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ON UNIFORM HYPERSPACES 

Aarno Hohti1 

1. Introduction 

This paper is a continuation of the work done during 

the 1970's by Z. Frolik, A. Hager, M. Husek, J. Pelant, 

M. Rice and others on uniform spaces. While the topological 

study of hyperspaces is a thriving part of mathematics, in 

the field of uniform topology the uniform hyperspaces have 

been left essentially unstudied except for John Isbell's 

characterization of uniform spaces whose uniform hyperspace 

of all nonempty closed subsets is a complete uniform space, 

see [7]. Our aim is to fill a part of this gap by consider

ing questions related to recent research on uniform spaces. 

In addition to other results, we characterize the class of 

uniform spaces whose hyperspaces are metric-fine and the 

result follows from the fact that the metric-completion of 

Morita and Rice commutes with the operation of forming the 

uniform hyperspace of all nonempty compact subsets. 

2.	 Some Preliminary Definitions 

The reader may consult [8] for information on uniform 

spaces. A set X with a uniformity ~ is called a uniform 

space and denoted by ~X. In this paper all uniform spaces 

louring the preparation of this paper, the author 
visited the Czechoslovak Academy of Sciences under a scien
tific exchange program between Czechoslovakia and Finland, 
and wishes to thank CSAV, the Academy of Finland and the 
Finnish Academy of Sciences for support. 
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will be separated. If p is a pseudometric on a set X, then 

B (x) denotes the set of all points y of X whose p-distancep,E 

to x is less than E. The symbol TI~X will be used to denote 

the completion of ~X. Let X be a topological space. If 

Al,---,A are subsets of X and c(X) is a collection of nonn 

empty subsets of Xi then (A --- A t is the family of alll' , n 

members B of C(X) such that 1) B c Al U --- U An and 

2) B nA ~ 0 for each i E {l,---,n}. The set C(X)i 

equipped with the topology generated by the basic open sets 

(Vl,---,V ), where Vl'---'V are open subsets of X, is n n 

called a Vietoris hyperspace. The collection of all com

pact (resp. closed) nonempty subsets of X will be denoted 

by K(X) (resp. H(X». If pX is a pseudometric space, then 

K(X) is pseudometrizable by the Hausdorff pseudometric p 

defined by setting p(Al ,A ) < E iff Al c B ,E(A ) and2 p 2 

A c B (AI). If ~X is a uniform space and lj E ~, the2 p,E _ 

entourage lj is defined by setting (A ,A E lj iffl 2 ) 

Al c St(A2 ,lj) and A c St(Al,lj). (Then the subsets Al and2 

A2 are said to be near of order U.) The family [(X) 

equipped with this entourage uniformity will be denoted by 

C(~X) and the uniformity of the space will be denoted by 

C~. It was proved in [9] that K~ is always compatible with 

the Vietoris topology of K(X), on the other hand, it was 

also shown that the corresponding statement does not hold 

for H~. (See also [23].) 

It is helpful to introduce an explicit covering uni

formity for K(~X). Let lj E ~ and write (lj) for the col

K
lection of all sets (ul,---,U ) , where Ul'---'U are n n 
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elements of 0. Then (see [11], Lemma 1.4) the family (0) 

is a uniform cover of K(~X) and we shall write (~) for the 

uniformity (= K~) generated by the base {( 0): 0 e: ~}. 

3.	 Some Examples of Covering Properties 

We shall present some uniform covering properties 

preserved or not preserved in uniform hyperspaces. A 

uniform space is called point-finite (resp. star-finite) 

if it has a basis for its uniform coverings consisting of 

point-finite (resp. star-finite) covers. 

Proposition 3.1. If ~X is point-finite (resp. star-

finite), then so is K(~X). 

Proof. For point-finiteness, suppose that ~X is point-

finite and let 0 be a uniform cover of K(~X). Then there 

is a uniform cover V of ~X such that (V) refines 0. Since 

~X is point-finite, we can assume that V is a point-finite 

cover and in fact we may assume that there is a uniform 

cover Wof ~X such that each member of Wmeets only finitely 

many elements of V. (Just use the fact that a uniform 

cover has a strict uniform shrinking, see [8], IV 19.) To 

show that (V> is point-finite, let C be a compact subset of 

X. Then there is a finite family W' of elements of W such 

/that	 C c U(W ). Now if Vl'···'V e: V and C e: (Vl,···,V ),n n 

then C meets each V. and thus for each i e: {I,·· I. , n} there 
1 

is an	 element Wi of W' with Wi n Vi ~ ~. But each W. meets 
1 

only finitely many elements of V and hence C belongs to 

not more than finitely many elements of (V). 

