TOPOLOGY PROCEEDINGS

Volume 10, 1985

Pages 385-397

http://topology.auburn.edu/tp/

ON NON-METRIC PSEUDO-ARCS

by Michel Smith

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON NON-METRIC PSEUDO-ARCS

Michel Smith

We construct an example of non-metric hereditarily indecomposable continuum that has many of the properties of the pseudo-arc. In particular, we construct a non-metric hereditarily indecomposable homogeneous hereditarily equivalent continuum.

Definitions. A continuum is defined to be a compact connected Hausdorff space. Suppose λ is an ordinal, X_{α} is a topological space for each $\alpha<\lambda$, and if $\alpha<\beta$ then h_{α}^{β} is a mapping from X_{β} to X_{α} . Then the space $X=\lim_{\alpha<\beta<\lambda}\{X_{\alpha},h_{\alpha}^{\beta}\}$ denotes the space which is the inverse limit of the inverse system $\{X_{\alpha},h_{\alpha}^{\beta}\}_{\alpha<\beta<\lambda}$. Each point of X is a function $P\colon \lambda\to U_{\alpha<\lambda}X_{\alpha} \text{ such that for all } \alpha<\beta<\lambda\colon P(\alpha)=P_{\alpha}\in X_{\alpha}$ and $P_{\alpha}=h_{\alpha}^{\beta}(P_{\beta})$. A basis for the topology is the collection to which the set U belongs if and only if there exists a $\beta<\lambda$ and an open set O_{β} of X_{β} so that $U=\{P\big|P_{\beta}\in O_{\beta}\}$. Let $\pi_{\alpha}\colon X\to X_{\alpha}$ be defined by $\pi_{\alpha}(P)=P_{\alpha}$.

Suppose that M is a continuum and P \in M. Then C is the composant of M at P means that C is the point set to which x belongs if and only if there is a proper subcontinuum of M containing x and P. The set C is a composant of M means that C is a composant of M at some point of M. A pseudo-arc is a nondegenerate hereditarily indecomposable metric chainable continuum. The pseudo-arc is homogeneous [Bi] and hereditarily equivalent [Ms].

We use the following results due to Wayne Lewis [L2].

Theorem A. Suppose that M is a one-dimensional continuum. Then there exists a one dimensional continuum \hat{M} and a continuous decomposition G of \hat{M} into pseudo-arcs so that the decomposition space \hat{M}/G is homeomorphic to M. Furthermore, if $\pi\colon \hat{M}\to \hat{M}/G$ is the mapping so that $\pi(x)$ is the element of G containing x then if $h\colon \hat{M}/G\to \hat{M}/G$ is a homeomorphism then there exists a homeomorphism $\hat{h}\colon \hat{M}\to \hat{M}$ so that $\pi\circ \hat{h}=h\circ \pi.$

Theorem B. Under the hypothesis of theorem A if x and y are elements of the same pseudo-arc in G then there exists a homeomorphism $\hat{h}: \hat{M} \to \hat{M}$ so that $\hat{h}(x) = y$ and $\pi \circ \hat{h} = \pi$.

From the fact that the pseudo-arc of pseudo-arcs is unique [L1], we have the following:

Corollary B. Suppose that X is a pseudo-arc and G is a continuous collection of pseudo-arcs filling X, so that for each $x \in X$, $\pi(x)$ is the element of G that contains x, and Y = X/G. Then Y is a pseudo-arc and if $h\colon Y \to Y$ is a homeomorphism then there exists a homeomorphism $\hat{h}\colon X \to X$ so that $\pi \circ \hat{h} = h \circ \pi$.

