TOPOLOGY PROCEEDINGS

Volume 10, 1985

Pages 399-411

http://topology.auburn.edu/tp/

DECOMPOSITIONS FOR CLOSED MAPS

by

Yoshio Tanaka and Yukinobu Yajima

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

DECOMPOSITIONS FOR CLOSED MAPS

Yoshio Tanaka and Yukinobu Yajima

Introduction

Well-known decomposition theorems for closed maps are given by the following type (L):

(L) For spaces X, Y and a closed map $f: X \rightarrow Y$, $Y = Y_0 \cup (\bigcup_{n=1}^{\infty} Y_n)$, where $f^{-1}(y)$ is compact for each $y \in Y_0$ and Y_n is closed discrete in Y for each n > 1.

First, Morita [10] showed that the following special type (M) of (L) holds for any paracompact and locally compact space X.

(M) For spaces X, Y and a closed map f: X → Y, $\mathbf{Y} = \mathbf{Y}_{0} \ \mathbf{U} \ \mathbf{Y}_{1}$, where $\mathbf{f}^{-1}(\mathbf{y})$ is compact for each $\mathbf{y} \in \mathbf{Y}_{0}$ and Y, is closed discrete in Y.

Lašnev [7] proved that (L) holds for any metric space X. Subsequently, Filippov [4] extended this result, showing that (L) holds for any paracompact M-space X. Moreover, many mathematicians extended Lašnev's "decomposition theorem" for several generalized metric spaces (for example, see [14] and [15] etc.). In particular, recently, Chaber [2] proved that (L) holds for any regular σ -space X.

Now, let us consider the following modifications (wL) and (wL)' of (L), which are the weakening of the compactness of $f^{-1}(y)$ in (L):

(wL) In (L), the $f^{-1}(y)$ is Lindelöf for each $y \in Y_0$. (wL)' In (L), the $f^{-1}(y)$ is ω_1 -compact for each $y \in Y_0$. Here, we say that a space X is ω_1 -compact if every uncountable subset of X has a cluster point in X. Every Lindelöf space is ω_1 -compact. It should be remarked that the condition (wL) was considered in [2], where it was labeled (*'). The modifications (wM) and (wM)' of (M) are to be made similarly. That is,

(wM) In (M), the $f^{-1}(y)$ is Lindelöf for each $y \in Y_0$.

(wM)' In (M), the $f^{-1}(y)$ is $\boldsymbol{\omega}_1\text{-compact for each }y\in \boldsymbol{Y}_0$.

In Section 1, we investigate the decomposition types (wL), (wL)' and some variations of these tyeps. Nagami [12] introduced the notion of Σ -spaces as a generalization of σ -spaces and M-spaces. We prove that (wL)' holds for any Σ -space X, thus (wL) holds for any strong Σ -space X. We shall remark that it is impossible to replace (wL) with (L) for every regular Lindelöf Σ -space X.

In Section 2, we discuss the decomposition types (M), (wM) and (wM)'. We prove that (M) holds for any space X dominated by compact sets X_{α} , or determined by a point-countable cover of compact sets X_{α} . If the X_{α} 's are Lindelöf; ω_1 -compact, then (wM); (wM)' holds respectively.

We assume that all spaces are \mathbf{T}_1 , and all maps are continuous and onto.

1. Decomposition Types (wL) and (wL)'

Let $A = \{A_{\lambda} : \lambda \in \Lambda\}$ be a collection of subsets of a space X. We say that A is hereditarily closure-preserving (abbreviated by HCP) if any collection $\{B_{\lambda} : \lambda \in \Lambda\}$ with $B_{\lambda} \subset A_{\lambda}$ for each $\lambda \in \Lambda$ is closure-preserving (that is, $\overline{U\{B_{\lambda} : \lambda \in \Lambda'\}} = U\{\overline{B}_{\lambda} : \lambda \in \Lambda'\}$ for any $\Lambda' \subset \Lambda$).

Lemma 1.1 ([15, Lemma 5.4]). Let Y be a space, and $\mathcal F$ a HCP collection of closed sets in Y. For each n>1, let

 $Y_n = U\{F_1 \cap \cdots \cap F_n: F_1, \cdots, F_n \in \mathcal{F} \text{ and } F_1 \cap \cdots \cap F_n \text{ is a non-empty finite set}\}.$

Then each Yn is a closed discrete subset of Y.

