TOPOLOGY PROCEEDINGS

Volume 8, 1983

Pages 303-314

http://topology.auburn.edu/tp/

AN ADMISSIBLE CONDITION FOR CONTRACTIBLE HYPERSPACES

by

Choon Jai Rhee and Togo Nishiura

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

AN ADMISSIBLE CONDITION FOR CONTRACTIBLE HYPERSPACES

Choon Jai Rhee and Togo Nishiura

Let X be a nonvoid metric continuum. Denote by 2^{X} and C(X) the hyperspaces of nonempty closed subsets and subcontinua of X respectively and endow each with the Hausdorff metric H.

In 1938 Wojkyslawski proved that 2^{X} is contractible if X is locally connected [11]. In 1942 Kelley [1] proved that the contractibility of 2^{X} is equivalent to the contractibility of C(X). Furthermore, he introduced a sufficient condition, namely property (3.2), for the contractibility of the hyperspaces of metric continua. In [5], a necessary condition, namely admissibility, is given for a space whose hyperspace is contractible. It was also proven that the contractibility of the hyperspace C(X) is equivalent to the existence of a continuous fiber map on X into the hyperspace $C^2(X)$ of subcontinua of C(X) for the class of metric continua with property c (abbreviated as c-space). In the present paper we show that if $f: X \to Y$ and $q: Y \to X$ are continuous such that f • g is homotopic to the identity map $\operatorname{id}_{\mathbf{v}}$ on Y, and if X is a c-space then Y is also a c-space. Hence if X and Y are homotopically equivalent, then X is a c-space if and only if Y is. We also show that the product space $X \times Y$ is a c-space if and only if both X and Y are c-spaces. Many corollaries to the above results are also given which are generalizations of results in [4].

304 Rhee and Nishiura

Throughout the paper, the symbols I and μ will be reserved for the closed interval and a Whitney map [10] with $\mu(X) = 1$ respectively. Note that $\mu(X) = 1$ necessarily requires X to be nondegenerate, a condition which we will assume whenever required without explicitly stating so.

1. Preliminaries

We collect in this section some definitions and known facts and prove a new lemma. Let X be a nonvoid metric continuum.

A map H: $X \times I \rightarrow C(X)$ is increasing if $h(x,t) \subset h(x,t')$ for $t \leq t'$ and $x \in X$. A contraction of X in C(X) is a continuous homotopy h: $X \times I \rightarrow C(X)$ such that, for each $x \in X$, $h(x,0) = \{x\}$ and h(x,1) = A. A contraction of X in 2^X is analogously defined.

Theorem 1.1 [1]. 'The following statements are equivalent.

- 1. A contraction of X in C(X) exists.
- 2. 2^X is contractible.
- 3. C(X) is contractible.

Theorem 1.2 [1]. If C(X) is contractible then an increasing contraction of X in C(X) exists.

The contractibility of C(X) implies the contractibility of $C^2(X)$, by Theorem 1.1. Also, since the union may from $C^2(X)$ onto C(X) is a retraction, the contractibility of $C^2(X)$ implies the contractibility of C(X). Thus we have the following.

Theorem 1.3 [1]. C(X) is contractible if and only if the hyperspace $C^2(X)$ of subcontinua of C(X) is contractible.

We recall the definition of the Hausdorff metric H on 2^X . For A,B $\in\ 2^X$,

$$H(A,B) = \max\{\max d(a,B), \max d(b,A)\},\$$

 $a \in A$ $b \in B$

where d(x,A) is the distance from x to A.