Example 1. Let X_1 be a pseudo-arc, let X_2 be a pseudo-arc, and let G_2 be a continuous decomposition of X_2 into pseudo-arcs. Then X_2/G_2 is a pseudo-arc and is homeomorphic to X_1 . Let f_1^2 be the open monotone map, $f_1^2\colon X_2\to X_1$ so that $G_2=\{f_1^{2-1}(x)\,|\,x\in X_1\}$. By induction, construct $\{X_\alpha\}_{\alpha<\omega_1}$ as follows. Suppose $\gamma<\omega_1$ and X_α and f_α^β have been

constructed for all α and β such that if $\alpha < \beta < \lambda$ then X_{α} is a pseudo-arc and $f_{\alpha}^{\beta} \colon X_{\beta} \to X_{\alpha}$ is an open monotone map. Suppose $\lambda < \omega_1$ is not a limit ordinal. Then λ has a predecessor $\lambda - 1$. Then let X_{λ} be a pseudo arc and let G_{λ} be a continuous decomposition of X_{λ} into pseudo-arcs. Then X_{λ}/G_{λ} is homeomorphic to $X_{\lambda-1}$ so there is an open monotone map $f_{\lambda-1}^{\lambda} \colon X_{\lambda} \to X_{\lambda-1}$ so that $G_{\lambda} = \{f_{\lambda-1}^{\lambda}^{-1}(x) \mid x \in X_{\lambda-1}\}$. For $\alpha < \lambda$ -1 let $f_{\alpha}^{\lambda} = f_{\alpha}^{\lambda-1} \circ f_{\lambda-1}^{\lambda}$. Suppose that λ is a limit ordinal. Then $\{X_{\alpha}, f_{\alpha}^{\beta}\}_{\alpha < \beta < \lambda}$ is an inverse system. Let $X_{\lambda} = \lim_{\alpha < \beta} \{X_{\alpha}, f_{\alpha}^{\beta}\}$. If $\lambda < \omega_1$ then some countable set is cofinal in λ so X_{λ} is homeomorphic to an inverse limit of pseudo-arcs and hence must be a metric chainable hereditarily indecomposable continuum. So X_{λ} is a pseudo-arc. If $\alpha < \lambda$ then let $f_{\alpha}^{\lambda} \colon X_{\lambda} \to X_{\alpha}$ denote the projection of X_{λ} onto the α -th coordinate space X_{α} .

Let M denote the space $X_{\omega_1} = \lim_{\alpha < \beta < \omega_1} \{X_{\alpha}, f_{\alpha}^{\beta}\}.$

Theorem 1.1. The space M is a non-metric chainable hereditarily indecomposable continuum.

Proof. The chainability and hereditary indecomposability of M easily follows from the fact that each X is chainable and hereditarily indecomposable. The non-metrizability of M follows from the existence of an ω_1 -long monotonic sequence of subcontinua of M which is constructed below.

Let $L_1 = X_1$, $I_1 = X_{\omega_1}$, and $P_1 \in L_1$. Let $I_2 = \{x \in M \mid |x_1 = P_1\}$, $L_2 = \{x_2 \in X_2 \mid x \in I_2\} = \pi_2(I_2)$, and $P_2 \in L_2$. By

the construction of ${\bf X}_\alpha^{},~{\bf L}_2^{}$ is nondegenerate and in fact ${\bf L}_2^{}=~{\bf f}_1^{2^{-1}}({\bf P}_1^{})~.$ Let $\lambda^{}<~\omega_1^{}$.

Suppose I $_{\alpha}\text{, }P_{\alpha}\text{, }$ and L $_{\alpha}$ have been constructed for all α < λ .

Case i: λ is not a limit ordinal and $\lambda = \lambda' + 1$. Then let $\mathbf{I}_{\lambda} = \{\mathbf{x} | \mathbf{x}_{\lambda}, = \mathbf{P}_{\lambda}, \}$, $\mathbf{L}_{\lambda} = \{\mathbf{x}_{\lambda} \in \mathbf{X}_{\lambda} | \mathbf{x} \in \mathbf{I}_{\lambda}\} = \pi_{\lambda}(\mathbf{I}_{\lambda})$, and $\mathbf{P}_{\lambda} \in \mathbf{L}_{\lambda}$.

