck,m,ak,m+l] is a 2/2 k_pocket in Ka , for ~,m 

is parallel to the parallel arcs which form the sides of 

the pocket (the sides are parallel except for small segments 

containing ' +1' and ). We call Ak· thea k ,m,ma k c k ,m ,m 

midZine of the aca-pocket whose closed end is c .k ,m 

In a similar fashion we construct the midZine B ofk ,m 

the pocket [b -l,d ,b ] as an endcut from a point of
k ,m k ,m,mk 

D midway between the projections of bk,m-l and bk,m to dk,m 

at the closed end of the pocket, for m = 2, ••• ,m -l.k

Midlines Bk,l to dk,l at the closed end of pocket [ak+l,m + ' 
k l 

dk,l,bk,l]' and Bk,m to dk,m at the closed end of pocket 
k k 

[bk,~-1,dk,~,ak+2,1] are special cases only because the 

endpoints of B 1 and B that lie on the x-axis are the
k , k ,m

k 

points of 0 midway between D~,l and D~,2' and between 

D~,2mk and D~,2mk-l' respectively. 
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Observe that in projection order, the open end of an 

aca-pocket is closer to 0 than its closed end, while the 

open end of an adb-, bdb-, or bda-pocket is further from 0 

than its closed end. Of course, both the open and closed 

ends of a pocket in K are close to 0 compared to the a 

diameter of the pocket. 

Henceforth, for each p in the collection of c- and 

d-points, let M(p) denote the midline of the pocket whose 

closed end is the point p. 

3.2.4 Cuts of K . A cut of K is a Cantor set in K a a a 

which separates K . For example, each D~ in our construc­a 1,m 

tion of K is a cut of K We identify below a convenient 
a a 

collection of cuts of K which will be useful in showinga 

the topological equivalence of K and R , as well as showing
a a 

the inequivalence of K (based on sequence N ) and K (baseda a b 

on sequence N distinct from N ) in subsequent sections.b , a 

Let Lk,m be the vertical segment joining ak,m to 

dk,mk-m+l' for each k and each m = l,···,mk . Let Mk,m 

be the vertical segment joining c k to b k ' for each ,m ,mk-m 

k and each m = l, ••• ,mk-l. Then Lk,m(Mk,m) cuts K : that a 

is each of Lk,m n K and Mk,m n K is a cut of K Leta a a
 

L 1 U ••• U L ' and let M
k , k ,m kk 

For distinct points p and q in the collection of all 

a-points, b-points, and (O,O) (we will refer to (0,0) as 

o hereafter), let Q(p,q} denote a crosscut of small
 

«2d(p,q» diameter from p to q lying below the x-axis.
 

It is clear that such a crosscut exists, since a- and b-points
 

are on outer semicircles. As before, for p < q E C , [p,q]
a 
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denotes the interval in C between p and q. Note that for a 

fixed p and q, the continuum in K irreducible between the a 

endpoints p and q of Q(p,q) is [p,q]. Moreover, Q(p,q) u 

[p,q] is a simple closed curve. For fixed p and q, 

Cl(Int(Q(p,q) U [p,q]» n K is independent of the choice 
a 

of crosscut Q(p,q), and is either [p,q] (if neither p nor 

q is 0) or is K (if either p or q is 0).
a 

Observe that the two segments Lk,m and Mk,m together 

with the subarcs of C between their endpoints, namelya 

[a ,c ] and [b ,d +1]' form a simple closedk ,m k ,m k ,~-m k ,mk-m 

curve. A similar statement can be made for Mk,m and 

Lk,m+l. Define the following closed subsets of Ka which 

meet only in the indicated cuts (their boundaries relative 

to K ), and which form a closed chain covering K : a a 

[O,Lk,l] = Cl(Int(Q(0,ak +2 ,1) U [O,ak,l] U Ll,l U 

[dk ,ffi ,ak+2 ,1])) n Ka ,k 

[L ,M ] = Cl(Int(L U [a ,c ] U M U
k ,m k ,m k ,m k ,m k ,m k ,m 

[bk m -m,dk m -m+l]» n Ka , , k ' k 

[Mk,m,Lk,m+l] = Cl(Int(Mk,m U [ck,m,ak,m+l] U 

Lk,m+l U [bk,mk-m,dk,mk-m]» n Ka , 

[Lk ,Lk +l ] = Cl(Int(Lk U [ak m ,ak +l 1] U 
,mk ,mk , k ' 

Q(ak +l l,ak +l m ) U [ak +l l,dk 1]» n K · 
, , k+l " a 

The notation is meant to suggest that the subset [Lk,m'~,m] 

lies between cuts Lk,m n K and Mk,m n K , while the firsta a 
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subset in the chain contains 0 and the last contains L + •
k l 

Actually, [O,Lk,l] also contain uj=k+2Lj n K anda 

U~ k+·1M. n K. The interiors (relative to K ) of the above
J= J a a 

closed subsets constitute a partition of K into 2m sets a k 

which meet only in their boundaries. 

"" 3.2.5 TopoLogicaL equivaLence of K and Kae We use a 

the closed covers of K defined in Section· 3.2.4 to define a 

a sequence of retractions r k : K -+-+ [0, a k , 1] c and we a Ca' 

coordinate C with the nonnegative reals so that gk is a 

considered as a function with domain a subset of C so a 

that we satisfy the conditions 
nk(1) r moves no point more than 2/2 , andk 

(2) r k = gk 0 r k +l · 

It follows that lim = r: K -+-+ K is a homeomorphism.r k a a 

Observe that [O,ak,l] c [O,Lk,l] , ••• ,[ak,m,ck,m] c 

[Lk ,~ ],[ck· ,ak +1] c [Mk ,Lk +1]'···' [ak, m --k , m , m , m , m , m , m
k

,ak +ll' ] 

n 
c [Lk,~,Lk+l]. Since the 2/2 k-neighborhood of each arc 

above contains the corresponding subset of K , it is easya 

to see that there is a retraction r k+1 : K ~ [o,ak+1,1]a 
n

such that r moves no point more than 2/2 , and suchk +l 
k 

that rk+l([O,Lk,l]) = [O,ak,l] , ••• ,rk+l([Lk,m'~,m]) 