For star-finiteness, suppose that ~X is star-finite 

and let 0 be a uniform cover of K(~X). Let V be a 
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star-finite uniform cover of ~X such that < V} refines U. 

If Vl,---,Vm'Wl'---'W are elements of V and <vl,---,v }n m 

meets <wl,---,w }, then there is a point C E K(X) such n 

that 
m n 

C c ( U V.) n ( u W.) and 
i=l 1 j=l J 

C n V. ~ ~ ~ C n W. for all i and j. Thus for each 
1 J 

i E {l,---,m} there is a j. E {l,---,n} with V. n W.. ~ ~ 
1 1 J1 

and consequently the number of all <WI' - - - , W } meetingn 

<VI ' - - - , Vm} is fin i te • 

On the other hand, the hyperspace functor H preserves 

neither point-finite nor star-finite spaces. To show that 

H does not preserve these properties, we need a result due 

to J. Pelant [14]. For a cardinal number K, let loo(K) be 

the set of all bounded real-valued functions on K with the 

supremum norm. Pelant proved that if K is uncountable, 

then loo(K) does not have a point-finite basis for its 

natural norm-induced uniformity. Let D(K) be a uniformly 

discrete space of cardinality K. We shall write 

D(K) = {d : a < K} and we equip D(K) with the metric a a 

for which a(da,d ) = 1 whenever a ~ S,a,S < K. Define a
S

map ~: loo(w ) ~ H(D(w ) x R) by setting ~(f) = {(da,fa):l l 

a < wI} for each bounded function f on wI. Note that ~ 

is a uniform embedding and hence H(D(w ) x R) is not pointl 

finite even though D(wl ) x R is star-finite. 

A uniform space has the ll-property--introduced by 

Zdenek Frolik in [2]--if for each uniform cover of the 

space there is a subordinated partition of unity such that 

the finite sums of the elements of the partition form a 
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uniformly equicontinuous family. It is known that the 

II-property is productive. However, the functor K does not 

preserve the II-property. To see this, we shall apply an 

example given by M. Zahradnik [22]. For each positive 

integer n, let In denote the Euclidean n-cube with its 

standard maximum metric. Zahradnik proved that the metric 

n 
sum L:{I } does not have the II-property. If llX is a uni

form space, let C(llX) denote the uniform hyperspace consist 

ing of all nonempty subcontinua of X, considered as a uniform 

subspace of K(llX). Finite-dimensional uniform spaces have 

2
the II-property; especially the space D(w) x 1 has this 

property. Now define a map 

~: L:{I
n

: n < w} ~ C(D(w) x 1
2

) 

n
by mapping the point (xl,···,x ) of I to the path of n 

2in} x I composed of the segmen"ts [i/(n+l), (i+l)/(n+l)] x {xi} 

and {(i+l)/(n+l)} x J(xi,xi +l ), where J(xi,xi +l ) denotes the 

line segment from xi to x i +l . It is easy to check that ~ is 

2a uniform	 embedding and thus C(D(w) x I )--and a fortiori 

2K(D(w) x I )--does not have the II-property that is heredi

tary. Also note that the above example shows (this is easy, 

anyhow) that productive properties such as distality (every 

uniform cover has a finite-dimensional uniform refinement) 

and the Euclidean covering property (every uniform cover can 

be realized in some Rn ) are not preserved by K. 

Many statements that hold :Eor countable powers of spaces 

are valid also for hyperspaces. However, the above examples 

show that one cannot always compare countable powers of 

uniform spaces with their hyperspaces of compact subsets. 
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Here is another example of a productive uniform property 

which is not preserved under K. A uniform space ~x has a 

a-disjoint base if each uniform cover of ~x has a uniform 

refinement of the form U{V : n < w}, where the families V n n 

are disjoint collections of subsets of X. Theproperty of 

having a a-disjoint base is productive. On the other hand, 

a-disjoint uniform covers have point-finite uniform refine

ments, see [16], Proposition 2.3.i. Pelant gave in [15] an 

example of a point-finite space having no a-disjoint base. 

Let K be an infinite cardinal and let F(K) denote the set 

of all maps f of K into the unit interval I such that there 

exist only finitely many elements S < K for which f(S) ~ O. 