Case ii: λ is a limit ordinal. Then let $\mathbf{I}_{\lambda} = \mathbf{n}_{\alpha < \lambda} \mathbf{I}_{\alpha}$, $\mathbf{L}_{\lambda} = \mathbf{\pi}_{\lambda} (\mathbf{I}_{\lambda})$, and $\mathbf{P}_{\lambda} \in \mathbf{L}_{\lambda}$.

Note that if $\alpha \neq \beta$ then $\mathbf{I}_{\alpha} \neq \mathbf{I}_{\beta}$ and if $\alpha < \beta$ then $\mathbf{I}_{\beta} \subset \mathbf{I}_{\alpha}.$ So $\{\mathbf{I}_{\lambda}\}_{\lambda \leq \omega_{1}}$ is the required monotonic collection.

Theorem 1.2. The space M is homogeneous.

Proof. Let x and y be two points of M. Since X_1 is homogeneous there exists a homeomorphism $h\colon X_1\to X_1$ so that $h(x_1)=y_1$. By theorem A there is a homeomorphism $g\colon X_2\to X_2$ so that $h\circ f_1^2=f_1^2\circ g$. Note that $f_1^2\circ g(x_2)=h\circ f_1^2(x_2)=h(x_1)=y_1$ and $f_1^2(y_2)=y_1$. So $g(x_2)$ and y_2 both belong to the same element of G_2 . So by theorem B there exists a homeomorphism $k\colon X_2\to X_2$ so that $k\circ g(x_2)=y_2$ and $f_1^2\circ k=f_1^2$. Thus $k\circ g\colon X_2\to X_2$ is a homeomorphism with $f_1^2\circ k\circ g=f_1^2\circ g=h\circ f_1^2$ and $k\circ g(x_2)=y_2$. Define $\theta_1=h$, and $\theta_2=k\circ g$. Thus $\theta_1\circ f_1^2=f_1^2\circ \theta_2$.

Proceeding by induction, suppose that $\lambda < \omega_1$ and θ_α has been defined for all $\alpha < \lambda$ so that if $\alpha < \beta < \lambda$ then $\theta_\alpha \circ f_\alpha^\beta = f_\alpha^\beta \circ \theta_\beta.$

Case i: λ is not a limit ordinal and $\lambda = \lambda' + 1$ for some λ' . Then using the same argument as above there exists

 $\begin{array}{l} \theta_{\lambda} \colon \ X_{\lambda} \to X_{\lambda} \ \text{so that} \ \theta_{\lambda} \text{, o } f_{\lambda}^{\lambda} \text{, } = f_{\lambda}^{\lambda} \text{, o } \theta_{\lambda} \ \text{and} \ \theta_{\lambda} (x_{\lambda}) = y_{\lambda}. \\ \text{If } \alpha < \lambda \text{, then } \theta_{\alpha} \text{ o } f_{\alpha}^{\lambda} = \theta_{\alpha} \text{ o } f_{\alpha}^{\lambda} \text{ o } f_{\lambda}^{\lambda} = f_{\alpha}^{\lambda} \text{ o } \theta_{\lambda} \text{ o } f_{\lambda}^{\lambda} = f_{\alpha}^{\lambda} \text{ o } \theta_{\lambda} \text{ o } f_{\lambda}^{\lambda} = f_{\alpha}^{\lambda} \text{ o } \theta_{\lambda} \text{ o } f_{\lambda}^{\lambda} = f_{\alpha}^{\lambda} \text{ o } \theta_{\lambda}. \end{array}$

Case ii: λ is a limit ordinal. Then, since X_{λ} is the inverse limit $\lim_{\alpha < \beta < \lambda} \{X_{\alpha}, f_{\alpha}^{\beta}\}$, the collection $\{\theta_{\lambda} \colon X_{\lambda} \to X_{\lambda}\}_{\alpha < \lambda}$ induces a homeomorphism $\theta_{\lambda} \colon X_{\lambda} \to X_{\lambda}$ so that $\theta_{\alpha} \circ f_{\alpha}^{\lambda} = f_{\alpha}^{\lambda} \circ \theta_{\lambda}$.