Lemma 1.4. If A,B,C,D $\in 2^X$ then

 $H(A \cup B,C \cup D) < max\{H(A,C),H(B,D)\}.$

 $\label{eq:proof.} \begin{array}{lll} \textit{Proof.} & \text{Let } \eta > \max\{\text{H}(A,C)\,,\text{H}(B,D)\}\,. & \text{Then } C \cup D \subset \\ \{x\big|\,d(x,A)\,<\,\eta\}\,\cup\,\{x\big|\,d(x,B)\,<\,\eta\}\,=\,\{x\big|\,d(x,A\cup B\,<\,\eta\}\,. & \text{Also} \\ & A \cup B \subset \{x\big|\,d(x,C\cup D)\,<\,\eta\}\,. & \end{array}$

Let X be a nonvoid continuum. We now define an admissibility condition [5] and prove some propositions. For $x \in X$, let $F(x) = \{A \in C(X) \mid x \in A\}$, and for $(x,t) \in X \times I$, $F_t(x) = F(x) \cap \mu^{-1}(t)$. An element $A \in F(x)$ is said to be admissible at x if, for each $\varepsilon > 0$, there is $\delta > 0$ such that each y in the δ -neighborhood of x has an element $B \in F(y)$ such that $H(A,B) < \varepsilon$. For each $x \in X$, the collection $A(x) = \{A \in F(x) \mid A \text{ is admissible at } x\}$ is called the admissible fiber at x. We say that X is admissible if $A_t(x) = A(x) \cap \mu^{-1}(t)$ is nonempty for each $(x,t) \in X \times I$.

Proposition 1.5. If $A \in \mathcal{A}(\xi)$ and $B \in \mathcal{A}(x)$ and $\xi \in A \cap B$ then $A \cup B \in \mathcal{A}(x)$. Hence, if $A_i \in \mathcal{A}(x)$, $i=1,2,\cdots,n$, then $\cup_{i=1}^n A_i \in \mathcal{A}(x)$.

Proof. Let $\epsilon > 0$. Since $A \in \mathcal{A}(\xi)$, there is $\tau < \epsilon$ where each point y of the τ -neighborhood V of ξ has an element $C \in F(y)$ such that $H(A,C) < \epsilon$. Since $B \in \mathcal{A}(x)$ there is

 δ > 0 such that each point z of the δ -neighborhood W of x has an element D ϵ F(z) such that H(B,D) < τ . One sees that ξ ϵ B and H(B,D) < τ imply V \cap D \neq Ø. Hence, for each z ϵ W there are D ϵ F(z), y ϵ V \cap D and C ϵ F(y) such that H(A,C) < ϵ , H(B,D) < ϵ and C U D ϵ F(z). By Lemma 1.4, we have H(A U B,C U D) \leq max{H(A,C),H(B,D)} < ϵ , and the proposition is proved.

Proposition 1.6. For each $x \in X$ its admissible fiber A(x) is closed in C(X), $\{x\} \in A(x)$ and $X \in A(x)$.

Proof. Suppose A_n , $n=1,2,\cdots$, is a sequence in $\mathcal{A}(x)$ which converges to A in C(X). Obviously, $A \in F(x)$. Let $\varepsilon > 0$. There is a positive integer N such that $H(A,A_N) < \varepsilon/2$. Since $A_N \in \mathcal{A}(x)$, there is a δ -neighborhood V of x such that each point y of V has an element $B \in F(y)$ such that $H(A_N,B) < \varepsilon/2$. From $H(A,B) \leq H(A,A_N) + H(A_N,B) < \varepsilon$, we have $A \in \mathcal{A}(x)$ and hence $\mathcal{A}(x)$ is closed. The remaining parts of the proposition are obvious.

We note that since C(X) is compact [1], A(x) is compact.

Proposition 1.7. Let $B \in F(x)$ and $C = \bigcup \{A \in A(x) \mid A \subset B\}$ then $C \in A(x)$.

Proof. First we prove C is a subcontinuum of X. Clearly C is connected and $x \in C$. Let x_n , $n = 1, 2, \cdots$, be a sequence in C converging to x_0 . For each $n \geq 1$ choose $A_n \in A(x)$ such that $x_n \in A_n \subset B$. Since A(x) is compact in C(X), we may assume that the sequence A_n , $n = 1, 2, \cdots$, also converges to an element $A_0 \in A(x)$. Obviously, $x_0 \in A_0 \subset B$. Hence $x_0 \in A_0 \subset C$. We conclude that C is closed in X.

