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REALIZING WHITEHEAD TORSION BY 

SELF-EQUIVALENCES ON 2-COMPLEXES 

WHEN 11"1 == Qn 

M. Paul Latiolais 1 

o. Introduction 

In the study of Simple Homotopy Theory, the general 

question one asks is: Given a homotopy equivalence 

f: K ~ L, when does there exist a simple homotopy equiva­

lence g: K ~ L? (i.e. When does K deform to L?). See 

Cohen [C], Chapter 2, for definitions. 

In general, homotopy type and simple homotopy type are 

different. However, it is not known whether or not 

homotopy equivalent 2-complexes are simple homotopy equiva­

lent. This problem is directly related to a problem in 

Combinatorial Group Theory. 

If we assume that each of our finite 2-complexes have 

a single O-cell, then we may relate to it a unique presenta­

tion of its fundamental group. And given any finite 

presentation of a group, there exists a unique finite 

2-complex related to it (see [W] and [MI]). Since all 

finite complexes deform to ones with a single O-cell by 

collapsing a maximal tree (see [MI]), we will assume that 

our complexes have only one O-cell. 

Consider the question of whether or not two 2-complexes 

K2 and L2 deform to one another with deformations of at 

most dimension 3. That is equivalent to the question of 

IA major portion of the research for this article was 
done while the author was at Tulane University. 
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whether or not their related group presentations can be 

transformed to one another by Q**-transformations (see [Ml] 

for definitions and [W] for proof) . 

In general, if two n-complexes deform to one another, 

then one can be deformed to the other via deformations of 

dimension at most n + 1, n > 2. It is still an unknown 

question whether or not simple homotopy equivalent 2-complexes 

always 3-deform to one another. 

The question of whether or not two 2-complexes are 
 
simple homotopy equivalent is equivalent to the question 

of whether or not their related group presentations deform 

to one another via "generalized" Q**-transformations. See 

R. Brown [B] for definitions and proof. 

Related to the question of homotopy equivalence versus 

simple homotopy equivalence is the study of Whitehead 

torsion of self-equivalences (see [C], (24.4) and [M2]). 

The relation is given by the following fact noted by 

Cockcroft and Moss in [C-M], Corollary 2. 

0.1 Proposition. Given any finite CW-complex K, then 

every element of Wh(K) is realizable as the torsion of a 

homotopy equivalence from K to K if and only if any finite 

CW-complex L homotopy equivalent to K is simple homotopy 

equivalent to K. 

Consequently, it is important and interesting to know 

something about the elements of Wh(K) which are realizable 

as torsions of self-equivalences on K. The importance of 

(0.1) is exhibited in the following theorem and corollary 
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of [LI], Theorem 5.3 and Theorem 5.4 (also see [L2], 

Theorems 2.2 and 2.3). 

0.2 Theorem. If K is a finite 2-dimensionaZ CW-compZex 

with TIl(K) finite and abeZian~ then every element of Wh(K) 

is realizable as the torsion of a self-equivalence of K. 

0.3 Corollary. Given any finite 2-complex K with 

TIl(K) finite and abelian~ then any finite 2-compZex L 

homotopy equivalent to K is simple homotopy equivalent to 

K (i.e. homotopy type and simple homotopy type are equiva­

lent for finite complexes with finite abelian fundamentaZ 

group) . 

W. Metzler in [M2] gives an example of a finite 

2-complex with infinite fundamental group for which the 

above theorem is not true. Our motivation was to find a 

counter-example to (0.2) where finite abelian fundamental 

group is replaced by finite non-abelian fundamental group. 

We indeed found a counter-example, but not necessarily 

the one we were looking for. In our example, the self­

equivalences which induce the identity map on the fundamental 

group do not represent all torsion. This example is there­

fore either a counter-example to (0.2) in the non-abelian 

case or it is the first known example of a 2-complex in 

which the realizable torsion of a self-equi.valence depends 

on the induced map on TIl. 

After describing our counter-example, we will generalize 

the results of our example to show that the units of Wh(K) 

are always realizable when TI 2 (K) is singly generated as a 

ZTII-module. 
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In the last section of this paper, we will discuss 

partial results and failures to determining whether or not 

our example is a counter-example to (0.2) in the non-abelian 

case. 