Then since $M = X_{\omega_1}$ is the inverse limit $\lim_{\alpha < \beta < \omega_1} \{X_{\alpha}, f_{\alpha}^{\beta}\}$. The collection $\{\theta_{\alpha}\}_{\alpha < \lambda}$ induces a homeomorphism $\theta \colon X_{\omega_1} \to X_{\omega_1}$ so that $f_{\alpha}^{\omega_1} \circ \theta = \theta_{\alpha} \circ f_{\alpha}^{\omega_1}$ and since $\theta_{\lambda}(x_{\lambda}) = y_{\lambda}$ we also have $\theta(x) = y$.

Definition. The continuum X is said to be hereditarily equivalent if it is homeomorphic to each of its nondegenerate subcontinua.

Theorem 1.3. The space M is hereditarily equivalent.

Proof. Let L be a nondegenerate subcontinuum of M. Let P and Q be two points of L. Then there exists $\lambda < \omega_1$ so that $P_{\lambda} \neq Q_{\lambda}$. Let L_{α} denote the projection of L into the $\alpha^{\frac{th}{c}}$ coordinate. Thus $L_{\alpha} = \{x_{\alpha} | x \in L\} = f_{\alpha}^{\omega_1}(L)$. First we will show that if $\lambda < \gamma < \omega_1$ then

$$L_{\gamma} = f_{\lambda}^{\gamma-1}(L_{\lambda}).$$

Clearly, $L_{\gamma} \subset f_{\lambda}^{\gamma-1}(L_{\lambda})$.

For each $x \in L_{\lambda}$ the set $f_{\lambda}^{\gamma-1}(x)$ is a subcontinuum of X_{λ} . Since L_{λ} is nondegenerate, it follows that L_{γ} is not a subset of $f_{\lambda}^{\gamma-1}(x)$. But by hereditary indecomposability one

of L_{γ} and $f_{\lambda}^{\gamma-1}(x)$ is a subset of the other. So $f_{\lambda}^{\gamma-1}(L_{\lambda}) \subset L_{\lambda}$. Therefore we have $L_{\gamma} = f_{\lambda}^{\gamma-1}(L_{\lambda})$. Notice that this argument also verifies that $f_{\lambda}^{\gamma}|_{L_{\gamma}}: L_{\gamma} \to L_{\lambda}$ is a monotone map. Thus $L = \lim_{\lambda < \alpha < \frac{1}{\beta} < \omega_{1}} \{L_{\alpha}, f_{\alpha}^{\beta}|_{L_{\beta}}\}.$

The set ω_1 is order isomorphic to the set $\{\gamma \,|\, \lambda < \gamma < \omega_1\}$. Let ψ be the isomorphism. Suppose $\lambda < \omega_1$ and $\{\theta_\alpha\}_{\alpha < \lambda}$ have been defined so that for all $\alpha < \beta < \lambda$

$$\theta_{\alpha} \circ f_{\alpha}^{\beta} = f_{\psi(\alpha)}^{\psi(\beta)}\Big|_{L\psi(\beta)} \circ \theta_{\beta}.$$

If λ is not a limit ordinal and $\lambda = \gamma + 1$ then using Wayne Lewis's results there exists a homeomorphism $\theta_{\gamma+1}\colon X_{\gamma+1} \to L_{\psi(\gamma+1)}$ so that the following diagram commutes

If λ is a limit ordinal the maps $\{\theta_{\gamma}\}_{\gamma<\lambda}$ induce a homeomorphism θ_{λ} of X_{λ} onto $X_{\psi\left(\lambda\right)}.$ Therefore for all $\alpha<\beta<\omega_{1}$ $\theta_{\alpha}\circ f_{\alpha}^{\beta}=f_{\psi\left(\alpha\right)}^{\psi\left(\beta\right)}\Big|_{L_{\psi\left(\beta\right)}}\circ \theta_{\beta} \text{ and the maps } \{\theta_{\gamma}\}_{\gamma<\omega_{1}}$ induce a homeomorphism of M onto L.