Proof. It is routinely verified that each collection

$$\{F_1 \cap \cdots \cap F_n : F_i \in \mathcal{F} (i = 1, \cdots, n)\}$$

is HCP. Thus each subset of \mathbf{Y}_{n} is closed in Y. Hence each \mathbf{Y}_{n} is closed discrete in Y.

Let k' be a cover of a space X. A cover $\mathcal F$ is called a $(mod\ k')$ -net for X [9], if, whenever $\mathcal K\subset \mathcal U$ with $\mathcal K\in \mathcal K$ and $\mathcal U$ open in X, there is some $\mathcal F\in \mathcal F$ such that $\mathcal K\subset \mathcal F\subset \mathcal U$.

Lemma 1.2. Let X be a space, and K a cover of X by countably compact sets. If X has a (mod K)-net $\mathcal F$ which is countable, then it is ω_1 -compact.

Proof. Assume the contrary. Then there is an uncountable closed discrete subset D of X. For each K \in K, since K is countably compact, D \cap K is at most finite. Thus there is some $F_K \in \mathcal{F}$ such that K $\subset F_K$ and D $\cap F_K$ is at most finite. But, since \mathcal{F} is countable and \mathcal{K} is a cover of X, we may assume that $\{F_K \colon K \in \mathcal{K}\}$ is a countable cover of X. Thus there is some $F_K \in \mathcal{F}$ such that D \cap F_K is infinite. This is a contradiction.

A space X is called a Σ -space [12] (Σ *-space [13]) if it has a σ -locally finite (σ -HCP) closed (mod K)-net $\mathcal{J}=$ $U_{n=1}^{\infty}\mathcal{J}_n$ for some closed cover K by countably compact sets. Here we can assume that \mathcal{J}_n is a locally finite (HCP) closed

cover of X and $\mathcal{I}_n \subset \mathcal{I}_{n+1}$ for each $n \geq 1$. It should be noted that any sequence $\{x_n\}$ such that

 $\mathbf{x}_{\mathbf{n}} \in \cap \{ \mathbf{F} \in \mathcal{F}_{\mathbf{n}} \colon \mathbf{x} \in \mathbf{F} \} \text{ for some } \mathbf{x} \in \mathbf{X}$ has a cluster point in X. Such a sequence $\{\mathcal{F}_{\mathbf{n}}\}$ is called a Σ -net (Σ *-net) of X.

Theorem 1.3. If X is a Σ -space, then (wL)' holds.

Proof. Let $\{\mathcal{J}_n\}$ be a Σ -net of X. We may assume that each \mathcal{J}_n is finitely multiplicative. For each $n\geq 1$, put

 $\mathbf{Y}_n = \mathbf{U}\{\mathbf{f}(\mathbf{F}) \ \cap \ \mathbf{f}(\mathbf{F'}) : \ \mathbf{F}, \ \mathbf{F'} \in \mathcal{J}_n \ \text{and} \ \mathbf{f}(\mathbf{F}) \ \cap \ \mathbf{f}(\mathbf{F'}) \ \text{is a}$ non-empty finite set}.

Since each \mathcal{I}_{n} is locally finite in X and f is a closed map, {f(F): F $\in \mathcal{F}_n$ } is HCP. It follows from Lemma 1.1 that Y is closed discrete in Y for each $n \ge 1$. Put $Y_0 = Y \setminus \bigcup_{n=1}^{\infty} Y_n$. Pick any $y \in Y_0$. Let us show that $f^{-1}(y)$ is ω_1 -compact. It suffices to show from Lemma 1.2 that the subcollection $\{F \in \mathcal{F}_n : F \cap f^{-1}(y) \neq \emptyset\}$ of \mathcal{F}_n is finite for each $n \geq 1$. Assume the contrary. Then there are some m > 1 and a sequence $\{F_n\}$ of distinct members of \mathcal{I}_m such that each F_n meets $f^{-1}(y)$. Pick an $x_0 \in f^{-1}(y)$. By the choice of $\{\mathcal{F}_n\}$, $E_n = n\{F \in \mathcal{F}_n:$ $x_0 \in F$ } and F_n belong to F_n for each $n \ge m$. Since $y \in f(E_n)$ \cap f(F_n)\Y_n, f(E_n) \cap f(F_n) is an infinite set. So we can choose a sequence $\{\mathbf{y}_n^{}\}_{n\geq m}$ of distinct points in Y such that $y_n \in f(E_n) \cap f(F_n)$. For each $n \ge m$, pick two points p_n and q_n from $E_n \cap f^{-1}(y_n)$ and $F_n \cap f^{-1}(y_n)$, respectively. Since $\left\{\mathbf{p}_{\mathbf{n}}\right\}_{\mathbf{n}>\mathbf{m}}$ has a cluster point in X, $\left\{\mathbf{y}_{\mathbf{n}}\right\}_{\mathbf{n}>\mathbf{m}}$ has also a cluster point in Y. On the other hand, $\{q_n: n \ge m\}$ is closed discrete in X, because $\{F_n: n \ge m\}$ is locally finite in X. Thus, since f is a closed map, $\{y_n: n \ge m\}$ is also closed