Consider F(K) as a uniform subspace of loo(K). Pelant 

proved that for each cardinal A there is a cardinal K(A) 

such that F(K(A)) does not have a A-disjoint base. Given 

a cardinal nurr~er a, let H(a)--the uniform quotient space 

D x I/D x {O}--denote the hedgehog with a spines and the 
a a 

standard geodesic metric. Define a ¢: F(K(W)) ~ K(H(K(W))) 

by setting 

<P(f) = {p} U {(dS,f(S)): S < K(w),f(S) 10}, 

where p is the "base point" of H(K(W)). Let p be the 

geodesic metric of H(K(W)). Then it is not difficult to 

see that for each pair f,g of elements of F(K(W)), we have 

I If - gl 1 = ~(<P(f) ,<P(g)). Thus, <p is an isometric embedding
00 

and hence K(H(K(W))) does not have a a-disjoint base. How

ever, H(K(W)) is clearly point-finite and so is K(H(K(W))), 

by Proposition 2.1. 

A uniform space ~X is called uniformly connected, if 

for every uniform cover lj E ~ and each pair p,q of points 
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of X there is a simple chain of elements of U connecting p 

and q. The hyperspace functor K preserves uniformly con

nected spaces. To see what is t~he situation wi th H, we 

need the concept of chainability. We say that ~X is chaina

ble (resp. l-chainable) if for each uniform cover lj E ~ there 

exist a finite (resp. one-point) subset E of X and a natural 

number n such that X = Stn(E,U). (For these concepts, see 

M. Atsuji, Pacific Math. Journal 8, 1958, and J. Hejcman, 

Czech. Math. Journal, 9 (84), 1959.) Chainabilityand 

l-chainability are properties preserved by both K and H. 

It is easy to see that a space is l-chainable iff it is 

chainable and uniformly connected. Similarly, it is easy 

to see that H(~X) is uniformly connected iff ~X is 

l-chainable. 

4. Uniform Paracompactness 

A uniform space is called uniformly paracompact [19] 

(resp. uniformly para-Lindelof) if every open cover of the 

space has a uniformly locally finite (resp. uniformly 

locally countable) open refinement. A topological space X 

is C-scattered [21] if every nonempty closed subspace F of 

X contains a point with a compact neighborhood in F. A 

generalization of this concept is useful here. Call a 

space X CK-scattered, if every nonempty closed subspace F 

of X contains a point with a K-compact neighborhood in F. 

Recall that a space is K-compact~ if every open cover of the 

space has a subcover with fewer than K elements. It can 

be shown that a uniformly paracompact (resp. uniformly 

para-LindeI6f) metric space is C-scattered (resp. 
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C(wl)-scattered). (See [6], Lemma 4.2.5 and Theorem 

3.1.4.) 

Lemma 4.1. Let X be a metrizable space and let K be an 

infinite cardinal such that either K = W or cf(K) > w. Then 

K(X) is C -scattered if, and only if, X is locally K-compact.
K 

Proof. Suppose that X is locally K-compact. If K = W, 

then it follows from Proposition 4.4 of [9] that K(X) is 

locally K-compact. If cf(K) > w, then each point x of X 

has an open neighborhood V containing a dense subset Sx 
x 

of cardinality less than K, since X is metrizable. Let C 

be a nonempty compact subset of X. There is a finite set 

{xl,···,x } of points of C such that C is contained in the n 

union of the sets Vx(l) ' ••• 'Vx(n)· Now <Vx(l) ' ••• 'Vx(n) 

is a neighborhood of C containing a dense subset 

F(Sx(l) U ••• U Sx(n» n <Vx(l)'···'Vx(n» 

of cardinality less than K, where we write F(S) for the set 

of all nonempty finite subsets of a set S. But then 

<Vx(l),···,Vx(n» is a K-compact neighborhood of C. 

For necessity, let X be any regular space such that 

K(X) is cK-scattered. We shall prove that X is locally 

K-compact. Let p be an arbitrary point of X and let C be 

the collection of all compact subsets of X containing p. 