Theorem 1.4. The continuum M is irreducible from the point x to the point y if and only if X_1 is irreducible from the point x_1 to the point y_1 .

Proof. Suppose that X_1 is not irreducible from x_1 to y_1 . Then there is a proper subcontinuum L_1 of X_1 containing x_1 and y_1 . Let $L_2 = f_1^{2^{-1}}(L_1)$; then, since f_1^2 is monotone, L_2 is a subcontinuum of X_2 and it must be a proper subcontinuum of X_2 because L_1 is proper in X_1 . Let us construct a collection $\{\mathbf{L}_{\alpha}^{}\}_{\alpha^{<}\omega_{1}^{}}$ by induction so that $\mathbf{L}_{\alpha}^{}$ is a proper subcontinuum of X_{α} containing x_{α} and y_{α} . Suppose that L_{α} has been defined for all $\alpha \in \lambda$. If λ is not a limit ordinal then let $L_{\lambda} = f_{\lambda-1}^{\lambda-1}(L_{\lambda-1})$. Since $f_{\lambda-1}^{\lambda}$ is monotone and $L_{\lambda-1}$ is a proper subcontinuum of $X_{\lambda-1}$ then L_{λ} is a proper subcontinuum of X_{λ} , and L_{λ} contains x_{λ} and y_{λ} . If λ is a limit ordinal then let $L_{\lambda} = \lim_{\alpha < \beta < \lambda} \{X_{\alpha}, f_{\alpha}^{\beta} | L_{\beta} \}$. Since L_{1} is a proper subcontinuum of X_1 then L_{λ} is a proper subcontinuum of X_{λ} . Since x_{α} and y_{α} lie in L_{α} for $\alpha < \lambda$, and for $\alpha < \beta < \lambda$ $f_{\alpha}^{\beta}(x_{\beta}) = x_{\alpha} \text{ and } f_{\alpha}^{\beta}(y_{\beta}) = y_{\alpha}, \text{ then } x_{\lambda} \text{ and } y_{\lambda} \text{ lie in } L_{\lambda}.$ Therefore L = $\lim_{\alpha < \beta < \omega_1} \{L_{\alpha}, f_{\alpha}^{\beta}|_{L_{\beta}}\}$ is a proper subcontinuum of

M. Furthermore by construction for each $\alpha < \omega_1$ the points x_{α} and y_{α} both lie in L_{α} . So L contains x and y hence M is not irreducible from x to y.

Suppose that M is not irreducible from the point x to the point y. Let L be a proper subcontinuum of M containing x and y. Then for some $\lambda < \omega_1$, $f_{\lambda}^{\omega_1}(L) \neq X_{\lambda}$. Let $L_{\lambda} = f_{\lambda}^{\omega_1}(L)$. Then x_{λ} and y_{λ} both lie in L_{λ} . Since L_{λ} is a proper subcontinuum of X_{λ} there is a point $z_{\gamma} \in X_{\lambda} - L_{\lambda}$. Let $z_1 = f_1^{\lambda}(z_{\lambda})$. Then $f_1^{\lambda-1}(z_1)$ is a subcontinuum of X_{λ} . But $z_{\lambda} \in f_1^{\lambda-1}(z_1)$ and $z_{\lambda} \notin L_{\lambda}$ also $x_{\lambda} \in L_{\lambda}$ so $x_1 \neq z_1$ and

hence $\mathbf{x}_{\lambda} \not\in \mathbf{f}_{1}^{\lambda^{-1}}(\mathbf{z}_{1})$. So by hereditary indecomposability, \mathbf{L}_{λ} and $\mathbf{f}_{1}^{\lambda^{-1}}(\mathbf{z}_{1})$ are disjoint continua. Thus $\mathbf{z}_{1} \not\in \mathbf{f}_{1}^{\lambda}(\mathbf{L}_{\lambda})$ but \mathbf{x}_{1} and \mathbf{y}_{1} are elements of $\mathbf{f}_{1}^{\lambda}(\mathbf{L}_{\lambda})$. Therefore, $\mathbf{f}_{1}^{\lambda}(\mathbf{L}_{\lambda})$ is a proper subcontinuum of \mathbf{X}_{1} containing \mathbf{x}_{1} and \mathbf{y}_{1} .