1.	 Properties of a "Counter-Example" 

We are looking for a finite 2-complex K with finite 

non-abelian fundamental group such that there exists an 

element of Wh(K) which is not the torsion of any self ­

homotopy equivalence on K. There are some obvious things 

we should look for. We want a 2-complex with: 

(1) Wh(K) ~ O. The reason is obvious. 

(2) Wh(K) should contain more than units ("units" 

meaning elements representable as lxl matrices). In all 

known examples, including Metzler's counter-example [M2], 

the units are all realizable. It seems reasonable to con­

jecture that units are always realizable. 

(3) X(K), the Euler characteristic of K, should be 

minimal with respect to TI1(K). X(K) being minimal makes it 

more likely that non-realizable elements of Wh(K) will occur. 

If, for example, X(K) were two above the minimum, then all 

of the elements of Wh(K) would automatically occur, see 

[01],	 Theorem 2. 

(4) We need to know something about the homotopy tree 

of (G,2)-complexes, G = TIl{K). That is, what are the homotopy 

classes of finite 2-complexes with fundamental group G (see 

[01] and [D-S]). If we know something about the homotopy 

tree, we may be able to say something about the simple 

homotopy tree. See (2.5). 
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Notice that criteria (l) and (2) are really stipula­

tions about the group G = nl{K), where K is the standard 

complex of the presentation of G of maximum deficiency, 

this presentation being guaranteed by criterion (3). 

(3) and (4) are stipulations about what is known about 

groups which satisfy (I) and (2), e.g. it is not always 

known whether or not a given presentation of a group has 

maximum deficiency. 

As an example, let us consider G = D , the dihedral 
n 

group of order 2n, n odd. (1) is satisfied. Wh(ZD ) ~ 0,n 

by Jajodia and Magurn [J-M], Theorem 6 and Theorem 10 and 

Note 7. However, (2) is not satisfied. Magurn showed 

that Wh(ZD ) contained only units. As for (3), D has a n n 

presentation of deficiency zero, 

~ I n -2 (m-l)/2-1P(D ) = la,b a b ,[b,a ]a}.n 

Consequently, the standard complex K{P) of the presenta­

tion will have minimal Euler characteristic. The homotopy 

tree of (D ,2)-complexes is a stalk, by Dyer [Dl], Example 3,n 

p. 223. That is, all finite 2-complexes with the fundamental 

group D and the same Euler characteristic are homotopyn 

equivalent. 

Ana lastly, Jajodia and Magurn ([J-M], Theorem 12) 

were able to show that the units of Wh{K{P» were all 

realizable as the torsions of self-equivalences on K(P). 

Therefore, every element of Wh{K) is realizable as the 

torsion of a self-equivalence on K, for any finite 2-complex 

K with fundamental group D . n 
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2.	 The Counter-Example 
-2 -1Let Q = {a,b !a nb ,abab } be the dicyclic group of n 

order 4n. If n = 2, Q is the quarternion group. If n 
i n = 2 , Q is known as the generalized quarternion group.

n 

So how does Q stack up under our criteria for a n 

counter-example? 

(1) Wh(ZQn) ~ 0, for at least some n, by Higman [H] 

Theorem 11. 

(2) Wh(ZQn) is not just units, for some n, by Magurn, 

Oliver and Vaserstein [M-O-V], Theorem 7.16 and Theorem 7.18. 

(3) Q has a presentation of deficiency zero, i.e. the n 

one above. 

(4) The homotopy tree	 for Q has height < 1. (See [01],
n -

p. 224.) That is, there may be complexes with minimal Euler 

characteristic of different homotopy type, but above the 

minimum Euler characteristic, any two finite 2-complexes with 

fundamental group Q and the same Euler characteristic will n 

be homotopy equivalent. 

2.1 Theorem. Let K be the standard aomp~ex of the 

presentation {a,b!anb-l,abab-l } of Q (the diaya~ia group
n 

of order 4nJ, and f: K ~ K a homotopy equiva~enae with 

f#: TIl(K) + TIl(K) the identity map, then 1(f) € Wh(K) is a 

unit. A~~ of the units of Wh(K) are rea~izabZe in this way. 

Proof. The complex K above is the complex with a 

single a-cell eo. K has two l-cells attached to eO on 

their boundaries. We will call these l-cells "a" and "b." 

-1 -1We orient a and b, so we can talk about a and b as a 

and b, but in the opposite direction. We are purposely 
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confusing these I-cells with the generators of Qn. K also 

has two 2-cells, which we will call R and R The 2-cells
2

. 

are	 attached to the I-cells on their boundary so that 

n -2 -1 

l 

aR = a band aR2 = abab .l 

We will first show that all units are realizable. 