Note that C is a closed subspace of K(X). Hence, by the 

assumption there exist an element Co of C and a neighborhood 

lj of Co in K(X) such that lj n C is K-compact. As X is 

regular, K(X) is regular by Theorem 4.9.~O in [9]. Thus, 

there exist open subsets Gl,···,G of X such that n 

Co E < Gl ' • • • , G ) n C c: ( Gl ' • • • , G ) n C c: (j.n n 

  



TOPOLOGY PROCEEDINGS Volume 9 1984 69 

Now ( G··· G ) ( Gl ' • • • , G ) by Lemma 2. 3 in [9]. We shalll' , n n 

show that G
l 

U ••• U G 
n 

is K-compact. Indeed, let Hbe a 

family of open subsets of X that cover G U ••• U G . Then
l n 

{( HI' • • • , Hm ): HI'···' HIn E H} 

is a family of open subsets of K(X) that cover (Gl,···,G )n 

and by our assumption there is a subfamily H'e H such that 

I HI I < K and 

(G
1

, ••• ,G
n 

) n Cc U{( H1 ' • • • , Hm ): HI ' • • ·,Hm E H'} • 

To show that Gl U U Gn c U(H I) , let x be a point of 

G U ... U G and for each i choose a pcint Yi E G.. Thenl n 1. 

defining C {p} U {yl,···,y } U {x} we see that x n 

C E (Gl,···,G ) n Cand that consequently there exist x n 

Hl,···,H E H' such that C E (H1,···,H ). Hence C is m x m x 

contained in the union of the sets Hl,···,H . Thus, there m 

is an H E H' with x E H. It follows that G U ••• U G is
l n 

K-compact and thus one of the set.s Gl ,··· ,G is a K-compactn 

neighborhood of x. 

Remapk. If K is an uncountable cardinal with Cf(K) = 00, 

then there is a K-compact metrizable space X such that K(X) 

is not cK-scattered. Indeed, let {An} be a sequence of 

cardinals smaller than K such that K = sup{A }. Let n 

Y = {(a,n): a < An} and let Z = U{Y : n < w} U {w} and n n 

define a metric d on Z by setting d((a,n), (B,n)) = lin, 

d((a,m), (B,n)) = 21m whenever m < nand d((a,n),w) = 2/n 

for all n < w. Denote the corresponding metrizable space 

by X. Then X is K-cornpact but K(X) is not CK-scattered. 

In fact, let Cbe the collection of all compact subsets of 

X containing the point w. Then l:is a closed subspace of 



Hohti70 

K(X). Suppose that C E Cand let 0 be a neighborhood of C 

in C. It is not difficult to see that there is an n < W 

such that 0 contains a closed subspace homeomorphic to a 

discrete sum of the spaces Y i > n. However, this sum
i

, 

is not K-compact just because cf(K) = w. Hence, 0 is not 

K-compact, either. 

Another Remark. In general, the hyperspace K(X) of 

a locally K-compact nonmetrizable space need not be locally 

K-compact. A. Okuyama provided in [13] a cosmic space X 

W
such that K(X) is not paracompact. Note that X is heredi

tarily Lindelof. However, K(Xw) is not locally Lindelof. 

To see this, observe that the map K(X)w ~ K(X
w

) sending the 

point (C ,C ,C ,···) to the point C x C2 x C3 x ••• is a 
l 2 3 l 

closed embedding. 

Corollary 4.2. Let pX be a metric space. Then K(pX) 

is uniformly paracompact (resp. uniformly para-LindelofJ 

if, and only if, pX is uniformly locally compact (resp. 

uniformly locally Lindelof)· 

Proof. It is enough to note that if 0 is a uniform 

cover of pX by compact (resp. Lindelof) sets, then (0) is 

a uniform cover of K(pX) by sets of the respective type. 

5.	 Metric-Completeness in Uniform Hyperspaces 

In this section we shall consider metric-completeness 

in uniform hyperspaces by using uniform inverse limits. 

It is a well-known and useful fact that the hyperspace 

functor K and inverse limits commute. This property was 

used by e.g. J. Segal in [20] and P. Zenor in [24]. For a 
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complete proof, see [12], p. 171. We shall show that the 

uniform hyperspace functor K commutes with uniform inverse 

limits. The proof procedure is typical but makes an 

essential use of Morita's covers defined in Introduction 

and hence we shall give a sketch. Recall that a uniform 

inverse system is an inverse system {~aXa,faS,A} consisting 

of uniform spaces ~aXa' uniformly continuous bonding maps 

f ~SXS ~ ~aXa and a directed set A. Further, recallaS : 

that K has the following functorial property: if f: ~X ~ vY 

is a uniformly continuous map, then the map K(f): K(~X) ~ 

K(vY) defined by K(f) (C) = {f(x): x E C} is uniformly 

continuous. 

Theorem 5.1. Let S = {ll X ,f Q,A} be a uniform
""'a a~ a~ 

inverse system. Then lim{K(~ X ),K(f Q),A} is uniformZy
+- a a, a~ 

isomorphic to K(l!m S). 