The following corollary follows easily from the construction and theorem 1.4.

Corollary 1.5. The continuum M has c composants.

Example 2. In [S3] an example of a hereditarily indecomposable continuum with exactly two composants was constructed. The example was an inverse limit of pseudo-arcs indexed by ω_1 with special types of retractions as bonding maps.

We will use the following theorems from [S3].

Theorem C. Suppose that X is a pseudo-arc, X is irreducible from the point P to the point Q, Y is a pseudo-arc, $X \subset Y$, and Y is the union of two closed sets H and K so that X is a component of H, $X \cap K = \{Q\}$, and $Bd(H) = Bd(K) = K \cap H$. Then there is a retraction h of Y onto X so that h(K) = Q, $h^{-1}(P) = P$, and h(Y-X) lies in the composant of X at Q.

Suppose X is a continuum. Let us use the following notation. If $H \subset X$, let $Bd_X(H)$ denote the boundary of H in X, let $Int_X(H)$ denote the interior of H with respect to X, and let $Cl_X(H)$ denote the closure of H in X. If $Q \in X$, then let Cmps (X,Q) denote the composant of X at Q.

Theorem C was used to construct the example in [S3]. The example which we will denote by N was constructed so that N = $\lim_{\alpha < \beta < \omega_1} \{ X_{\alpha}, h_{\alpha}^{\beta} \}$ and for each $\alpha < \omega_1$:

- 1) X_{α} is a pseudo-arc with $X_{\alpha} \subset X_{\alpha+1}$,
- 2) ${\rm X}_{_{\rm C\!\!\!/}}$ is irreducible from the point P to the point ${\rm Q}_{_{\rm C\!\!\!/}}$,
- 3) $X_{\alpha+1}$ is the union of two closed sets $H_{\alpha+1}$ and $K_{\alpha+1}$ so that X_{α} is a component of $H_{\alpha+1}$, $X_{\alpha+1}$ \cap $K_{\alpha+1} = \{Q_{\alpha}\}$, $Bd_{X_{\alpha+1}}(H_{\alpha+1}) = Bd_{X_{\alpha+1}}(K_{\alpha+1}) = H_{\alpha+1} \cap K_{\alpha+1}$, $Q_{\alpha+1} \in Int_{X_{\alpha+1}}(K_{\alpha+1})$, and $Q_{\alpha+1} \notin Cmps(X_{\alpha+1},Q_{\alpha})$,
- 4) $h_{\alpha}^{\alpha+1} \colon X_{\alpha+1} \to X_{\alpha}$ is a retraction so that $h_{\alpha}^{\alpha+1}(K_{\alpha+1}) = Q_{\alpha}$, $h_{\alpha}^{\alpha+1}(P) = P$, and $h_{\alpha}^{\alpha+1}(X_{\alpha+1} X_{\alpha}) \subset Cmps(X_{\alpha}, Q_{\alpha})$.

Conditions 1-4 were used to obtain the following theorem [S].

Theorem D. The continuum N = $\lim_{\alpha < \beta < \omega_1} \{x_\alpha h_\alpha^\beta\}$ is a hereditarily indecomposable continuum with exactly two composants.

By Theorem D it follows that N is a non-metric continuum. By Theorem D and Corollary 1.5 the continua M and N are not homeomorphic. It would be of interest to determine if N is homogeneous or hereditarily equivalent. We will show that N is neither of these, and we will obtain a general theorem about non-metric hereditarily indecomposable continua.

The fact that N is not hereditarily equivalent easily follows from the following observation.

Theorem 2.1. The continuum N contains a pseudo-arc.