[ak,m,ck,m],rk+l([Mk,m,Lk,m+l]) = [ck,m,ak,m+l]'···' 

rk+l([Lk,mk,Lk+l]) = [ak,mk,ak+l,l]. However, in order to 

satisfy condition (2), we will need to define the retrac­

tions inductively, while coordinatizing C so that condition a 

(2) makes sense. It will turn out that with respect to 

a-, b-, c-, and d-points, the coordinatization of C is a 
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n 
(3) (2m-I) (2 k), for 1 <ak,m m .s. mk 

n 
(2m) (2 k), for 1 < m <ck,m mk-l 

n k+l n 
(4) b = (2mk+l -l) (2 ) + (2m) (2 k),

k,m 

for 1 .s. m .s. ~-l 

nk+1 nkdk,m = (2mk+l -l) (2 ) + (2m-I) (2), 

for 1 .s. m .s. ~ 

We define the sequence {rk}~=l as follows: Recall 

that Lk = Lk,l U ••• ULand M = M Uk,m k k,lk 

Let L = U~=lLk and let M = U~=lMk. Then L U M cuts Ka 

into a Cantor set a of arcs, each'arc, except for [O,al,l]' 

being composed of an upper semicircle and half of each of 

two lower semicircles. Let r l : K ~ [O,al,l] be a retrac­a 

tion so that r is one-to-one on each arc in a, r moves no
l l 

-1point more than 1/2, r (0) = ( (L-L ) U M) n K and
l l a'
 

-1
 
r l (al,l) = L n K . We may take r to be radial projec­l a l 

tion from (1/2,0) as center on upper semicircles, except 

near lower semicircles, and suitably modified so as to be 

one-to-one on the lower semicircles at each end of the 

upper semicircles. Coordinatize [O,al,l] by [0,2] so that 

the midpoint of the upper semicircle is identified with 

1, al,l is identified with 2, and extend linearly in between 

(in terms of the length of [O,al,l] as a curve in E2 ). 

In order to simplify notation, let Lk,m' Mk,m' Lk , Mk , 

L, and M denote the. cuts of K for the remainder of this a 

section, rather than the arcs which do the cutting. We now 

define r 2 : K ~ [0,a ,1] and extend our coordinatization a 2 
n2 

so that [O,a ,1] is identified with [O,2 ], conditions2 
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(1) and (2) are satisfied for k 1,2, and (3) is satisfied 

for k = 1,2. 

Observe that r -1 (2) is naturally partitioned into ffill 
-1 

cuts, namely LI ,I,LI ,2,···,LI ,m ' and that r l (0) is par-
l 

titioned into mk+l cuts, namely (L-(Ll U Li» U (M-Ml ), 

MI,I,MI,2,···,MI,ml-I,L2. Moreover, for each t E (0,2), 

r~l(t) is naturally partitioned into 2ml cuts, namely 

-1 -1
[O,LI,I] n r l (t), [LI,1 ,MI,I] n r l (t),···, [LI,m ,L2 ] n
 

l
 
-1 -1 

r (t). For each t E [0,2] [O,al,l]" r (t) is a Cantorl l 

set, 'and the union over all t of such Cantor sets is K . 
a 

Each such Cantor set is partitioned as noted above, and r 
2 

is defined as follows: For each t E [0,2], 

for 

for 

[a ,c ] n
l 1m l 1m 

for x E [L ,L ] n r 
-1 

(t), r 2 (x) [a l m ,a2 1] n1 ,m 2 l , 1 ' l-1 
r (t).

l 

Since r carries [O,al,l] = [0,2] to itself bythe,identity,2 

carries [al,1,c1,l] to [O,al,l] one·-to-onein reverse order, 
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carries [c l ,1,al ,2] to [O,al,l] one-to-one in order, etc., 

the action of r on [0,a2 ,1] is similar to the projection2 

of the graph of g2 onto the second coordinate. We can 

extend our coordinatization by identifying [0,a2 ,1] with 

n 
[0,2 2] in such a way that r = gl 0 r and (3) is satis­2 ,l 

fied for k = 1,2. For example, if x E [al,l,cl,l] and 

rl(x) = t, then identify x with (2) (2)-t; if x E [c ,lal ,2]l 

and rl(x) = t, then identify x with (2) (2)+t; if 
n 

x E [a l ,m ,a2 ,1] and rl(x) = t, then identify x with 2 2_t . 
l 

We now define r 3 : K ~ [0,a3 ,1]' extend our coordinati­a 
n3

zation so that [0,a3,1] is identified with [0,2 ], satisfy 

(1), (2), and (3) for k = 1,2,3, and satisfy (4) for k == 1. 

Observe that r;l(o) = (L-(L U L )) U (M-M ) and is parti­
l 2 l 

tioned into m2+l cuts, namely, (L - U~=lLj) U (.(M-(Ml U M2)), 
-1 n2 

M2,1,M2,2,···,M2,m2-l,L3. Also, r 2 (2 ) = L2 , and is 

partitioned into m cuts, namely, L 1,···,L . Moreover,2 2 , 2 ,m
2 n 

for each t E (0,2 2) = (0,a2 ,1)' r;l(t) is naturally parti­

tioned into 2m2 cuts, namely, [0,L2 ,1] n r;1(t),[L2 ,1,M2 ,ll 
-1 -1 . n r 2 (t), ••• ,[L2 ,m ,L3] n r 2 (t). Therefore, we deflne r 32 

in a fashion similar to the way we defined r 2 above. For 

each t E [0,a 2 ,1] = 
n

2[0,2 ], 

for x '" E [O,L2 ,1] -1n r 2 (t), r 3 (x) 

-1 r 
2 

(t), 
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for x E [L2 ,m ,L ] n r 
-1 

(t), r 3 (x)3 22 
-1 

[a2,m2,a3,ll n r 2 (t). 