Proof· Write K(S) {K(~ X ),K(f Q),A} and let 
a a a~ 

1f : lim S ~ ~aXa and pr : lim K(S) ~ K(~aXa) be the a +- a 

canonical projections. Given a compact subset C of lim S, 

let ~(C) be the point of lim K(S) for which pra~(C) = 1f [C]a 

whenever a E A. It is well known that ~ is a homeomorphism. 

Moreover, ~ is uniformly continuous, since pra~ = K(1f )a 

is uniformly continuous for each a E A. To show that ~-l 

is uniformly continuous, we make the following observation. 

Observation. If a E A and 1Wl ,··· 'W c X ' then n a 
-1 -1 -1-1 

~ pr [<wl,···,W }] = <1f [W ],···,1f [W ]}·a n a l a n 

Let tJ be a uniform cover of K(l!ln S). Then there is a 

uniform cover V of lim 5 such that < V} < tJ. By a 
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fundamental property of uniform inverse systems--see [8], 

IV.3.l--there is an a E A and a uniform cover WE ~ such 
a 

that y = 1T~l ({I/) refines V and consequently ( y) refines tJ. 

Let WI'···' W be elements of Wand let U E tl be such that n 
-1 -1

( 1T a [WI]'···' 1T a [Wn ]) cU. By our observation 

pr-l[(wl,···,w }]
a n 

= <P[(1T- l [W
l 
],···,1T- l 

a a 
[W ]}]

n 
c <P[U] 

and hence H = pr-1 « W}) < {<p [U]: U E t1}, which shows that 
a 

the latter is a uniform cover since H is a uniform cover of 

We stated Theorem 5.1 for the following application 

that will be useful in the context of metric-fine spaces. 

A uniform space ~X is called metric-complete if every 

~-Cauchy filter with the countable intersection property 

converges. Such uniform spaces were considered independently 

by Morita [lO]--who called them weakly complete--and Rice 

[17]. Following the terminology of [17], the smallest 

metric-complete uniform subspace of 1T~X containing ~X will 

be denoted by d~X. Then d~X = {p E 1T~X: each Go-set con

taining p meets x}. Thus, d~X is the Go-closure of ~X in 

its completion. The metric-completion can be characterized 

using inverse limits as in [10] and [16]. Let 'P = {p : 
a 

a E A} be the set of all uniformly continuous pseudometrics 

on ~X. For each a E A let [PaX] be the metric quotient 

space assigned to the pseudometric space PaX and let 

1T : P ~ [PaX] be the quotient map. Define a relation 
a a 

< on A by setting a < 8 if the identity map i P X ~ PaXa8 : 
8

is uniformly continuous. If a < 8, then there is a natural 

uniformly continuous surjective map f = [iaS] of [PSX]
aS 
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onto [PaX] such that faSn = n - We obtain an inverseS a 

system {[p Xl,f D,A} of metric spaces for which 
a alJ 

d~X = l!m[PaX]. We shall apply Theorem 5.1 to show that 

Kd = dK. To that end we need two lemmas. 

Lemma 5.2. Let ~X be a uniform space and let Pl,···,Pm 
be uniformly continuous pseudometrics on K(~X). Then there 

exists a uniformly continuous p.6eudometric a on ~X such 

that 

(PI v··· v P ) Al < cr. m -

Proof- For each n, and each i E {l,···,m} there exists 

a uniform cover lj . E ~ such that if C ,C E K(X) are nearn,J. l 2 

of order Un,i' then Pi (Cl ,C2 ) < 2-
n

• Let Un = Un,l A··· 
A U n, m. Obviously we can assume that the covers U n form a 

normal sequence ••• <* Un <* U +l By t he Alexandroffn

Urysohn Metr~zation theorem there exists a uniformly con

tinuous pseudometric 0 on ~X such that 

St(x,U +3) c B O'2- - 1 (x) c St(x,U )n n n 

for all n and x E X. Put a 40. Suppose that C ,C arel 2 

nonempty compact subsets of X and that 0 < cr(C ,C ) < 1.l 2
lChoose an n such that 2-n- < O(C