Proof. The proof easily follows from the construction. From condition 4 $h_{\alpha}^{\alpha+1}\colon X_{\alpha+1}\to X_{\alpha}$ is a retraction and $h_{\alpha}^{\alpha+1}(X_{\alpha+1}-X_{\alpha})\subset \operatorname{Cmps}(X_{\alpha},Q_{\alpha})$. So if I is a proper subcontinuum of X_{α} that does not intersect $\operatorname{Cmps}(X_{\alpha},Q_{\alpha})$ then $f_{\alpha}^{\alpha+1}$ (I) = I. Therefore, if L is a nondegenerate subcontinuum of X_1 that does not intersect $\operatorname{Cmps}(X_1,Q_1)$, then $f_1^{\alpha-1}(L)=L$. So $\hat{L}=\lim_{\alpha<\hat{\beta}<\omega_1}\{L,f_{\alpha}^{\beta}\big|_L\}$ is a pseudo-arc since $f_{\alpha}^{\beta}\big|_L$ is the identity on L.

Definitions. Suppose X is a space and $x \in X$. Then X is first countable at x means that there is a countable collection of open sets that forms a basis at x. The point x is a P-point of X means that if $\{O_i\}_{i=1}^{\infty}$ is a countable collection of open sets each containing x, then there exists an open set O containing x such that $O \subset O_{i=1}^{\infty}O_i$.

The fact that N is not homogeneous easily follows from Theorems D and 2.1 as well as from the following theorem.

Theorem 2.2. The continuum N contains both a point at which it is first countable and a P-point.

Proof. First we show that the point Q = {Q_{\alpha}} is a P-point of N. Suppose $\alpha < \omega_1$ and R is an open set in X_{α} then let $\tilde{R} = \{x \in N | x_{\alpha} \in R\}$, the set \tilde{R} is open in N. Suppose $\{O_i\}_{i=1}^{\infty}$ is a countable sequence of open sets in N each containing Q. Then for each i there is an ordinal α_i and an open set R_i in X_{α_i} , so that $Q_{\alpha_i} \in R_i$ and $Q \in \tilde{R}_i \subset O_i$.

Since $\{\alpha_i\}_{i=1}^{\infty}$ is countable there exists $\lambda < \omega_1$ so that $\alpha_i < \lambda$ for all positive integers i and so that λ is not a limit ordinal. Let U be an open set containing Q_{λ} so that $\operatorname{Cl}_{X_{\lambda}}(U) \subset K_{\lambda}$, this can be done by condition 3. Then by condition 4, $f_{\lambda-1}^{\lambda}(\operatorname{Cl}_X U) = Q_{\lambda-1}$ and hence $\tilde{U} \subset O_{\alpha_1}$ for all α_i .

Now we prove that if $x \in X_1$ - Cmps (X_1,Q_1) then the point $z \in N$ so that $z_{\alpha} = x$ for all $\alpha < \omega_{1}$ is a point of first countability of N. Let $\{U_i\}_{i=1}^{\infty}$ be a countable local basis of open sets of \mathbf{X}_1 at \mathbf{x} . We claim that $\{\overset{\leftarrow}{\mathbf{U}}_i\}_{i=1}^{\infty}$ is a local basis for z in N. Suppose on the other hand that $\{ \overset{\leftarrow}{\mathbf{U}}_i \}_{i=1}^{\infty}$ is not a local basis for z. Then there is a point $y \neq z$ so that $y \in \bigcap_{i=1}^{\infty} \dot{b}_i$. Since $y \neq z$ there is a first λ so that $\mathbf{y}_{\lambda} \neq \mathbf{z}_{\lambda} = \mathbf{x}$. Clearly λ is not a limit ordinal and $\lambda \neq 1$ since $\{U_i\}_{i=1}^{\infty}$ is a local basis for $x \in X_1$. Therefore, $f_{\lambda-1}^{\lambda}(y_{\lambda}) = x$. But $x \in X_1 \subset X_{\lambda-1} \subset X_{\lambda}$ and $f_{\lambda-1}^{\lambda}(X_{\lambda}-X_{\lambda-1}) \subset Cmps(X_{\lambda-1},Q_{\lambda-1})$. Also, $x \notin Cmps(X_{\lambda-1},Q_{\lambda-1})$. $Q_{\lambda-1}$) because for $\lambda = 2 \times \text{was chosen so that } x \notin \text{Cmps}(X_1,Q_1)$ and for $\lambda > 2$, X_1 is a proper subcontinuum of $X_{\lambda-1}$ that contains P and hence cannot intersect $Cmps(x_{\lambda-1},Q_{\lambda-1})$. Therefore, the only point of X_{λ} that is mapped onto x by $f_{\lambda-1}^{\lambda}$ is x. But this contradicts the fact that $y_{\lambda} \neq x$. So N is first countable at x. Similarly it can be shown that if $\lambda < \omega_1$ and $x \in X_{\lambda}$ - Cmps $(X_{\lambda},Q_{\lambda})$ then N is first countable at the point z so that $z_{\alpha} = x$ for all $\lambda < \alpha < \omega_{1}$.