Suppose f: K ~ K is a homotopy equivalence which induces 

the identity map on TIl(K). Let K be the universal cover 

of K. Since f#: TIl ~ TIl is the identity, then f is homo­

topic to a map which induces the identity on Cl(K). Since 

we are only interested in homotopy classes of maps, we 

may assume f is that map. Now f induces the following map 

on the chain complex of the universal cover K: 

0	 0 

+	 +f*
2H (K) ) H (K)2 2 

a+ a+ 
.... f ....2(1)	 C (K) ~ C (K)2	 2 

a+	 a+
f idlC (K) --+- C (K)l l 

a+ a+f id 
CoCK) o CoCK)) 

+	 + 

0	 0 

2.2 Lemma. Given a finite 2-dimensional CW-complex 

K and a ZTIl(K)-module map ~: C (K) ~ C (K) which commutes2 2 

with the boundary operator~ then there exists a homotopy 

equivalence f: K ~ K such that f = id and f <p if and1 2 

only if the ZTI1-matpix peppesentative of <p~ M~ is invepti­

ble. The resulting homotopy equivalence f will induce the 

identity map on TIl(K)~ and T(f) = [M] E Wh(K). 

Proof. See [L2], Lenuna 1.4. 
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Proof of (2.l)~ continued 1. Let M be the ZTIl(K)­f 

matrix representative of f By (2.2), M E GL2(ZQn).2 . f 

Also by (2.2), any element of GL2(ZQn) which commutes with 

d will represent the map on C (K) of some self-homotopy2 2 

equivalence. Any such matrix must be of the form: 

to 

(3) from 

where R R are the preferred lifts of the two 2-cells ofl , 2 

K, and $lR-l + $2-R2 and plRl + P2R2 are elements of H2 (K). 

The above statement is proved using diagram (3a), with 

p-id 

(3a) 

o 

Using Fox derivatives (see [F]) it is easy to show that 

(a-l)R + (1-ab)R is an element of H (K). In fact,l 2 2 

(a-l)R + (1-ab)R generates H (K) (see (2.4». So the
l 2 2 

following matrix is of the form (3), with PI = P2 = 0: 

R R
l 2
 

o(a-l) o (l-ab)
 
(4) 

o 1 

which is Whitehead equivalent to [1 + o(a-l)]. 

2.3 Lemma. All of the units of Wn(ZQn) may be repre­

sented in the form 1 + o(a-l)~ where 0 E ZQn and "a" is the 

generator in the presentation [a,blanb- 2 ,abab- l ]. 
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Proof. Note first that in this proof we will freely 

2n 4 -1 1 use the facts a = 1, b = 1, ab =ba, a- b ba, etc. 

Let 8 E ZUn , then 8 = EimiYi' where mi E Z and Yi EOn' 

for each i, and i is finite. 

Consider the map A: ZQn + Z(Z2)' which sends a 1+1 and 

b 1+ b (We are considering Z2 in multiplicative notation 

with generator b.) If 8 is a unit then A(8) = a is a 

unit in Z (Z2) • But the units in Z (Z2) are all trivial (see 

r[C] , (11.5» , so A(8) = a = :!:.b , r = +1 or O. But [ (:!:.b r ) -1] 8 

represents the same element as 8 in Wh (ZQn) • So we may 

assume without loss of generality that A(8) = 1. 

Now consider p = 1 - 8. A(p) = o. Since all elements 

of Un may be expressed as b£ak~ with £ = 0 or 1 and 
e:. k. 

k = 0,···,2n - 1, then p may be expressed as p = E.n.b,la 1. 
1 1. 

£. 
Since A(p) = 0, then E.n.b 1. = O. Consequently,

1. 1 
£i ki 

p E.n.b a 
1 1 

£. k. £. 
E.n.b la 1 E.n.b 1 

1 1 1 1 

E. k. 
E.n.b l(a 1 - 1).

1 1 k.
 
Since (a - 1) is a factor of (a 1 - 1); we have
 

p = E<Pi(a - 1) = (E<P i ) (a - 1) = -6(a - 1), with -6 = 2:<I>i' 

and therefore e = 1 - P = 1 + 6(a - 1). 