Now suppose $\varepsilon > 0$. Since C is compact in X, there are points c_1, c_2, \cdots, c_n in C such that C is contained in the ε -neighborhood of the finite set $\{c_1, c_2, \cdots, c_n\}$. For each i, let $A_i \in A(x)$ such that $c_i \in A_i \subset B$ and let $B_0 = \bigcup_{i=1}^n A_i$. Since $C \supset B_0 \supset \{c_1, c_2, \cdots, c_n\}$, we have $H(C, B_0) < \varepsilon$. By Proposition 1.5, $B_0 \in A(x)$. Since A(x) is compact in C(x) we have $C \in A(x)$.

Proposition 1.8 [7]. If h: $X \times I \rightarrow C(X)$ is a continuous increasing map such that $x \in h(x,0)$ for $x \in X$ then $h(x,t) \in A(x)$ for $(x,t) \in X \times I$.

Theorem 1.9 [7]. If X is a nondegenerate metric continuum and C(X) is contractible, then X is an admissible space.

2. Fiber Maps

In [5] it was shown that the contractibility of C(X) is equivalent to an existence of a set-valued map $\alpha\colon X\to C(X)$ possessing a certain property. In this section we prove that this property is preserved by the homotopy equivalence relation. Hence, we obtain generalizations of many of the results in [4] and [8].

Definition 2.1 [5]. A set-valued map $\alpha: X \to C(X)$ is said to be a c-map if, for each $x \in X$, $\alpha(x)$ is a closed subset of the admissible fiber A(x) such that

- (1) $\{x\}, X \in \alpha(x)$.
- (2) For each pair A_0 , A_1 in $\alpha(x)$ with $A_0 \subset A_1$, there is an ordered segment [2, p. 57] in $\alpha(x)$ from A_0 to A_1 .

(3) For each $A \in \alpha(x)$, and $\epsilon > 0$, there is a neighborhood W of x such that each point y of W has an element $B \in \alpha(y)$ such that $H(A,B) < \epsilon$.

We say that the space X is a c-space if there is a set-valued c-map α : X \rightarrow C(X). Clearly every c-space is an admissible space.

Proposition 2.2 [5]. Every set-valued c-map $\alpha: X \to C(X)$ is lower semicontinuous. Furthermore, if $\hat{\alpha}(x,t) = \alpha(x) \cap \mu^{-1}(t)$, then $\hat{\alpha}$ is lower semicontinuous on $X \times I$.

Theorem 2.3 [5]. Let X be a metric continuum. Then C(X) is contractible if and only if there is continuous set-valued c-map on X into C(X).

In [1] Kelley defined a property (subsequently named property K in Nadler [2]) and proved that the hyperspaces of a space having property K are always contractible. The class of metric continua having property K includes locally connected continua and the hereditarily indecomposable continua. We now restate the result of Kelley.

Proposition 2.4 [1]. If X has property K, then there is a continuous c-map $\alpha\colon X\to C(X)$.

Proof. Since X has property K, F(x) = A(x) by [5, Proposition 2.4] and $F: X \to C(X)$ is continuous by [9, Theorem 2.2]. The existence of ordered segments in F(x) for every pair $A_0 \subset A_1$ is given in [1, p. 24]. Hence the admissible fiber map A is a continuous set-valued c-map.

Let X be a metric continuum. A function $\alpha: X \to C^2(X)$ is called *admissible* if, for each $x \in X$,

- (1) ' $\{x\} \in \alpha(x)$,
- (2)' $\alpha(x) \subset A(x)$ and $\alpha(x)$ is closed in A(x),
- (3)' $\alpha(x)$ contains a maximal element A_{X} , i.e., $A\subset A_{X}$ for all $A\in\alpha(x)$,
- (4)' $\alpha(x)$ is segmentwise connected, i.e., for each pair A_0 , A_1 in $\alpha(x)$ with $A_0 \subset A_1$, there is an ordered segment [2, p. 57] in $\alpha(x)$ from A_0 to A_1 .