The next theorem shows that, in terms of the existence of points of first countability and P-points in hereditarily

indecomposable continua example 2 is as complicated as it can get.

Theorem 3. If X is a hereditarily indecomposable continuum then no proper subcontinuum of X can contain a P-point of X and a point at which X is first countable.

Proof. Suppose X is a hereditarily indecomposable continuum, x is a P-point of X, y is a point of X at which X is first countable, and L is a proper subcontinuum of X containing both x and y. Let $\{R_i\}_{i=1}^{\infty}$ be a countable local basis at y so that $R_{i+1} \subset R_i$. Let $z \in X - L$.

Let I_n be the component of $X-R_n$ containing z. Then $I_n\cap Bd_X(R_n)\neq \emptyset$, and since $y\not\in I_n$ by hereditary indecomposability $I_n\cap L=\emptyset$. Thus $x\not\in I_n$. Let K be the limiting set of I_1,I_2,\cdots . Since x is a P-point then $x\not\in K$. Since y is the sequential limit of $\{I_n\cap Bd_X(R_n)\}_{n=1}^\infty$ and $I_n\subset I_{n+1}$ for each n then K is a continuum that contains y. Thus $y\in L$, $y\in K$, $z\in K$, $z\not\in L$, $x\not\in K$, and $x\in L$; but this contradicts the hereditary indecomposability of X.

The following questions arise naturally from our discussion.

 $\textit{Question 1.} \quad \text{Are there other non-metric hereditarily}$ equivalent continua?

Question 2. Are there other non-metric homogeneous chainable continua? In particular, is there an inverse limit on a larger index set of chainable continua which is homogeneous?

Question 3. How many different inverse limits of pseudo-arcs indexed by $\boldsymbol{\omega}_1$ are there?

Bibliography

- [Be] D. P. Bellamy, Indecomposable continua with one and two composants, Fund. Math. 101 (2) (1978), 129-134.
- [Bi] R. H. Bing, A homogeneous indecomposable plane continuum, Duke Math. J. 15 (1951), 43-51.
- [L1] W. Lewis, The pseudo-arc of pseudo-arcs is unique, Houston J. Math. 10 (1984), 227-234.
- [L2] , Continuous curves of pseudo-arcs (preprint).
- [Mor] R. L. Moore, Foundations of point set theory, AMS Colloq. Pub. XIII Revised Edition, Providence, R.I. (1962).
- [Ms] E. E. Moise, An indecomposable plane continuum which is homeomorphic to each of its non-degenerate subcontinua, Trans. Amer. Math. Soc. 63 (1948), 581-594.
- [S1] M. Smith, Generating large indecomposable continua, Pacific J. Math. 62 (1976), 587-593.
- [S2] ____, Large indecomposable continua with only one composant, Pacific J. Math. 86 (2) (1980), 593-600.
- [S3] _____, A hereditarily indecomposable Hausdorff continuum with exactly two composants, Top. Proc. 9 (1984), 123-143.

Auburn University
Auburn, Alabama 36849