1 
,C

2 
) < 2-n • It follows 

that 

C2 c BO'2-n-2(Cl ) c St(Cl,Un+l ) 

and similarly Cl c St(C2 ,U +l ). Consequently the sets Cn l 

and C2 are near of brder U n+l and thus for each i E {l,···,m}, 

-n-l " Pi(Cl ,C2 ) < 2 ~ a(Cl ,C2 ). On the other hand, if 

~(Cl,C2) = 0, then Cl C St(C2 ,U ) and C2 c St(Cl,U ) forn n

all n and thus for each i E {l,···,m}, we have Pi(Cl ,C2) o. 
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If pX and crY are pseudometric spaces and f: pX + crY is 

a map, define the natural map [f]: [pX] + [crY] by setting 

[f] (x) [f (x) ] • 

Lemma 5.3. Let ~X be a uniform space and Zet p be a 

uniformZy continuous pseudometric on ~X. Then [~K(X)] is 

isometric to K([pX]). If crY is a pseudometric space and 

f: pX + crY is a map, then [K(f)] = K([f]). 

that g [C] is compact subset of pX. Thus, 

Proof. Let g: pX + [pX] and h: ~K(X) + [pK(X)] be 

the quotient maps. If C € K([pX]), then it is not difficult 

-1 
to see a we can 

define a map $ of K([pX]) into [pK(X)] by setting 

$(C) = h[g-l[C]]. It is a straightforward exercise to 

verify that $ is an isometry. By the same token the proof 

of the second assertion is routine. 

By Lemma 5.3, we consider [~K(X)] and K([pX]) as 

identical spaces. 

Theorem 5.4. Let ~X be a uniform space. Then 

dK(llX) = K(dllX). 

Proof· Let P = {Po.: a E A} be the set of all uniformly 

continuous pseudometrics on K(~X) and let p* = {cr : a E A*}
a 

be the set of all uniformly continuous pseudometrics on ~x 

indexed so that A* c A and for each a E A*, p = a. Let 
a a 

5 = {[p K(X)], f D,A}, 5* = {[cr X],g D,A*} be the natural 
a a~ a a~ 

inverse systems associated with P and P*, respectively, such 

that dK(llX) = lim 5 and d~X = lim 5*. Further, let 

5 = {[a K(X)],f a,A*}. By Lemma 5.3 we have f D = [j a]a a a~ a 

[K(iaS )] = K([iaB ]) = K(gaa)' where jaB: aBK(X) + 0aK(X) 
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and iaS: 0SX ~ 0aX are identity maps. Given al,---,a E A,
n
 

Lemma 5.2 shows that there exists a S E A* with
 

"'

(Pa	 v --- v Po ) A ! < oS; as a consequence, the identity 
1 n 

maps j are uniformly continuous. Thus, < a fora iaiS 

every i E {l,---,n}. Therefore, 5 
"'-

'is a cofinal part of 

5. By a fundamental theorem on cofinal parts of inverse 

systems--see e.g. [8], IV.35--the limits lim 5 and lim 5 
+ + 

are uniformly isomorphic, written lim 5 ~ lim 5. Using
+ + 

Theorem 5.1 and Lemma 5.3, we obtain 

dK(~X) lim 5 ~ lim 3 = lim{[a K(X)],f Q,A*} 
~ + + a a~ 

- lim{K([o X]) ,K(g Q) ,A*}
+ a a~ 

K(llm 5*) = K(d~X). 

Remark. Morita's theorem [11] that Kn = nK can be 

obtained as a corollary to Theorem 5.1. Indeed, let ~X 

be a uniform space. Then ~X is the inverse limit of a 

system {p X} of pseudometric spaces with the underlying
a 

set X and the identity maps as bonding maps. In this case 

it is easy to see that n commutes with the limit operation. 

On the other hand, it follows directly from 11.48 of [8] 

that Hand n--and a fortiori K and n--commute on pseudometric 

spaces. Thus, nK(~X) = nK(l!m p~X) = n lim K(PaX) ~ 

lim nK(PaX) ~ lim K(npaX) ~ K(l!m npaX) ~ K(n lim PaX) ~ 

K(n~X) • (See also [1].) 

6.	 Locally Fine Spaces 

A uniform space is called locally fine [4] if every 

uniformly locally uniform cover of the space is uniform. 

This means that ~X is locally fine provided that every cover 
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of X of the form {U" n V~}, where {U "} and {V~} are uniform 
1 J l J 

covers of ~X, is a uniform cover. Given a uniform space 

~X, the discreteness character o(~X) is the least cardinal 

K such that -'DI < K for every uniformly discrete subset of 

~X. The following lemma is essentially known as a part of 

mathematical folklore. 

Lemma 6.1. Let ~X be a uniform space. Then 

i) o(K(~X» o(~X) and 

ii) 0 (H (~X) ) sup{2 K 
: K < o(~X)} 

whenever o(~X) is infinite. 