We extend our coordinatization by identifying [0,a ,1]3 
n 

3with [0,2 ] in such a way that (1), (2), and (3) are 

satisfied for k = 3, just as we did for k = 2. Moreover, 

since the b- and d-points in [0,a ,1] all occur in the3 

interval [a2 ,a3 1]' and since each d-point lies above 
,m2 ' 

an a-point of stage k = 1, and each b-point lies below a 

c-point of stage k = 1, we have that (4) is satisfied for 

k = 1. Note that the (2m2-1) (2
n2

)_term of the coordinati­

zation of d and b is in fact the coordinate of a •
l ,m I,m 2 ,m2 

For each k, k ~ 4, we define in terms of r andr k k
- l 

the previously defined cuts of K just as we defined r in 
a 3 

terms of r above.
2 

We have therefore shown that for each sequence 

N {a
l 
,a ,···} of integers a > 2, there is an embeddinga 2 k 

K of the Knaster U-continuum K in E2 , with K the natural a a 

embedding of an inverse limit system K topologicallya 

equivalent to K. 

3.3 The prime end structure of Kae Suppose that K a 

is the embedding of K constructed in Section 3.2 on the 

basis of the sequence N of integers each greater than 2. a 

We use the notation of Section 3.2 below. Let A denote 

the collection of a- and b-points of C , ordered as on C ,a a 

and let C denote the collection of c- and d-points of C ,a 

ordered as on Ca. For each pEA, recall that Q(O,p) 
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denotes a small lower crosscut from ° to p. For each 

q E C, recall that M(q) denotes the midline of the pocket 

of which q is the closed end. Let M(O,q) denote the union 

of M(q) and a lower semicircle from ° to the endpoint of 

M(q) on the x-axis. Then M(O,q) is a crosscut from ° to q. 

3.3.1 Lemma. The set of accessibZe points of K is a 

Proof. Every point of [O,al,l] U A is clearly acces­

sible. Every point of C - ([O,al,l] U A) lies in one of a 

the pockets identified in Section 3.2.3. Hence, every 

point x E C - ([O,al,l] U A) can be reached by a crosscut a 

from ° that follows M(O,x), if x is a c- or d-point, or 

that follows M(O,q), for some q E C, to a point y E M(O,q), 

then follows half of a crosscut which is transverse to 

M(O,q) at y and has x as an endpoint. Hence C is acces­
a 

sible at every point. 

Suppose x is an accessible point of K . We claim a 

x E Ca. Suppose not. For each pEA, Q(O,p) U [O,p] is a 

simple closed curve. Moreover, K C Cl(Int(Q(O,p) U [O,p]».a 

Evidently, for p > q E A, Cl(Int(Q(O,p) U [O,p]» c 

CI(Int(Q(O,q) U [O,q]», since we can chose that the 

crosscuts meet only in 0. In fact, K = npEACl(Int(Q(O,p)a 

U [O,p]». Recall that diam(Q(O,p» < 2d(O,p). 

Let R be an endcut to x. Since x ¢ C , and in virtue a 

of the towering of the simple closed curves above, with Ka 

being their intersection, either there is a first Q(O,p) 

that R doesn't meet, or R meets every Q(O,p). In the 

first case, clearly x E [O,p]. In the second case x = 0. 

Hence x E C , a contradiction. a 
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3.3.2 Lemma. The prime ends of E2-K are aZZ triviaZ a 

(of the first kind)~ except for that prime end E defined 

by any chain of crosscuts converging to 0 E Ca. 

2Proof. If Q is a crosscut of E -K , then by Lemma a 

3.3.1, both endpoints of Q lie in Ca. Let J denote the arc 

of C irreducible between the endpoints of Q. Then Q U J a 

is a simple closed curve, and either K C Cl(Int(Q U J)) or a 

Cl~Int(Q U J)) n K J. a 

Let {Qi}~=l be a chain of crosscuts defining a prime 

end F and let J. be the arc in C irreducible between the 
l. a 

endpoints of Qi. If for some j , Cl(Int(Q. U J.) ) fails to 
] ] 

contain K then for all i ~ j, J. Hence F is::> · 

trivial. So suppose K c Cl(Int(Qi U J )) for all i. We 

a' 1. J i +l 

a i 

claim that {Qi}:=l converges to O. Suppose not. Then the 

endpoints of the Qi's lie in Ka-S(O,£), where 5(0,£) is an 

£-ball about 0 and £ is sufficiently small, for all but 

finitely many Qi. There is a j such that diam(Qi) < £/2 for 

all i > j. So we may assume that Q c E2 - Cl(S(0,£/2)),
i 

for all i > j. But then Q. misses a ray R from 0 to 00 
] 

Hence K ¢ Cl(Int(Q. U J.), a contradiction. a ] ] 

3.4 Proof of Theorem 1.2. Let N {a ,a ,···} and a l 2 

N = {b ,b ,···} be sequences of integers such that forb l 2 

each a k E N and each b E Nb , a ~ 2 and b j ~ 2. Let a j k 

K (K ) be the embedding of K following the procedures of a b 

Section 3.2 for N (N ). Let Ca (C ) denote the endpointa b b 

composant of K (K ) coordinatized by [0,00) as previouslya b 

described. It follows that the set of accessible points of 

K (K ) is C (C ) by Lemma 3.3.1. Since the endpointa b a b 
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composant of K is unique, K and K have the same set of a b 

accessible points. By Lemma 3.3.2, K and Kb have the same a 

prime end structure. 

To prove Theorem 1.2, it suffices to show that if K a 

and K are equivalent embeddings, then N and N are notb a b 

distinct sequences (Definition 2.2 and Lemma 2.3). Suppose 

2 2that h: E ~ E is a homeomorphism such that h(K ) = Kb . a 

Since our proof relies on constructions of crosscuts and 

midlines always in a compact neighborhood of K or K
b

,
a 

we lose no generality by assuming that hand h- l are uni­

formly continuous. 

Before proceeding further, we need to set up some 

\,k-l
notation. Let n l = 11= 1, let n k = 1 + Li=lai , and let 

_ Lj-l 2ak-l 2bj - l 
1. - 1 + . lb .. Let m and let i. The

J 1= 1 k J 

a-, b-, c-, and d-points of C and C with their coordina­
b

,a 

tizations, are then designated as follows: 

C a 

n 1.
ka-points: (2m-I) (2 ) ex. .. (2i-l) (2 J)

J,l 
n 1. 

c-points: (2m) (2 k) y .. (2i) (2 J)
J,l 

n k+l 1. 1 
b-points: (2mk +1 -1) (2 ) s· . (2i + -1) (2 J+ )

J,1 j 1
n 1. 

