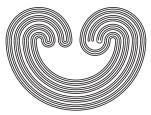
TOPOLOGY PROCEEDINGS

Volume 10, 1985 Pages 175–176



http://topology.auburn.edu/tp/

CORRIGENDUM TO "COUNTABLY PARACOMPACT MOORE SPACES ARE METRIZABLE IN THE COHEN MODEL"

by

FRANKLIN D. TALL

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT (c) by Topology Proceedings. All rights reserved.

CORRIGENDUM TO "COUNTABLY PARACOMPACT MOORE SPACES ARE METRIZABLE IN THE COHEN MODEL" ¹

Franklin D. Tall

The idea of the proof is correct but the version given depends on the false assertion that since $Fn(\lambda, 2, \omega)$ is "n-dowed," so is $Fn(\lambda, \omega, \omega)$. Although these two partial orders yield the same forcing extensions, they are not isomorphic. Both Alan Dow and J. Jin provided the following counterexample: take a maximal antichain A of elements in Fn(λ, ω, ω) having 0 in their domain. Whatever finite subset F(A) of A is chosen, {(0,1 + max{i: $(\exists a \in F(A)) (\langle 0, i \rangle \in a) \}$ is incompatible with each member of F(A). However in the paper of Dow I referred to, he proved that $Fn(\lambda, \omega, \omega)$ is n-dowed if we redefine that concept to include the extra restriction that range p \subseteq n. This weaker notion is sufficient to prove Lemma 1, for suppose in the given proof that $|\operatorname{dom} p| + \max \operatorname{range} p = k$. Since U meets infinitely many $H_{(n+k+1)v}$'s we can find distinct γ_j , $j \leq n + 1$, $\gamma_j > max \text{ dom } p$, such that U meets $h_{n+k+1}(y_{\gamma_j})$, $y_{\gamma_j} \in Y_{\gamma_i}$. p $\land \Delta$ is a condition with domain of size $\leq n + k + 1$ and range $\subseteq n + k + 1$, so indeed the $\textbf{p}_{i} \text{'s required in the proof exist.}$

The paper in preparation referred to in the bibliography as [TW] has now been incorporated into *New proofs of the*

¹Top. Proc. 9 (1984), 145-148.

consistency of the normal Moore space conjecture by A. Dow, F. D. Tall, and W. Weiss, preprint.

University of Toronto Toronto, Canada