Proof. The proof showing that uniform hyperspaces of 

precompact spaces are precompact can readily be modified to 

prove the above lemma. 

Let K be an infinite cardinal. A uniform space ~X 

admits the cardinal K if for each family {Ui : i E I} of 

uniform covers of ~X with III < K there is a common uniform 

refinement. ([8], p. 733.) 

Theorem 6.2. Let ~X be a uniform space. Then K(~X) 

(resp. H(~X») is locally fine if, and only if, ~X admits 

every cardinal K < o(~X) (resp. admits 2 K for every 

K < o(~X»). 

Proof. We shall prove the result for H(~X) because 

the proof for K(~X) is the same modulo simplifying changes. 

To prove necessity, let K < o(~X) and let 0 be a subset of 

X, uniformly discrete relative to a uniform cover Uof ~X, 

such that 101 = K and let {V : a < 2 K
} be a family of a 

uniform covers of ~X. Write 0 
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IDII = I D2 1 = K and Dl n D2 = ~; and for i = 1,2, define 

O. = P(D.) - {~}, where P(D.) is the power set of D.• Let111 1 

WE ~ be such that W <*** lj and let Yi = X - St(Di,W). 

For i = 1,2, write O. {D. : a < 2 K } and define
1 1,a 

A. = {D. U {x}: x E Y.}. Then a, (3 < 2 K , a ~ (3 imply1,a 1,a 1 

that the families A. and A. Q are ~-disjoint as subsets
1,a l'lJ 

of H(X). (Note that the elements of every A. are closed
1,y 

subsets of X since the families D are uniformZy discrete.)
i 

As H(~X) is locally fine, so is the subspace A. = U{A. : 
1 1,a 

a < Leta<2 K ,VEVandputV. ={D. u{x}:
a 1,a 1,a 

x E V n Y.}. Then V. = {V. : V E V ,a < 2 K} is a uniformly1 1 1,a a 

locally uniform cover of A.--since {A. : a < 2 K} is a uni1 1,a 

form cover of A.. By the assumption there exists a uniform 
1 

cover ~i < Wof ~X such that if F E Ai' then there is al 

V E Vi with the following property: if F 2 E Ai and the sets 

Fl and F2 are near of order ~i' then F2 E V. We shall show 

that ~. Iy. < V Iy·. Indeed, let x E Y·. Then (D. U {x})1 1 a 1 1 1,a 

E Ai and thus we can find a V E Va such that if F E Ai is 

~l·-near to D. U {x}, then F E V. Now Y E St(x'~l') n Y.1,a 1,a 1 

implies that the sets D. U {x} and D. U {y} are near of
1,a 1,a 

order ~i: therefore (Di,a U {y}) € Vi,a and consequently 

y E V n Yi . Accordingly, we have St(x'~i) n Yi C V n Yi . 

Now {Y ,Y2 } is a uniform cover of ~X and it follows that thel 

covers V , where a < 2 K , have a cotpInon uniform refinement 
a 

~l A ~2 A {Yl ,Y2 } in ~. 

For sufficiency, let {Vi be a typical uniformlyn W;} 
locally uniform cover of H(~X), where the families 

{Vi: i E I} and {W;: j E J i } are uniform covers of H{~X). 
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By Lemma 6.1 we can ,assume that I I I < sup{ 2K
: K < 0 (lJX) } . 

But then lJX admits III. For each i E I choose a uniform 

cover tii of lJX such that {tii[F]: F E H(X)} < {Wi
j }. Since 

lJX admits the cardinality of I, the covers tii have a common 
-


uniform refinement ti. Then {ti[F]: F E H(X)} A {Vi} is a 

iuniform cover of H(lJX) that refines {Vi n Wj }. This shows 

that H(lJX) is locally fine. 

'The following corollary gives a more accurate descrip

tion of the class of uniform spaces whose hyperspaces of 

closed nonempty, subsets is locally fine. 

Corollary 6.3. Let lJX be a uniform space. Then H(lJX) 

is locally fine if, and only if, either 

i) lJX is uniformly discrete, or 

ii) 2K < o (lJX) for every K < o(lJX)--i.e. o (lJX) is a 

strong limit cardinal--and lJX admits each cardinal 

K < o(lJX). 