discrete in Y. This contradiction completes the proof.

A space is called a strong Σ -spaces [12] if it satisfies the definition of a Σ -space for some closed cover (by compact sets instead of K. By [6, Proposition 4.4], an ω_1 -compact, strong Σ -space is Lindelöf. So Theorem 1.3 yields

Corollary 1.4. If X is a strong Σ -space, then (wL) holds.

Remark. In the previous corollary, by [15, Example 5.12] or [2, Example 1.2], we cannot replace "Lindelöf" with "compact" even if X is regular σ -compact. Chaber [2] showed that Corollary 1.4 holds under the assumption of X being a k-space.

Next, we proceed with some variations of (wL) or (wL)'.

Theorem 1.5. Let $f\colon X\to Y$ be a closed map. If X is a Σ^* -space, then $Y=Y_0\cup (\cup_{n=1}^\infty Y_n)$, where $f^{-1}(y)$ is ω_1 -compact for each $y\in Y_0$ and Y_n is a discrete set such that $\bigcup_{i=1}^n Y_i$ is closed in Y for each n>1.

Proof. Let $\{\mathcal{I}_n\}$ be a Σ^* -net of X. For each $n \geq 1$, put $\mathcal{C}_n = \{f(n\xi) \ n \ f(F) \colon \xi \subset \mathcal{I}_n, \ F \in \mathcal{I}_n \ \text{and} \ f(n\xi) \ n \ f(F) \}$ is a non-empty finite set.

Since each \mathcal{I}_n is a closure-preserving closed cover of X and f is a closed map, each \mathcal{C}_n is a closure-preserving collection by finite sets. Then $Y_n' = U \mathcal{C}_n$ is a closed set in Y with a closure-preserving cover by finite sets for each $n \geq 1$. By [16, Theorem 1], we have $Y_n' = U_{k=1}^{\infty} Y_{nk}'$, where Y_{nk}' is a discrete

subset and $\mathbf{U}_{\mathbf{i}=1}^{k}\mathbf{Y}_{\mathbf{n}\mathbf{i}}^{\mathbf{i}}$ is closed in $\mathbf{Y}_{\mathbf{n}}^{\mathbf{i}}$ for each $\mathbf{k}\geq 1$. Hence $\mathbf{U}_{\mathbf{n}=1}^{\infty}\mathbf{Y}_{\mathbf{n}}^{\mathbf{i}}$ can be represented as $\mathbf{U}_{\mathbf{n}=1}^{\infty}\mathbf{Y}_{\mathbf{n}}^{\mathbf{i}}$ described in the theorem. Put $\mathbf{Y}_{0}=\mathbf{Y}\setminus\mathbf{U}_{\mathbf{n}=1}^{\infty}\mathbf{Y}_{\mathbf{n}}^{\mathbf{i}}$. Pick any $\mathbf{Y}\in\mathbf{Y}_{0}^{\mathbf{i}}$. By a similar way as in the proof of Theorem 1, we can show that the subcollection $\{\mathbf{F}\in\mathcal{F}_{\mathbf{n}}\colon\mathbf{F}\cap\mathbf{f}^{-1}(\mathbf{y})\neq\emptyset\}$ of $\mathcal{F}_{\mathbf{n}}^{\mathbf{i}}$ is finite for each $\mathbf{n}\geq 1$. Thus, it follows from Lemma 1.2 that $\mathbf{f}^{-1}(\mathbf{y})$ is \mathbf{u}_{1} -compact. The proof is complete.