So, by the above lemma, any uni t of vV'h (K) is representable 

as 1 + 6(a - 1), which is Whitehead equi.valent to 

6(a - 1) 6 (1 -, ab)
[ 1 + 

0 1 

which is invertible, since 1 + 6(a - 1) is a unit. 

Therefore by (2.2), since f.1 is of form (3), every unit of 
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Wh(K) is realizable as the torsion of a self-equivalence f 

on K, with f# = ide 

To finish the proof of (2.1) we need to show that if 

f is a self-equivalence on K with f# = id, then T(f) must 

be a unit. To do this we need one last lemma. 

2.4 Lemma. Let K be the standard complex of the presen­

tation [a,blanb-1 ,abab- l ] of Q and let R and R be the 
n l 2 

preferred lifts in the universal cover K of the two 2-cells 

of K (R and R generate C (K) as a Z[TI1(K)]-moduleJ. Then
1 2 2
 

(a-1)R + (1-ab)R generates H (K).
l 2 2 

Proof. Only an outline will be given. The proof of 

this lemnla is trivial, but tedious and very lengthy. All 

one needs to do is to follow the example of [M2] , p. 330. 
mi Ei - m'i E'i ­

Let ~ = (Linia b )Rl + (Linia b )R2 be an element of 

H (K). We know that (a-1)R + (1-ab)R is an elelnent of2 1 2 

H (K), so we may subtract multiples of it to simplify the
2 

R coefficient. Then take the boundary, noting that all
l 

of the coefficients must be zero. 

Proof of (2.1) continued 3. Using matrix (3), by 

(2.4), the torsion of a self-equivalence which induces the 

identity on TIl can always be represented in the form, 

1+ c1 (a-l) c1 (1-ab) J 
(5) 

( c (a-l) 1 + c (1-ab)2 2 

So all we need to show is that given any invertible 

matrix of the form (5) is Whitehead equivalent to a unit. 
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[1+01(a-1l 01 (1-abl ] -
l+ol(a-l) °l(l-ab) 0 

°2(a-l) 1+02 (l-ab) °2(a-l) 1+02 (l-ab) 0 

0 0 1 

l+ol(a-l) °l(l-ab) 0 1 0 °1 

°2(a-l) 1+02 (l-ab) 0 0 1 °2 

-(a-I) -(l-ab) 1 -(a-I) -(l-ab) 1 

1 o °1 

o 1 °2 

o o 1+(a-l)01+(1-ab)02 

1 o o 

o 1 o 

o o 

- (1+(a-l)01+(1-ab)02)' which therefore must be a unit. 

2.5 Corollary. If L is a finite 2-aomplex with 

TI 1 (L) equal to the generaZized quarternions (Qn~ n = 2 i 

for some i) and X{L) > l~ then any finite 2-aomplex homotopy 

equivalent to L is simple homotopy equivalent to L. All 

suah 2-aomplexes are simple homotopy equivalent to KvnS 2 

(K with n s2,s attaahed)~ where K is the compZex of (2.1) 

and n = X(L) - 1. 

Proof. The minimum possible Euler characteristic is 

1. So by ?yer [Dl] Example 4, p. 223, all complexes with 

fundamental group Un and the same Euler characteristic 

above 1 will be homotopy equivalent. In particular, they 
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are all homotopy equivalent to Kvns 2 , where n is the Euler 

characteristic minus 1. Now since K realizes all of its 

torsion, by [M-O-V], then K is simple homotopy equivalent 

to any complex homotopy equivalent to it. But since K 

realizes all of its Whitehead torsion, so will Kvns 2 , and 

the	 same follows. 

So what about a counter-example? 

2.6	 CoroLLary. Let K be the standard compLex of the 

. I n -1 -1 . 
presentat~on [a,b a b ,abab ] of Qn~ where e~ther n = p 

is prime and the cLass number h is even~ or n = 4p with 
p 

p prime and p = -1 mod 8. Then either 

(1) not every eLement of Wh(K) is reaLizabLe as the 

torsion of a seLf-equivaLence~ or 

(2) there exists an automorphism ~ of TIl(K) = Qn~ 

~ ~ identity~ and there exists a seLf-equivalence f which 

induces f# = ~~ such that the torsion of f is not a unit 

or zero. I.e.~ any setf-equivatence which induces ¢ witt 

have	 non-unit~ non-zero torsion. 

Proof. By [M-O-V], Wh(K) contains non-units. 