+ (2m) (2 k) + (2i) (2 J) 

1. 1 
d-points: d (2mk +l -l) (2 ) o. . (2i + -l) (2 J+ ) 

nk +l 
k,m J,l j 1

n 1. 
+ (2m-I) (2 k) + (2i-l) (2 J) 

For a- and d-points of Ca' 1 < m 2. mk ; for b- and c-points 

of Ca' 1 < m 2. mk-l. For a- and d-points of Cb , 1 < i < i. ;
J 

for b- and c-points of C 1 < i < i.-I.
b

, 
J 
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Let A = {al l,al 2,···,al ,a21 ,···,a2 ,bll ,···," ,ml , ,m2 , 

b l -1,a3 l'···} and B = {a l l,···,a l . ,a 2 1,···,a2 . ,,m , , ,1 , ,1l 1 2 

81 ,1' ••• ,8 1 ,i -1,a 3 ,1'···} be the sequences of a- and 
1 

b-points of C and C respectively, ordered as they appearb ,a 

on C and C For p € A let A(p) denote the infiniteb . a 

sequence that remains after removing the initial finite 

subsequence of points preceding p in A. Similarly define 

B(q) for q € B. 

The aca-, adb-, bdb-, and bda-pcokets of C and C are a b 

as described in Section 3.2.3. The critical step in our 

proof will be to show that aca-pockets of C must be carried a 

by h to aca-pockets of C after removing some initialb , 

finite subsequence of pockets from each, and that a similar 

correspondence exists between each of the remaining types 

of pockets. This will be shown to imply that N and N are a b 

not distinct. 

3.4.1 Lemma. The homeomorphism h has the following 

properties: 

(1) h(C )= Cb ' with h(O) = O. a

(2) h is order-preserving from C onto Cb . a 

(3) There are points PO € A and qo € B suah that we 

may assume h(A(PO» = B(qO); that is, hIA(PO): 

A(PO) ~ B(qO) is one-to-one and order-preserving onto 

B(qO)· 

Proof· Since C (C ) is the only composant of K (Kb )a b a 

which is a ray, properties (1) and (2) follow from the 

fact that hlK is a homeomorphism onto Kb . Property (3),a 
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however, follows from the fact that h is defined on E2 , as 

we shall show. 

For each pEA, chose a short lower crosscut Q(O,p) 

(Section 3.2.4) so that for p ~ q E A, Q(O,p) n Q(O,q) = {OJ. 

We can do this because the reversed projection order on A 

duplicates the order of A (induced by C ). Observe that a 

diam(Q(O,p)) + O. In a sufficiently small ball S(O,E) 

about 0 E C the components of C n S(O,E) that contain anb , b 

outer semicircle separate all other components of C n S(O,E)b 

from O. Since diam(Q(O,p)) + 0 implies that diam(h(Q(O,p))) 

+ 0, it follows that there is a PI E A such that for all 

p ~ PI E A, h(p) lies on an outer semicircle of Cb . (More 

precisely, h(p) lies on a component of C n S(O,E) that con­b 

tains an outer semicircle, for sufficiently small E.) 

Suppose that infinitely often h carries a pair of 

consecutive points of A(Pl) to the same outer semicircle of 

Cb . That is, suppose there is a sequence {{ri,ti}}~=l of 

consecutive points of A(Pl) and a sequence {Ci}~=l of outer 

semicircles of C
b 

, such that h(ri),h(t ) E Ci . Theni 

h([ri,t i ]) C Ci , since h is order-preserving onto Cb . 

But between each r i and t i on C there is a point si sucha 

that si + 1 E Ca. Hence h(si) + h(l) E Cb . However, 

C + 0 E C and 0 ~ h(l). In view of this contradiction,b ,
i 

we may suppose that there is a P2 E A, P2 ~ PI' such that 

for all p ~ q E A(P2)' h(p) and h(q) lie on different 

outer semicircles of Cb . 

Since each outer semicircle of C contains exactlyb 

one point of B, we lose no generality by assuming that the 
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image of each point in A(P2) is a point of B. Hence we have 

that hIA(P2): A(P2) + B is one-to-one and order-preserving 

with respect to the orders of C and C
b 

, into B. By repeat-a 

lng'ht e preced'lng argument f or h- l : E2 ~ E2 suc thath 

h
-1 

(Kb ) K , we may assume that there is a ql E B a 

such that the image-of each point of B(ql) under h- l is a 

point of A. Hence we have that h-lIB(ql): B(ql) + A is one­

to-one and order-preserving into A. 

Since A converges to 0 E C and B converges to 0 E C
b 

,a 
-1

there is a q2 E B, q2 ~ ql' such that h (B(q2)) c A(P2)· 

-1
Let P3 h(q2) in A(P2)· Then A(P3) c A(P2). If
 

p ~ P3 E A, then h(p) ~ h(P3) = q2. Hence h(p) E B(q2)·
 

We claim that h\A(P3): A(P3) + B(q2) is onto. Let q E B(q2).
 

lThen q ~ q2' and since h- \B(q2) is one-to-one and order­

-1 -1
preserving into A(P2)' h (q) ~ h (q2) = P3. But then 

-1
h (q) E A(P3). Let PO = P3 and qo = q2' and property (3) 

is established. 

Recall that on C (C ), between each pair of consecutive a b 

points of A (B), there is a unique c- or d-point of C (C )a b 

which is the closed end of the pocket in C ( Cb ) of which a 

the consecutive pair of points is the open end. 

3.4.2 Lemma. There are points Po E A and qo E B such 

that if Pl < P2 E A(PO) are consecutive points and r is the 

c- or d-point that lies between them on C ' then we maya 

assume that pocket [P ,r,P2] C C is carried by h onto al a 

pocket [ql,s,q2] C Cb ' where we may assume that h(Pl) = ql 

and h(P ) = q2 are consecutive in B(qO) and that s = h(r)2
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is the c- OP d-point of Cb that lies between ql and q2. 

Ppoof· By Lemma 3.4.1, we can find Po E A and 

h(PO) = qo E B satisfying the lemma, except possibly for the 

condition that h(r) be the c- or d-point of C that lies
b 

between ql and q2. However, since h is order-preserving 

onto Cb , and since the c- and d-points of C converge to 0,
a 

we may assume that h(r) lies in some lower semicircle 

Cl c [ql,q2] c Cb · Let s be the c- or d-point of C con­b 

tained in [ql,q2]. There is only one such point, and it 

lies on the inner semicircle C c [ql,Q2]' of which there2 

is only one contained in [Ql,Q2]. So, if we can show that 

C and C are actually the same lower semicircle, then wel 2 

may assume that h(r) s. 