Let $\{F_n\}$ be a sequence of subsets of a space X. We say that $\{F_n\}$ converges to $E\subset X$ if for any open set V with $E\subset V$ there is some $m\geq 1$ such that V contains F_n for each $n\geq m$. The following lemma is a modification of Lašnev's lemma in [7].

Lemma 1.6. Let $\{F_n\}$ be a sequence of non-empty closed sets in a regular space X, and let E be a closed Lindelöf subspace of X. If $\{F_n\}$ converges to E and each F_n is disjoint from E, then $K = E \cap \overline{\bigcup_{n=1}^\infty F_n}$ is compact.

Proof. Suppose that K is not countably compact. Since X is regular and K is Linedlöf, there is an increasing sequence $\{U_k\}$ of open sets in X such that $K \subset U_{k-1}^{\infty}U_k$ and $(U_k \setminus \overline{U}_{k-1}) \cap K \neq \emptyset$ for each $k \geq 1$, where $U_0 = \emptyset$ (This choice is seen in the proof of [2, Theorem 1.1]). Since each $U_k \setminus \overline{U}_{k-1}$ meets infinitely many F_n 's, there are two sequences $\{n_k\}$ and $\{x_k\}$ such that $n_k < n_{k+1}$ and $x_k \in (U_k \setminus \overline{U}_{k-1}) \cap F_{n_k}$ for each $k \geq 1$. Put $G = X \setminus \{x_k : k \geq 1\}$. Then G is an open set in X. If $x \in E \setminus K$, then

$$x \notin \overline{\bigcup_{n=1}^{\infty} F_n} \supset \overline{\bigcup_{k=1}^{\infty} F_{n_k}} \supset \overline{\{x_k \colon k \ge 1\}} = X\backslash G.$$

Let $x \in E \cap K$. Take some $m \ge 1$ with $x \in U_m$. Since

 $x_k \not\in \overline{\mathbb{U}}_{k-1} \supset \mathbb{U}_m$ for each k > m, $x \not\in \overline{\{x_k \colon k > m\}}$. Since $x \in E$ and $x_k \in F_{n_k}$, $x \neq x_k$ for each $k \geq 1$. These imply $x \not\in \overline{\{x_k \colon k \geq 1\}} = X \setminus G$. Thus, we have $E \subset G$. But G does not contain any F_{n_k} 's. This contradicts to the fact that $\{F_n\}$ converges to E. So we conclude that K is countably compact. Therefore, K is compact.

Using Lemma 1.6 instead of [14, Lemma 2.1], the proof of the following theorem is quite parallel to that of [14, Theorem 1.2]. So the details are left to the reader.

Theorem 1.7. Let $f: X \to Y$ be a closed map. If X is a regular semi-stratifiable space [3], then

 $\{y \in Y \colon f^{-1}(y) \text{ is Lindel\"of}\} = Y_0 \cup (\cup_{n=1}^\infty Z_n),$ where $f^{-1}(y)$ is compact for each $y \in Y_0$ and Z_n is closed discrete in Y for each n > 1.

Since σ -spaces are semi-stratifiable, strong Σ -spaces, the following is an immediate consequence of Corollary 1.4 and Theorem 1.7.

Corollary 1.8 ([2, Theorem 1.1]). If X is a regular σ -space, then (L) holds.

2. Decomposition Types (M), (wM) and (wM) '

Let us recall basic definitions concerning weak topologies. Let X be a space, and (be a cover of X. We say that X is determined by ([5], or X has the weak topology with respect to (, if A \subset X is closed (open) in X whenever A \cap C is relatively closed (relatively open) in C for each C \in (. Every space is determined by any open cover of it.

Let ℓ be a closed cover of X. We say that X is dominated by ℓ if for any subcollection ℓ ' of ℓ the union ℓ ' is closed in X and is determined by ℓ '. Every space is dominated by any HCP closed cover of it. We remark that if X is dominated by ℓ , then it is determined by ℓ , but the converse is not true.

The following elementary facts will be often used later on. The proof is straightforwards, so we omit it.