Let $N_{\alpha} = \{A_{\mathbf{X}} | A_{\mathbf{X}} \text{ is a maximal element in } \alpha(\mathbf{x}), \mathbf{x} \in \mathbf{X}\}$ and $N_{\alpha}^2 = \{\{A_{\mathbf{X}}\} | A_{\mathbf{X}} \in N_{\alpha}\} \subset C^2(\mathbf{X}).$

Proposition 2.5. The following statements are equivalent.

- (1) C(X) is contractible.
- (2) There is a continuous admissible function $\alpha \colon X \to C^2(X)$ such that $\bigcap N_{\alpha} \neq \emptyset$.
- (3) There is a continuous admissible function $\alpha\colon\thinspace X\to C^2(X) \text{ such that the set } N^2_\alpha \text{ is contractible in } C^2(X).$

Proof. (1) \Rightarrow (2). Suppose h: X × I \rightarrow C(X) is an increasing contraction. Let $\alpha(x) = \{h(x,t) \mid t \in I\}$. Then the continuity of h provides the continuity of α and it is obvious that α satisfies the admissible conditions (1')-(4') with $A_x = h(x,1) = n N_\alpha$.

(2) \Rightarrow (3). Suppose α : $X \to C^2(X)$ is a continuous admissible function such that $\bigcap N_{\alpha} \neq \emptyset$. Let $x_0 \in \bigcap N_{\alpha}$ and let γ : $I \to C(X)$ be an ordered segment from $\{x_0\}$ to X. Define β : $N_{\alpha}^2 \times I \to C^2(X)$ by $\beta(\{A_{\alpha}\},t) = \{A_{\alpha} \cup \gamma(t)\}.$

310

Then β is continuous and $\beta(\{A_x\},1)=\{X\}$ for each $\{A_x\}\in \mathcal{N}_\alpha^2$.

(3) \Rightarrow (1). Suppose $\alpha: X \to C^2(X)$ is a continuous admissible function and $\beta: \mathcal{N}_{\alpha}^2 \times I \to C^2(X)$ is a contraction. We may assume β is increasing. Let $\sigma: C^2(X) \to C(X)$ be the function defined by $\sigma(T) = UT$. Then σ is continuous.

We now observe that for each $x \in X$ the maximal element A_X of $\alpha(x)$ is unique and $A_X = \sigma \circ \alpha(x)$. Therefore the function $x + \{A_X\}$ is continuous from X to $C^2(X)$. Hence we define a function $\tau \colon X + C^2(X)$ by $\tau(x) = \alpha(x)$ U $\{\sigma\beta(\{A_X\},t) \mid t \in I\}$. Then τ is continuous. Since $\sigma\beta(\{A_X\},1) = A$, for some A, and for all $x \in X$, we may define an ordered segment $\gamma \colon I \to C(X)$ from A to X and join it to τ , that is $\phi(x) = \tau(x)$ U $\{\gamma(t) \mid t \in I\}$. Then it is not difficult to check that ϕ satisfies the definition of a set-valued c-map and ϕ is continuous. Hence by Theorem 2.3, C(X) is contractible.

Suppose X and Y are metric continua.

Theorem 2.6. Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are continuous functions such that $f \circ g: Y \rightarrow Y$ is homotopic to the identity id_v . If X is a c-space then Y is a c-space.