Suppose that Cl and C2 are distinct lower semicircles. 

Then C2 contains the closed end of the pocket, and C is onl 

one side of the pocket [Ql,s,q2]. Hence there are upper 

semicircles C3 and C in [Ql,Q2] such that C lies between4 3 

Cl and C on C and C is parallel to C but on the opposite2 b 4 3 

side of the pocket. Let x E C and y E C We claim thatl . 

any crosscut from x to y has diam(Q) > 1/4. We may assume 

that Po E A and qo E B have been chosen so that for all 

consecutive	 ql < q2 E B(qO)' [ql,q2] is an 8-pocket with 
1· 

2 

o < 8 < 1/16 and 1/3-28 > 1/4, since 2/2 J + O. For each 

crosscut R from C to C that is transverse to the midline3 4 

M(s) of pocket [Ql,q2] and has diam(R) < 8, Q must meet R. 

Since diam(C ) ~ 1/3, because C is an upper semicircle, we3 3 

have diam(Q) ~ diam(C )-28 ~ 1/3-28 > 1/4.3

In the order on C either C < C or C > C Wel .b 2 l 2 

assume that C2 < C1 i the case for C2 > C1 is symmetric. 
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Since h is uniformly continuous, chose a > 0 so that for 

all x,y E E2 , if d(x,y) < a, then d(h(x) ,h(y» < E. We may 

assume that Po E A and h(PO) = qo E B have been chosen so 

that for all consecutive PI < P2 E A(PO)' [Pl ,P2] is a 
nk 

a-pocket, since 2/2 + O. Let M(r) be the midline of 

pocket [P l ,r,P2]. Then for each x E [Pl,r), there is a 

y E (r,P2] and a crosscut Q from x to y transverse to M(r) 

with diam(Q) < a. Thus diam(h(Q» < E. 

Since we have assumed that C < C we have ql < s <2 l
, 

h(r) < Consequently, we have < h-l(s) < r <q2· PI P2· 

There is an x E C so that x < s. Then PI < h
-1 

(x) <2 

h-l(s) < r. Since [P ,P2] is a a-pocket, there is al 

y E (r,P2] and a crosscut Q from h-l(x) to y such that Q 

is transverse to M(r) and diam(Q) < a. Then h(Q) is a 

crosscut from x to h(y) and diam(h(Q» < E. 

Since [ql,q2] is an E-pocket, and since s < h(r) < q2' 

there is a z E [ql's) and a crosscut R from z to h(r) such 

that R is transverse to M(s) and diam(R) < E. If it were 

the case that z E [x,s), then z would be in C2 • Hence R 

would be a crosscut from z E C to h(r) E C and so wouldl ,2 

have diam(R) > 1/4. Hence we must have ql < z < x < s < 

h(r) < h(y) < q2. 

We may assume that Rand h(Q) are inside pocket 

[Ql,Q2]. Now R U [z,h(r)] is a simple closed curve with 

h(y) contained in Ext(R U [z,h(r)]). Moreover, Int(R U 

[z,h(r)]) is inside the pocket [Ql,Q2] and its closure 

contains x. Hence crosscut h(Q) from x to h(y) must meet 

crosscut R from z to h(r). Thus R U h(Q) contains a crosscut 
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T from x to h(r), and diam(T) 2 diam(h(Q)) + diam(R) < 

E + E < 1/8. However, T is a crosscut from xl E C to2 

h(rl ) E Cl , so diam(T) > 1/4. In view of this contradic­

tion, it follows that C and C are the same lower semicircle.l 2 

It follows from Lemma 3.4.2 that we can find Po E A 

and qo = h(PO) E B, so that hi [PO,oo): [PO,oo) ~ [qo'oo) 

carries pockets in [PO,oo) c C onto pockets in [qo'oo) c Ca b 

in a one-to-one, order-preserving correspondence. However, 

given, say, an aca-pocket in [PO,oo), we have not yet deter­

mined what type of pocket in [qo'oo) its image under h must 

be. The next lemma establishes that h must preserve types 

of pockets from [PO,oo) onto [qo'oo). 

3.4.3 Lemma. Let Po E A and qo = h(PO) E B be chosen 

so as to satisfy Lemmas 3.4.1 and 3.4.2. Then hi [PO,oo) : 

[PO,oo) ~ [qo'oo) carries each aca-, adb-, bdb-, and 

bda-pocket in [PO,oo) c C onto a pocket in [qo'oo) c Cb of a 

precisely the same type, in a one-to-one J order-preserving 

correspondence. 

Proof. We argu~ in this first paragraph that the proof 

reduces to showing that the image under h of each aca-pocket 

of [PO'OO) is an aca-pocket of [qo'OO). Assume that is the 

case. Then by symmetry, the assumption also holds for 

-11aca-pockets of [qo'OO) and h [qo'oo): [qo'oo) ~ [PO,oo). 

We may assume that Po E A has been chosen so that Po = ak,l 

for some k. Consequently, by the order of a- and b-points 

on C , the consecutive pockets of [PO,oo) appear in the a 

following groupings: a finite number of aca-pockets, one 
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adb-pocket, a finite number of bdb-pockets, one bda-pocket, 

followed by the first aca-pocket of the next grouping. By 

our assumption, the image of each aca-pocket in [PO,oo) is 

an aca-pocketin [qo'oo). Consider the image of an adb-pocket 

of [PO,oo). It cannot be an aca-pocket of [qo'oo), because 

this would contradict our assumption regarding h- 1 • It 

could not be a bdb-pocket in [qo'oo), since we know that its 

first endpoint must be an a-point of C because this end­b 

point is the last endpoint of the previous aca-pocket. 

Similarly, it cannot be a bda-pocket. So the image of an 

adb-pocket of [PO,oo) must be an adb-pocket of [qo'oo). By 

similar reasoning, the image of each bdb- and bda-pocket of 

[po,oo) must be, respectively, a bdb- and bda-pocket of 

[qo'oo). Since the above argument holds for each grouping 

in turn on [PO,oo), it follows that hi [PO,oo) preserves types 

of pockets. 