- Lemma 2.1. (1) Let $f: X \to Y$ be a quotient map. If X is determined by a cover $f(C) = \{f(C): C \in C\}$.
- (2) Let X be determined by a cover $\{X_{\alpha}\}$. If $X_{\alpha} \subset X_{\alpha}'$ for each α , then X is determined by $\{X_{\alpha}'\}$.

Recall that a collection (of subsets of X is point-countable if each $x \in X$ is in at most countably many $C \in ($.

- Theorem 2.2. (1) If a space X is dominated by a cover (of compact (Lindelöf; ω_1 -compact) sets, then (M) ((wM); (wM)') holds.
- (2) If a space X is determined by a point-countable cover (of compact (Lindelöf; ω_1 -compact) sets, then (M) ((wM); (wM)') holds.

 $\label{eq:proof.} \textit{Proof.} \quad (1): \quad \text{Let } \mbox{$(= \{X_{\alpha}\}$ with the index set well-ordered. Suppose that each X_{α} is ω_1-compact (for the other cases, the proofs are similar). Let $L_{\alpha} = X_{\alpha} \setminus U_{\beta < \alpha} X_{\beta}$ for each α. Since $\{L_{\alpha}\}$ is a cover of X and $L_{\alpha} \subset X_{\alpha}$, it suffices to show that$

 $Y_1 = \{y \in Y: f^{-1}(y) \text{ meets uncountably many } L_{\alpha}'s\}$ is closed discrete in Y.

Claim 1. For any D \subset Y $_1$ with cardinality \leq ω_1 , D is closed in Y:

Let D = {y_{\beta}: \$\beta\$ < \$\kappa\$}, where \$\kappa\$ \leq \omega_1\$. For each \$\beta\$ < \$\kappa\$, we can choose some \$x_{\beta}\$ and \$\alpha(\beta)\$ such that \$x_{\beta} \in f^{-1}(y_{\beta})\$ \$\alpha\$ \$L_{\alpha(\beta)}\$ and \$\alpha(\beta)\$ \neq \alpha(\beta')\$ for \$\beta\$ \neq \$\beta'\$. Let \$E = {x_{\beta}: \$\beta < \kappa\$}. We show that \$E\$ is closed in \$X\$. First, \$E\$ \$\alpha\$ \$X_{\beta}\$ is at most one point, hence closed in \$X_{\beta}\$. Assume that \$E\$ \$\alpha\$ \$X_{\beta}\$ is closed in \$X_{\beta}\$ for each \$\beta\$ < \$\alpha\$. Let \$E_{\beta}\$ = (E \Omega (\beta_{\beta} \chi_{\beta} \chi_{\beta} \chi_{\beta})) \Omega X_{\beta}\$. Then \$E_{\beta} \cup U_{\delta < \eta} X_{\beta}\$, and \$E_{\beta} \Omega X_{\delta}\$ is closed in \$X\$. But, \$E\$ \$\Omega X_{\beta}\$ = (E \Omega X_{\beta}) \Omega X_{\beta}\$ is at most one point. Hence \$E\$ \$\Omega X_{\beta}\$ is closed in \$X_{\beta}\$. Thus \$E\$ is closed in \$X\$. Since \$f\$ is a closed map and \$D = f(E)\$, \$D\$ is closed in \$Y\$.

Claim 2. For any Y' \subset Y_1 and for any $\omega_1\text{--compact}$ set K \subset Y, Y' \cap K is closed in K:

If Y' \cap K is countable, by Claim 1, Y' \cap K is closed in Y. Hence it is closed in K. If Y' \cap K is not countable, then there is a subset D of Y' \cap K such that the cardinality of D is ω_1 and D has a cluster point in K\D. But, by Claim 1, D is closed in Y. This contradiction implies that Y' \cap K is countable, hence closed in K.

Now, X is determined by a cover (of ω_1 -compact sets. Since f is quotient, by Lemma 2.1 (1), Y is determined by a cover f(() of ω_1 -compact sets. Thus it follows from Claim 2 that Y₁ is closed discrete in Y. Hence (wM)' holds.