Proof. Let h: Y × I + Y be a homotopy such that h(y,0) = y and $h(y,1) = f \circ g(y)$ for each $y \in Y$. Let $\overline{h}(y,t) = U\{h(y,s) \mid 0 \le s \le t\}$. Then $\overline{h} \colon Y \times I \to C(Y)$ is a continuous homotopy such that $\overline{h}(y,t) \subset \overline{h}(y,t')$ whenever $t \le t'$. Let $\beta_1(y) = \{\overline{h}(y,t) \mid t \in I\}$. Then the continuity of \overline{h} implies the continuity of $\beta_1 \colon Y \to C^2(Y)$ and each element $\overline{h}(y,t)$ of the set $\beta_1(y)$ is an admissible element at y such

that for each pair B_0 , B_1 in β_1 (y) with $B_0 \subset B_1$, there is an ordered segment in β_1 (y) from B_0 to B_1 .

Let $\alpha: X \to C(X)$ be a set-valued c-map. For $y \in Y$, let x = g(y) and $\beta_2(y) = \{\overline{h}(y,1) \cup f(A) \mid A \in \alpha(x)\}$. Since $f(x) = f \circ g(y)$ $\in \overline{h}(y,1) \cap f(A)$, we have $\overline{h}(y,1) \cup f(A) \in C(Y)$. Now we will show that $\beta_2: Y \to C^2(Y)$ is lower semicontinuous.

Let $\epsilon > 0$. Since f is continuous, there is $\epsilon' > 0$ such that if $A,A' \in C(X)$ such that A and A' are less than ϵ ' apart, then $H(f(A),f(A'))<\epsilon$. Since α is lower semicontinuous and $\alpha(x)$ is compact, there exists $\delta > 0$ such that if $d(x,x') < \delta$ and $A \in \alpha(x)$, there is an element A' $\in \alpha(x')$ such that A and A' are less than ϵ' apart. Now the continuity of g implies that there is $\delta_0 > 0$ such that if $d(y,y') < \delta_0$ then $d(g(y),g(y')) < \delta$. Also, by the continuity of \overline{h} , we choose $\delta_1 > 0$ such that if $d(y,y') < \delta_1$, then $H(\overline{h}(y,1),\overline{h}(y',1)) < \epsilon'$. Let $\overline{\delta} = \min\{\delta_0,\delta_1\}$, x = g(y), x' = g(y'). Then if $d(y,y') < \overline{\delta}$ and $\overline{h}(y,1) \cup f(A) \in \beta_2(y)$ then there is $\overline{h}(y',1) \cup f(A') \in \beta_2(y')$ such that $H(\overline{h}(y,1) \cup f(A), \overline{h}(y',1) \cup f(A')) \leq \max\{H(\overline{h}(y,1), \overline{h}(y',1)), A'\}$ H(f(A),f(A')) < ϵ by Lemma 1.4. Hence the elements of $\beta_2(y)$ are admissible at y and β_2 is lower semicontinuous. Since f preserves ordered segments, we see that β_2 satisfies the condition of ordered segment. Now let γ : I \rightarrow C(Y) be an ordered segment from f(X) to Y and let $\beta_3(y) = \{\gamma(t) \cup \overline{h}(y,1) \mid t \in I\}$ and $\beta(y) = \beta_1(y) \cup \beta_2(y) \cup \beta_3(y)$. The maximal element of $\beta_1(y)$ is $\overline{h}_1(y,1)$ which is also the minimal element of $\beta_2(y)$, and the maximal element of $\beta_2\left(y\right)$ is $\overline{h}\left(y,1\right)$ U f(X), and the minimal element of β_3 (y) is f(X) U \overline{h} (y,1). So the continuity of β_1

Rhee and Nishiura

and β_3 together with the lower semicontinuity of β_2 provide the lower semicontinuity of β , and hence (3) is verified for β . It is easy to verify that β also satisfies the condition (1) and (2) of Definition 2.1.

Corollary 2.7. Suppose X and Y are homotopically equivalent metric continua. Then X is a C-space if and only if Y is.

Let id_Y denote the identity map of Y onto itself and [f] the homotopy class of continuous maps of Y into itself which contains f.