Let Pl < P2 E A(PO) be consecutive, so that [Pl,r,P2] 

is an aca-pocket in [PO,oo). It suffices, by the above argu­

ment, to show that [ql,s,q2] c [qo'oo) is also an aca-pocket, 

where h(Pl) = ql' h(P2) = q2' and her) = s,' r being the 

c-point between P and P and s being the c-point betweenl 2 

ql and q2· (It follows from Lemma 3.4.2 that we may assume 

her) = s and that s is either a c-point or ad-point. 

We aim to show s must be a c-point.) 

By way of contradiction, suppose that [ql,s,q2] is 

not an aca-pocket of [qo'oo). It certainly is a pocket, so 

we may assume, without loss of generality, that it is a 

bdb-pocket. The proof for the remaining two cases is almost 

exactly the same. 
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We may suppose that PO E A and h(PO) = qo E B have been 

chosen to satisfy not only Lemmas 3.4.1 and 3.4.2, but also 

the conditions: 

(1)	 1/16 > n >0 and n > E > 0 are chosen, by uniform 

-1 2continuity of h , so that for all x,y E E with d(x,y) < 8, 

d(h-l(x),h-l(y)) < n· 

(2)	 8 > ° > 0 is chosen, by uniform continuity of h, 

2 
so that for all x,y E E with d(x,y) < 0, d(h(x) ,h(y)) < 8. 

(3) The outer and inner semicircles containing all 

a-, b-, C-, and d-points of [PO,oo) are contained in S(O,Q) •. 

(4) The outer and inner semicircles containing all 

a-,	 b-, C-, and d-points of [qo'oo) are contained in 5(0,8). 

As r is a c-point of C ' it lies on an inner semicircle a
 

C(r) and there is a b-point t of C directly below rand
 
a 

lying on an outer semicircleC(t), parallel to C(r). Since 

the closed end of an aca-pocket lies to the right of the 

open end in projection order, since t is directly below r, 

and since reverse projection order duplicates the order on 

C for points of A, we have Po ~ PI < P2 < t on [PO,oo).a 

Moreover, C(r), C(t), and all the lower semicircles parallel 

to them are contained in 5(0,0). 

Let L(r,t) be the vertical segment joining r to t. 

Note that L(r,t) n K is one of the cuts of K previouslya a 

defined. Also note that L(r,t) c S(O,o) c S(O,n). Now C(t), 

together with the short arcs in S(O,n) of the two upper 

semicircles which meet C(t) at its endpoints, locally 

'separates L(r,t) - {t} from 0; that is, t is the only point 

of L(r,t) that can be reached by a crosscut from 0 of 
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diameter less than n. (See Figure 8.) This holds because 

outer semicircles, together with short arcs of of the upper 

semicircles which meet them, separate all lower semicircles 

parallel to them from 0 in a sufficiently small neighborhood 

of O. 

Since hi [PO,oo) is order-preserving, we have qo ~ ql < 

q2 < h(t) on [qo'oo). We have assumed that s = h(r) is the 

d-point at the closed end of the bdb-pocket [ql,s,q2]. Hence 

there is an a-point u of C directly below s. Let C(s)b 

denote the inner semicircle containing sand C(u) denote the 

outer semicircle containing u. Since the closed end of a 

bdb-pocket is to the right of the open end in projection 

order, since u is directly below s, and since reverse pro­

jection order duplicates the order on C for points of B,b 

we have 0 < u < ql < q2 on Cb • 

Let C(U)+ denote C(u) union the short arcs of the two 

upper semicircles that meet C(u) contained in S(O,E). For 

any x E C(u) + , we have 0 < x < ql < q2. Moreover, x can 

be reached by a crosscut from 0 contained in S(O,E). 

Since ql < q2 < h(t), it follows that we have 

h(t) ¢ C(U)+. However, h(t) lies on some outer semicircle 

C(h(t)) in [qo'oo), since h(t) E B(qO). Now h(L(r,t)) is an 

arc in S(O,E) from s to h(t), and h(L(r,t)) must cut K •b 

Since C(U)+ separates all other outer semicircles in S(O,E) 

from s, we have that h(L(r,t)) n C(U)+ 1 ~. 

Let x E h(L(r,t)) n C(U)+. Obviously, x 1 h(t). Let 

Q be a crosscut from 0 to x, Q c S(O,E). Then h-l(Q) is a 

crosscut from 0 to h-l(x) E L(r,t) - {t} with h-l(Q) c S(O,n). 
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But this contradicts the fact that no point of L(r,t) - {t} 

can be reached in S(O,n) by a crosscut from O. In view of 

this contradiction, [Ql,s,Q2] cannot be a bdb-pocket. 

3.4.4 Lemma. Thepe ape positive integeps K and J 

such that the sequence N - {al ,a2 ,···,aK_l } is identical a 

to the sequence N - {bl ,b ,···,b _l }. Consequently~ Nb 2 J a 

and Nb 
ape not distinct. 

Ppoof· Let Po E A and h(PO) = Qo E B be chosen so as 

to satisfy Lemma 3.4.3. We may assume that for some K, 

Po = aK,l E A. Then A(PO) = {aK,1,aK,2,···,aK,ffiK,bK-l'···' 

bK- l -l,aK+l I'···}· Lemma 3.4.3 implies t~at 
,mK- l ' 

h(aK,l) = aJ,I' for some J and some I, 1 2 I 2 i J • This 

holds because hi [PO,oo) preserves types of pockets. By 

similar'reasoning, it follows that h(aK,2) = aJ,I+l'···' 

h(aK m ) = aJ I+ -l,h(bK- l 1) = SJ-l l' and so forth. In 
, K ' mK ' , 

particular, it follows that h carries A(aK+l,l) onto 

B(aJ+l,l) in a one-to-one order-preserving correspondence 

that, moreover, preserves types of points (a-points go to 

a-points, b-points go to b-points). It follows that 

mK+l = i J +l (from the a-points) and that ~ = i J (from the 

b-points) . 