(2): Let $C = \{X_{\alpha}\}$. Suppose that each X_{α} is ω_1 -compact (for the case of X_{α} being Lindelöf, the proof is similar). Let

 $Y_1 = \{y \in Y\colon \text{ no countable } \text{$(' \subset ($covers f$^{-1}(y)$).}$ Let D = $\{y_\beta\colon \beta < \kappa\}$, where $\kappa \leq \omega_1$, be a subset of Y_1 . Then there is some

 $\mathbf{x}_{\beta} \in \mathbf{f}^{-1}(\mathbf{y}_{\beta}) \setminus \mathsf{U}\{\mathbf{X}_{\alpha} \colon \mathbf{x}_{\gamma} \in \mathbf{X}_{\alpha} \text{ for some } \gamma < \beta\}$ for each $\beta < \kappa$. Let $\mathbf{E} = \{\mathbf{x}_{\beta} \colon \beta < \kappa\}$. Since each $\mathbf{E} \cap \mathbf{X}_{\alpha}$ is at most one point, \mathbf{E} is closed in \mathbf{X} . Then $\mathbf{D} = \mathbf{f}(\mathbf{E})$ is closed in \mathbf{Y} . Thus Claim 1 in (1) is also valid.

Next, suppose that each X_{α} is compact. Let

 $Y_1^{\bigstar} = \{y \in Y \colon \text{ no finite } \text{('} \subset \text{(covers f}^{-1}(y)) \}.$ Then we can show that any countable D = $\{y_n \colon n \geq 1\} \subset Y_1^{\bigstar}$ is closed in Y. Indeed, there is some

 $x_n \in f^{-1}(y_n) \setminus \mathbb{U}\{X_{ij} \colon i, \ j \leq n\} \text{ for each } n \geq 1,$ where $\{X_{ij} \colon j \geq 1\} = \{X_\alpha \colon x_i \in X_\alpha\} \text{ for each } i \geq 1.$ Let $E = \{x_n \colon n \geq 1\}. \text{ Since each } E \cap X_\alpha \text{ is at most finite, } E$ is closed in X. Then D = f(E) is closed in Y. Thus the modification of Claim 1 in (1) where " ω_1 " is replaced with " ω_0 " is valid.

As in the proof of (1), if the X_{α} 's are respectively ω_1 -compact; compact, we can show that the set Y_1 ; Y_1^{\star} is closed discrete in Y, hence (wM)'; (M) holds. The proof of Theorem 2.2 is complete.

As is well-known, every CW-complex is dominated by a cover of compact (metric) sets. So, by Theorem 2.2 (1), we have

Corollary 2.3. If X is a CW-complex (more generally, a chunk-complex in the sense of [1]), then (M) holds.

A space is called a k_{ω} -space [8] (Morita [11] calls it a space of the class $\mathbf{G'}$) if it is determined by a countable cover of compact sets. Such a space is characterized as a quotient image of a locally compact Lindelöf space [11].

By Theorem 2.2 (2), if X is a k_{ω} -space, then (M) holds. It should be noted by Remark to Corollary 1.4 that we cannot replace " k_{ω} -space" with " σ -compact space."

Let us call a space *locally* k_{ω} (*locally Lindelöf*) if each point has a neighborhood which is k_{ω} (Lindelöf), where the neighborhood is not necessarily open. Every locally compact space is locally k_{ω} , and every locally k_{ω} -space is locally Lindelöf. Recall that a space X is $meta-Lindel\"{o}f$ if every open cover of X has a point-countable open refinement.

Morita [10] showed that if X is a paracompact and locally compact space, then (M) holds. We can extend this result as follows:

Proposition 2.4. If X is a meta-Lindelöf and locally $$k_{_{\rm M}}$-space, then (M) holds.}$

Proof. By the assumptions of X, X is determined by a point-countable open cover $\{V_{\alpha}\}$, where each V_{α} is contained in a space determined by a countable cover $\{K_{\alpha n}: n \geq 1\}$ of compact sets. Let $(= \{V_{\alpha} \cap K_{\alpha n}\})$. Then it is routinely verified that X is determined by the point-countable cover (\cdot) . But, by Lemma 2.1 (1), Y is determined by the cover

f((). Since f($V_{\alpha} \cap K_{\alpha n}$) \subset f($K_{\alpha n}$) for each α and n, by Lemma 2.1 (2), Y is determined by the cover $\{f(K_{\alpha n})\}$ of compact sets. Let

 $Y_1^{\star} = \{y \in Y \colon \text{ no finite } (' \subset (\text{ covers f}^{-1}(y)) \}.$ By the proof of Theorem 2.2 (2) for the compact case, we can show that Y_1^{\star} is closed discrete in Y. Hence (M) holds.