Theorem 2.8. A metric continuum Y is a c-space if and only if for some g in $[\mathrm{id}_Y]$ it is true that g(Y) is a c-space.

Proof. If Y is a c-space then let $g = id_Y$. Conversely, suppose for some $g \in [id_Y]$, g(Y) is a c-space. Let X = g(Y) and $f \colon X \to Y$ be the inclusion map. Then $f \circ g = g \in [id_Y]$. So Theorem 2.6 gives the conclusion.

Corollary 2.9. Suppose X is a deformation retract of Y. If X is a c-space, so is Y.

Proof. Let $\gamma\colon Y\to X$ be a retraction which is homotopic to the identity map id_Y . Then Theorem 2.8 provides the conclusion.

Corollary 2.10. If Y is a retract of X and X is a c-space, then so is Y.

Proof. Let $f: X \to Y$ be a retraction and $g: Y \to X$ the inclusion map. Then $f \circ g = id_Y$. So by Theorem 2.6, Y is a c-space.

Theorem 2.11. Let $X = X_1 \cup X_2$ where X and X_1 are subcontinua and X_2 is a closed subset such that $X_1 \cap X_2$ is a strong deformation retract of X_2 . If X_1 is a c-space so is X.

Proof. X_1 is a deformation retract of X.

Theorem 2.12. The product space $X \times Y$ is a c-space if and only if both X and Y are c-spaces.

Proof. Each factor space is a retract of X \times Y. Therefore by Corollary 2.10, X \times Y is a c-space.

Conversely, if $\alpha_{\mathbf{x}} \colon \mathsf{X} \to \mathsf{C}(\mathsf{X})$ and $\alpha_{\mathbf{Y}} \colon \mathsf{Y} \to \mathsf{C}(\mathsf{Y})$ are setvalued c-maps, then $\alpha_{\mathbf{X}} \times \alpha_{\mathbf{Y}} \colon \mathsf{X} \times \mathsf{Y} \to \mathsf{C}(\mathsf{X} \times \mathsf{Y})$ defined by $\alpha_{\mathbf{X}} \times \alpha_{\mathbf{Y}}(\mathbf{x},\mathbf{y}) = \alpha_{\mathbf{X}}(\mathbf{x}) \times \alpha_{\mathbf{Y}}(\mathsf{y}) = \{\mathsf{A} \times \mathsf{B} \,|\, \mathsf{A} \in \alpha_{\mathbf{X}}(\mathbf{x}), \mathsf{B} \in \alpha_{\mathbf{Y}}(\mathsf{y})\}$ is a set-valued c-map.

References

- [1] J. L. Kelley, Hyperspaces of a metric continuum, Trans. Amer. Math. Soc. 52 (1942), 22-36.
- [2] S. B. Nadler, Jr., Hyperspaces of sets, Marcel Dekker, Inc., 1978.
- [3] T. Nishiura and C. J. Rhee, Cut points of X and hyper-space of subcontinua, Proc. Amer. Math. Soc. 82 (1982), 149-154.
- [4] _____, Contractibility of hyperspace of subcontinua, Houston J. Math. 8 (1982), 119-127.
- [5] C. J. Rhee, On a contractible hyperspace condition, Topology Proc. 7 (1982), 147-155.
- [6] ______, On dimension and hyperspace of a metric continuum, Bull. de la Soc. Royale des Sciences de Liege 38 (1969), 602-604.

- [7] C. J. Rhee and T. Nishiura, Contracitble hyperspaces of subcontinua (submitted).
- [8] _____, On contraction of hyperspaces of metric continua (preprint).
- [9] R. Wardle, On a property of J. L. Kelley, Houston J. Math. 3 (1977), 291-299.
- [10] H. Whitney, Regular families of curves, Annals of Math. 34 (1933), 244-270.
- [11] M. Wojdyslawski, Sur la Contractillé des hyperspaces des continus localement connexes, Fund. Math. 30 (1938), 247-252.

Wayne State University
Detroit, Michigan 48202