By the same reasoning applied to each successive 

grouping {aK+ 1,···,aK+ ,bK+ -1 1,···,bK+r - l ' 
r, r ,mK+r r, 'IJX+r-l 

aK+r+l,l} carried byh onto the grouping {aJ+r,l'···' 

aJ+. ,SJ+ -1 1,···,SJ+ -1 . ,aJ + +1 I} for eachr,lJ+r r, r ,1J+r-l r, 

r ~ 2, it follows that for each r ~ 0, mK+r = i +r • SinceJ 
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laK+r-l . 2bJ+r ­
~+r = 2 and l J + ' it follows that for allr 

r ~ 0, a K+ = bJ + for a K+ E N and b J + E Nb . Therefore,r r r a r 

N - {al ,a2 ,---,a _ } is identical to N - {b ,b ,---,b _ }.a K l	 b l 2 J l 

Hence N and N are not distinct. a b 

In view of Lemma 3.4.4, if N and N ·are distinct a b 

sequences of integers greater than or equal to 2, then the 

corresponding embeddings K and K of K in E2 are inequiva­a b 

lent. Since there are uncountably many such distinct 

sequences, Theorem 1.2 is established. 

4.	 Uncountabley Many Inequivalent Embeddings of 
Uncountably Many Knaster Continua 

In [W] Will Watkins has shown that there are uncountably 

many nonhomeomorphic Knaster continua, answering a question 

posed	 by J. W. Rogers, Jr. in [R]. We have considered only 

2the simplest of these continua, namely K , which is produced 

as the inverse limit of arcs under two-to-one bonding maps. 

If we were to use instead six-to-one bonding maps, the 

resulting six-fold Knaster continuum KG would not be homeo­

morphic to K2 , though, like K2 , it would have only one end­

point. 

For the sake of uniformity in describing a variety of 

Knaster continua, we alter our inverse limit notation 

slightly, so that the i th bonding map will have domain the 

i th space and range the (i_l)th space. We will henceforth 

use [0,1] as the oth space, where the bonding functions are 

indexed by i i, 2, - - - • 

Let k, m, and n be positive integers such that n = km. 

Define a k-to-one rooftop function fn: [O,n] ~ [O,m] bym 
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f~(rm) = I 0, for even r = 0,1,2, ••• ,k,r1m, for odd r 

and extend linearly between rm. and {r+l)m, for 0 .::. r < k-l. 

For positive integers n l ,n2 ,···,ni , let TI~=lnj 
o n n ••• n. and let TT. In. = 1.l 2 1 II J = J 

4.1 Embeddings of the six-foZd Knaster aontinuum. 

6Let the six-foZd Knaster aontinuum K be defined by the 

inverse limit system KG = lim{[O,Gij ,gi}~=l' where 

6 i 
g. = f . 1 is a six-to-one rooftop function. The standard

1 61­

embedding K~ of KG in E2 is illustrated in Figure 9. The 

Cantor set [6 used in the construction is not a middle third 

Cantor set, but rather, after the first stage, is a 

Sill-Cantor set. (In constructing a Sill-Cantor set, five 

of eleven equal subintervals are deleted from each subin­

terval of stage k, so that there remain six disjoint inter­

vals of stage k+l in each interval of stage k.) 

For each sequence N = {a ,a ,···} of positive integers,
a l 2

there is an inverse limit system 

i 6 ni 00 

a 1!m{[O,6 ] ,ga.}i=l 
1 n. 

. 6 1 a. 
where nO = 0, n i = Ij=la j , and gao = f 6ni - 1 is a 6 l-to-one 

a. 1 

rooftop function. Since a 6 1-to~one rooftop function is 

the composition of a i six-to-one rooftop functions, K~ is 

homeomorphic to K6 . 

It can be shown, by techniques similar to those of 

Section	 3, that there is a naturaZ embedding K~ of K~ in 

2E . The recursive procedure for constructing the embedding 

is the same as that in Section 3.2.1, except that [6 replaces 
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a. a. a.
C' and 6 1 replaces, 2 1, while 6 1/2 replaces mi. Using the 

notion of pockets, it can be shown that if K: and K~ are 

equivalent embeddings, then N and N are not distinct. a b 

Thus we obtain a result analogous to Theorem 1.2 for K6 . 

All prime ends of K6 are trivial, except for one of the a 

second kind, and the set of accessible points is the unique 

endpoint composant. 

4.2 Unaountably many nonhomeomorphia Knaster aontinua. 

Following Watkins [W], we define an uncountable collection 

of nonhomeomorphic Knaster continua. Let N = {nl ,n2 ,n3 ,··.} 

be a sequence of positive integers. Define the inverse 

limit system 

(1) K
N

= 1im{[O,TT~=lnj],gn.}:=1 
1 

TT~=lnj 
where gn. f i-l is an ni-to-one rooftop function. 

1 
J=In.TT · J 

If infinitely many of the ni's are even, then KN is a 

Knaster continuum with exactly one endpoint, called aU-type 

Knaster continuum. Continua K6 and K2 are both u-type 

Knaster continua, based, respectively, on the sequences 

{2,2,2,···} and {6,o,6,···}. If only finitely many nils 

are even, then KN is a continuum with exactly two endpoints, 

called an S-type Knaster continuum. The simplest S-type 

Knaster continuum is K3 based on the sequence {3,3,3,···}. 

Obviously, no U-type Knaster continuum is homeomorphic to 

any S-type Knaster continuum. 

Watkins constructs the uncountable collection of non-

homeomorphic Knaster continua as follows: Let 
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P' = {Pl,P2,P3'···} be a (finite or infinite) subset of the 

primes, ordered so that Pi < Pi+l. Form the infinite 

sequence 

(2) P = {PI 'PI ,P2 ,PI 'P2 ,P3 ,PI 'P2 ,PJ ,P4 ,···} 

in which each Pi E P' appears infinitely often. Re-index 

P without changing the order in which the primes appear 

so that P = {Pl,P2,P3,···}. Let K
P 

be the inverse limit 

system defined by 

(3) K
P 

= lim{[O,TT~=lPjl,gp!}:=l 
1 

as defined in (1) above, but with N = P. 

Watkins shows that if P' and Q' are different subsets 

of primes (that is, there is a prime pEP' - Q' or 

q E Q' - P'), then, with P and Q formed from P' and Q' as 

in (2) I the continua KP and KC! are not homeomorphic [W, 

Theorem .3a]. The conclusion that there are uncountably 

many nonhomeomorphic Knaster continua follows from the fact 

that there are uncountably many different subsets of the 

primes. 