The author would prefer that (1) were true, but (2) is 

of definite interest, since it would be the first example 

in dimension 2 of different automorphisms of TIl giving 

distinct torsions. 

When	 the author was giving details of the proof of 

(2.1) at the impromptu-mini-pseudo-pre-Alta-conference at 

the University of Oregon, it was noted by Wolfgang Metzler 

that the matrix manipulation in the proof of (2.1) could be 

trivially generalized to give: 
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2.7 Theorem. Given any finite 2-complex K with 

TI 2 (K) singly generated as a ZTIl(K)-module, then any seZf­

equivalence on K which induces the identity map on TIl(K) 

must have unit Whitehead torsion. 

In particular, the above hypothesis is satisfied by the 

standard presentation of any I-relator group presentation. 

3.	 Realizable Automorphisms of 7T1 (K) 

To show that K is a counter-example of sort (1) of 

(2.6), we need to show that given an automorphism ~ of Qn' 

then either there does not exist a self-equivalence that 

induces ~, or if there does exist a self-equivalence that 

induces ~, then there exists a simple self-equivalence 

that induces ~ (simple = zero torsion). This section will 

state partial results to the above question, and the obstruc­

tions to completing these results. 

Now Aut(Qn) is of the following form. For any 

~ E Aut (Qn) , 

~(a) aa, where (a,2n) = 1, and 

i. f 0 .<p(b) a 0, or .2. 1 < 2n. 

So the Aut(Qn) is generated by n and ~ defined as 
a 

follows. na(a) aa and na(b) = b. ~(a) = a and ~(b) = abe 

If there exists a number 0 that is primitive with respect 

to 2n, then Aut(Qn) has only two generators, no and ~. 

Otherwise, n refers to several possible automorphisms,
a 

n , with (a,2n) = 1. a
 

With respect to simple self-equivalences, ~ is no
 

problem. Using a lemma similar to (2.2) (see [Ll], Theorem 
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1.4), we can construct a self-equivalence g, with g# = ~ 

and T(g) = O. The details will not be given here, since 

these are partial results, and possibly of no use. 

As for n , the story is quite different. There are 
a 

maps on K which can be constructed such that the induced 

map on TIl(K) is n , but so far, all maps that have been 
a 

constructed were not homotopy equivalences. The author 

would like to show that no homotopy equivalence exists 

which induces n , for any a relatively prime to 2n, n 
a 

satisfying (2.6). This would finish the proof of (2.6) (1). 

We need to show that any map f: K ~ K that induces 

f# = n on TII(K) does not induce an isomorphism on 
a 

TI (K) ; H (K). Let r = (a-l)R + (1-ab)R be our generator2 2 l 2-
of H (K) from (2.4). Since K is 2-dimensional, H (K) is
2 2 

contained in C (K). So r can be thought of as an element
2 

of C (K). And H (K) can be thought of as the subgroup
2 2 

generated by r. As a singly generated ZTIl-module, H (K) ­
2 

ZQn/{~I~r O}. But note that ~[(a-l)Rl + (1-ab)R2 ] = 0 

if and only if ~ = pN, where p E Z(Qn) is arbitrary and 

,2n-l i ,3 i 
N = Li=O a + Li=Oa b •
 

Consequently, H (K) ; ZQn/(N).
2 

Given any map f: K ~ K, not necessarily a homotopy 

equivalence, then f 2 sends f ~ yff, for some Yf E ZQn. 

Let A: ZQ ~ Z be the augmentation map (sum of the coeffi ­

cients) • Given n a E AutQn and Y E ZQn' there exists a map 

2f with f = n and = Y if and only if A(y) = aYft a 
-* We would like to show that £2: H (K) ~ H (K) is not

2 2 

an isomorphism. To do that we need to show that 
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[Y f ] E ZQn/(N) is not a unit. Yf is obviously not a unit 

(in most cases), since A(Yf) ~ +1. 

3.1 Fact. Given n E AutQn' 0 < a < 2n, (a,2n) = 1 a 

then there exists a self-equivalence f: K ~ K with f# = n 
a 

2if and only if there exists Y E ZQ with A(y) = a and n 

[y] E ZQn/(N) is a unit. 

There are other techniques to approach the problem of 

the existence of a homotopy equivalence. If one of these 

techniques bear fruit, we will be able to state a result 

about the units of ZQ /(N).
n 
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