Proof. Suppose that H(lJX) is locally fine. By 

Theorem 6.2, lJX admits 2 K for all K < O(llX). Assume that 

there is a KO < o(~X) with 2K (O) ~ o(~X). Then ~X admits 

o (lJX) and by VII.27 of [8] either lJX is uniformly discrete 

or contains a uniformly discrete subspace of cardinality 

O(lJX). The latter case being impossible, we conclude that 

either 2K < o(lJX) for every K < o(lJX) or lJX is uniformly 

discrete. Sufficiency follows directly from Theorem 6.2. 

Recall the definition of the beth numbers we have 

[a w [ = 2 [ (n) and [ = sup{ [n: n < w}., n+l w 
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Corollary 6.4. If ~x is a nonpreaompaat uniform spaae 

suah that 6 (~X) < [w' then H(~X) is loaally fine if, and 

only if, ~X is uniformly disarete. 

Call a uniform space ~X superfine if H(~X) is fine. 

Corollary 6.4 shows that nonprecompact nontrivial superfine 

spaces are of "high" cardinality. 

7.	 Metri'c-Fine Hyperspaces 

A uniform space ~X is called metric-fine provided that 

for every metric space pM and every uniformly continuous 

map f: ~X ~ pM, the map f: ~X ~ JM into the fine space JM 

is uniformly continuous. Metric-fine spaces have been 

characterized in the separable case by Hager [5] and in the 

general case by Frolik [3] and Rice [18]. Following [3], 

~X is metric-fine iff the uniformity contains all covers 

{B n Un}, where {B } is a countable cover by uniform nan 

cozero-sets and each {U~} is a uniform cover. Hager proved 

in [5] that a precompact space is metric-fine iff-the 

space is G6-dense in its Samuel compactification. A space 

which admits w is metric-fine. 

Theorem 7.1. Let ~X be a uniform spaae. Then the 

following aonditions are equivalent: 

i) K(~X) (resp. H(~X») is metria fine; 

ii) either ~X is preaompaat and metria-fine or ~X 

admits an infinite aardinal. 

Proof. For the implication ii) ~ i), assume that ~X 

is precompact and metric-fine. Then ~X is G6-dense in its 

Samuel compactification and therefore d~X = TI~X. By 
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Theorem 5.4, dK(~X) = K(d~X). = K(TI~X) = TIK(~X) and thus 

K(~X) is Go-dense in its Samuel compactification. Conse

quently the precompact.space K(~X) is metric-fine. On the 

other· hand, if ~X admits an infinite cardinal, then so 

does K(~X). In case d~X = TI~X and ~X is precompact, we 

also have TIH(~X) = H(TI~X) = K(TI~X) = K(d~X) = dK(~X) and 

hence TIH(~X) = dH(~X) proving the claim for the hyperspace 

functor H. 

Now suppose that K(~X) is metric-fine. If K(~X) is 

precompact, then it is Go-dense in its completion and it 

follows as above that K(d~X) = K(TI~X). Since K(TI~X) is 

complete and d~X is uniformly isomorphic to a closed sub

space of K(TI~X), d~X is complete and thus d~X = TI~X; i.e. 

~X is Go-dense in its Samuel compactification and thus 

metric-fine. The proof for H is similar. If ~X is not 

precompact, then we can choose a uniformly discrete subset 

o of ~X such that 101 = w. Let p be a uniformly continuous 

pseudometric on ~X such that p(d,d') > 1 for distinct 

elements d,d' of D. The rest of the proof follows that of 

Theorem 6.2 and hence we give a sketch only. write 

i 1,2, write o. = {d. : n < w} and let A. be the col1 1,n 1,n 

lection of all {x,di,n}' where X,E X - B p ,1/4(Di ). Then 

Ai,n is a subset of K(X). Let Ci,n denote the l/S-neighbor

hood of A. relative to the Hausdorff pseudometric p and1,n 

write 

Ci,n = {C E Ci,n: p(C,K(X) - Ci,n) > 1/16}, 

Bi K(X) - Bp ,1/32(U{Ci,n: n < w}). 
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For	 i = 1,2, {B.} U {C. : n < w} is a countable cover of1 l,n 

K(X) consisting of uniform cozero-sets of K(llX). Let {(In} 

be	 a sequence of uniform covers of llX. As in the proof 

of	 Theorem 6.2, we can form uniform covers (J. of the setsl,n 

C.	 · Since K(llX) is metric-fine, the cover U{(J. : n < w}l,n l,n
 

U {B } is a uniform cover and it follows that the covers

i 

(J have a common uniform refinement. Thus, llX admits an 
n 

infinite cardinal. 
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