If the prime 2 should appear in pi, then 2 will appear 

Pinfinitely often in the sequence P. Hence K will be a 

U-type Knaster continuum. However, if 2 t pi, then every 

element of P will be odd. Hence KP will be an S-type 

Knaster continuum. Since there are uncountably many sub­

sets of the primes which include (do not include) 2, there 

are uncountably many nonhomeomorphic U-type (S-type) 

Knaster continua. 

The techniques of Section 3 can be adapted to S-type 

Knaster continua, but we restrict our attention to the 

U-type continua. 
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4.3 Uncountably many inequivalent embeddings of each 

of uncountably many U-type Knaster continua. Let 

p' = {Pl,P2,P3'···} be a subset of the primes with PI 2. 

We define an inverse limit system as follows: Let 

m.
]. 

TT~=lPj. Let p* = {m1 ,m2 ,m3 ,···}. Let 

(4) K
P* = 11m{[O,TT~=lmjl ,gm.}~=l 

]. 

P as defined in (1) above with N = P*. Given P', K (see 

p*
(3)) and K are homeomorphic, since g - gog o ••• og. 

mi - PI P2 Pi 
p*

The advantage of K is that each m is even. This makes
i 

the standard embedding of K
P* easier to construct. 

2The standard embedding K~* of KP* in E is constructed 

much like the standard embedding of KG. We start with a 

Cantor set Cp * in which the number of intervals deleted at 

each stage of construction depends upon mi. Thus, we first 

delete a middle third interval in 1 = [0,1], leaving two0 

intervals 1 0 ,1 and 1 0 ,2. We divide each IO,j into 2ml -l 

equal intervals, and delete the "middle" ml-l of them, 

leaving ml disjoint intervals IO,j,k contained in each IO,j. 

We divide each IO,j,k into 2m2-l equal intervals, delete 

the "middle" m -l of them, leaving m2 disjoint intervals2

1 . k 1 in each 1 . k· We continue this process for each0 ,J, , 0 ,J, 
m constructing the Cantor seti ,
 

p * = 2 ml
C 1 0 n (1 0 ,1 U 1 0 ,2) n (Uj=l Uk=l IO,j ,k) n 
2 ml m2 

(Uj=lUk=lUl=lIO,j,k,l] n •••• 
p*

The recursive procedure for constructing KO ' given 

[ P*, is the same as the procedure in Section 3.2.1, except 

ai
that m replaces 2 andmi /2 replaces the mi of 3.2.1.i 
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Let N = {a ,a
2

,a ,···} be a sequence of positivea l 3 

integers. Let nO = 0, and let ni = I;=la j . Define the 

maps 

o ••• 0 gm
n.-l 

1. 

n. n i - l[O,n. 1. lm .] -H­ [O,n· 1 m.]J= J J= J 

Let i P* be the inverse limit system
a 

K:* = lj,rn{ [O,nnJ·~lrn.jl ,gao 1:=1 
. 1. 

Since gao is the composition of the next a unused	 gm. 's,i 
1. J 

KP* is homeomorphic to KP* a
 
2
The natupaZ embedding K:* of K:* in E starts with the 

Cantor set [*, constructed above for the standard	 embedding. 

P *However, the recursive procedure for constructing K
a 

a.	 n.
1.replaces 2 in Section 3.2.1 with r.	 and1. = nj:n. +lmj ,

1.-1 

replaces the m. of Section 3.2.1 with r /2.1. i 

Techniques similar to those of Sections 3.2 through 

3.4	 can be used to prove an analog of Theorem 1.2 for each 

p* . p*
K . That 1.S, K has as its set of accessible points the a 

unique ray-like composant of its endpoint; the prime end 

p*
structure of K consists of trivial prime ends, excepta 

for one of the second kind; and, if K and K are equi-P * P * 
a b 

2valently embedded in E , then N and N are not distinct. a b 

Hence there are uncountably many inequivalent embeddings 

of K
P*. Moreover, there are uncountably many u-type 

Knaster continua for which the above statements are true. 
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4.4 Questions. We conclude with several questions 

concerning extensions of Theorem 1.2 to additional continua. 

4.4.1 Question. Are there uncountably many inequiva­

lent embeddings of the pseudo arc with the same prime end 

structure? 

4.4.2 Question. Are there uncountably many inequiva­

lent embeddings of every indecomposable chainable continuum 

(with the same prime end structure)? 

4.4.3 Question. Are there uncountably many inequiva­

lent embeddings of every (of some) indecomposable nonchain­

able continuum (with the same prime end structure)? 

4.4.4 Question. Does Ingram's [I] atriodic nonchain­

able tree-like continuum have uncountably many inequivalent 

embeddings (with the same prime end structure)? 

4.4.5 Question. Ooes the atriodic nonchainable tree­

like continuum of [M~l] have uncountably many inequivalent 

embeddings with the same prime end structure, specifically, 

all with a simple dense canal? Do all embeddings of that 

continuum have a simple dense canal? 

We assume all the embeddings referred to above are 

into the plane. Answers to Questions 4 and 5, in particular 

may be of some relevance to the fixed point problem for 

nonseparating plane continua. 
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R 

o 

~ C-map 

E 

Figure 1. Standard embedding K of sin l/x continuum. 
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1 

3 

q 

---+ 
C-map 

o 
4 

2 

TH	 2 

Figure 2.	 Embedding Mo of sin l/x continuum based on 
schema {So,so,so' ••• }. 
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o 
P6
 4 8
10 14 20
 

Figure 3. Embedding of sin l/x continuum based on schema 
{S2,Sl'---}· 
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(a) 

(b) 

Figure 4.	 Embeddings of,sin 1/x continuum with same prime 
end structure as K. 

(a) 

Figure 5.	 Embeddings of sin 
l/x continuum with a 
prime end of the 
third kind. 

(b) 
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a
1 

Figure 6. Standard embedding Ko 
(bucket handle). 

of Knaster U-continuum 
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Figure 7.	 Natural embedding Ka of K~aster U-continuum K, 
defined by inverse limit Ka based on Na = 
{2,2,···}. 
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S(O,t) 

(L(r,t) 

Figure 8.	 Impossibility of h carrying aca-pocket to 
bdb-pocket. 
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