Proposition 2.5. Let X be a locally Lindelöf space. If X is subparacompact (meta-Lindelöf), then (wL) ((wM)) holds.

Proof. If X is subparacompact, then X has a σ -locally finite closed cover $\mathcal{F} = \bigcup_{n=1}^{\infty} \mathcal{F}_n$ of Lindelöf sets, where each \mathcal{F}_n is locally finite in X. Let $\mathbf{X}_n = \cup \mathcal{F}_n$, and $\mathbf{Y}_n = \mathbf{f}(\mathbf{X}_n)$ for each $n \geq 1$. Then each \mathbf{X}_n is dominated by \mathcal{F}_n and $\mathbf{g}_n = \mathbf{f} | \mathbf{X}_n$ is closed. Thus, by Theorem 2.2 (1), $\mathbf{Y}_n = \mathbf{Y}_{n0} \cup \mathbf{Y}_{n1}$, where $\mathbf{g}_n^{-1}(\mathbf{y})$ is Lindelöf for each $\mathbf{y} \in \mathbf{Y}_{n0}$ and \mathbf{Y}_{n1} is closed discrete in \mathbf{Y}_n , hence in Y. Let $\mathbf{Y}_0 = \mathbf{Y} \setminus \bigcup_{n=1}^{\infty} \mathbf{Y}_{n1}$ and $\mathbf{Y}_n = \mathbf{Y}_{n1}$ for each $n \geq 1$. Then the sets \mathbf{Y}_n , $n \geq 0$, satisfy the desired property in (wL).

If X is meta-Lindelöf, then X is determined by a point-countable open cover $\{V_{\alpha}\}$ such that each V_{α} is contained in a Lindelöf set L_{α} . But, by Lemma 2.1 (1), Y is determined by a cover $\{f(V_{\alpha})\}$. Since $f(V_{\alpha}) \subset f(L_{\alpha})$ for each α , by Lemma 2.1 (2), Y is determined by a cover $\{f(L_{\alpha})\}$ of Lindelöf sets. Thus, in view of the proof of Theorem 2.2 (2), the assertion for the parenthetic part holds.

References

[1] J. G. Ceder, Some generalizations of metric spaces, Pacific J. Math. 11 (1961), 105-126.

- [2] J. Chaber, Generalizations of Lašnev's theorem, Fund. Math. 119 (1983), 85-91.
- [3] G. D. Creede, Concerning semi-stratifiable spaces, Pacific J. Math. 32 (1970), 47-54.
- [4] V. V. Filippov, On feathered paracompacta, Soviet Math. Dokl. 9 (1968), 161-164.
- [5] G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable covers, Pacific J. Math. 113 (1984), 303-332.
- [6] R. E. Hodel, On a theorem of Arhangel'skii concerning Lindelöf p-spaces, Canad. J. Math. 27 (1975), 459-468.
- [7] N. Lašnev, Continuous decompositions and closed mappings of metric spaces, Soviet Math. Dokl. 6 (1965), 1504-1506.
- [8] E. Michael, Bi-quotient maps and Cartesian products of quotient maps, Ann. Inst. Fourier (Grenoble)]8 (1968), 287-302.
- [9] , On Nagami's Σ -spaces and some related matters, Proc. of the Washington State Univ. Conference on General Topology (1970), 13-19.
- [10] K. Morita, On closed mappings, Proc. Japan Acad. 32 (1956), 539-543.
- [11] _____, On decomposition spaces of locally compact spaces, Proc. Japan Acad. 32 (1956), 544-548.
- [12] K. Nagami, Σ -spaces, Fund. Math. 55 (1969), 169-192.
- [13] A. Okuyama, On a generalization of Σ -spaces, Pacific J. Math. 42 (1972), 485-495.
- [14] R. A. Stoltenberg, A note on stratifiable spaces, Proc. Amer. Math. Soc. 23 (1969), 294-297.
- [15] J. Suzuki, On pre-g-spaces, Bull. Tokyo Gakugei Univ. Ser. 28 (1976), 22-32.
- [16] Y. Yajima, On spaces which have a closure-preserving cover by finite sets, Pacific J. Math. 69 (1977), 571-578.

Tokyo Gakugei University Konganei-shi, Tokyo 184, Japan and Kanagawa University Yokohama 221, Japan