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RATIONAL SPACES OF A GIVEN RIM-TYPE
AND THE PROPERTY OF UNIVERSALITY

S. D. Iliadis

Introduction

All spaces in this paper are assumed to be metrizable
and having a countable basis.

A space is said to be rational (resp. rim-finite) if
it has a basis of open sets with countable (resp. finite)
boundaries (a finite set is considered also as countable).

It is said that a space X has rim-type < o, where a
is an ordinal number, iff it has a basis B of open sets such
that the g-derivative (see [Ku], v.I, § 24.IV) of the
boundary of every element of B is empty. If a is the least
such ordinal, then we say that the space X has rim-type o.

It is easy to see that if X has rim-type o then o is
a countable ordinal number (a finite ordinal number is also
considered as countable). In what follows all ordinal
numbers considered are countable.

A space T is said to be universal for a family R of
spaces iff T is an element of R and for every X € R there
is an embedding i: X - T.

We say that a space T has the property of finite inter-
section with respect to a family R of spaces iff for every
element X of R there is a fixed embedding iX: X -+ T such
that if X and Y are different elements of R then the set
iX(X) n iY(Y) is finite. The space T is not necessarily

an element of R.
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Nobeling (see [N]) proved that in the family of all
rim-finite spaces, the family of all rim-finite compact
spaces and the family of all rim-finite continua there does
not exist a universal element.

Also, it is well-known (see [Ku], v.II, §51.IV) that
in the family of all rational compact spaces and in the
family of all rational continua there does not exist a
universal element.

In [Il] it is proved that in the family of all
(locally connected) compact spaces having rim-type < a
and in the family of all (locally connected) continua having
rim-type < a there does not exist a universal element.

On the other hand, in [12], it is proved that in the
family of all rational spaces there exists a universal
element having the property of finite intersection with
respect to the subfamily of all rational continua (more
precisely, with respect to a given subfamily the power of
which is less than or equal to the continuum).

In part I of this paper we give some lemmas about the
type and the rim-type of'spaces. These lemmas are used (in
part III) in order to represent the spaces as quotient
spaces of "good"” partitions of subsets of the Cantor ternary
set. The "good" means that the corresponding partitions
have some properties of "countability."

In part II, starting with a family of pairs (S,D) where
S is a subset of the Cantor ternary set and D is a "good"
partition, we construct a space which is used (as a univer-
sal element) in part III where we give the main result:

In the family of all spaces of rim-type < o there is a
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universal element having the property of finite intersec-
tion with respect to a given subfamily the power of which
is less than or equal to the continuum (in particular, with
respect to the subfamily of all compact spaces of rim-type

< a)e.

Let o« = B + n where B is a limit ordinal number or 0
and n is a non-negative integer.

Using theorem 8 of [I-T] we also have:

There exists a continuum of rim-type < B + 2n +
min{g,1} having the property of finite intersection with
respect to the family of all compact spaces of rim-type < a.

In particular, there exists a continuum of rim-type
2 having the property of finite intersection with respect
to the family of all rim-finite compact spaces.

This result gives affirmative answers to problems 8 and
9 (hence, negative answers to problems 10 and 11) of [I3].

By the main result it follows that for a given space
X of rim-type < a there is a space of rim-type < a having
the property of finite intersection with respect to the

family of all closed subsets of X.

I.1l. For every space X and for every subset Q of X
by cl1(Q), Bd(Q), Int(Q) and |Q| we denote the closure, the
boundary, the interior and the cardinality of Q, respectively.
If X is metric then by diam(Q) we denote the diameter of Q.
An open subset U of X is called a regular open subset iff
U = Int(cl(U)). Obviously, a set U is regular iff

Bd(U) = Bd(X~cl(U)).
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A space Y is said to be an extension of X iff X is a
dense subset of Y. A space Y is said to be a compactifica-
tion of X iff Y is a compact extension of X.

For every space M and for every ordinal number ¢ by
M(a) we denote the g-th derivative of M. The ordinal number
0 is considered as a limit ordinal. A non-limit ordinal
number is called iZsolated.

We say that a space M has type o (resp. < o) and write
type (M) = a (resp. type(M) < o) iff M(“) = g and M(B) # 0
for every B < o (resp. M(a) = 9).

We say that a space M at the point x € M has type o

(resp. < a) and write type(x,M) = a (resp. type(x,M) < a)

(a) (B) (a)).

iff x €M and x € M for every B < o (resp. x g M
Obviously, for every M # @ and for every x € M, type(x,M)

is an isolated ordinal number and type(M) = sup{type(x,M)}.
xXeEM

We observe that two countable locally compact spaces
whose type is the same limit ordinal number are homeomorphic.
Indeed, let M and N be locally compact spaces and
type(M) = type(N) = o, where o > 0 is a limit ordinal
number. Let M U {a} and N U {b} be one-point compactifica-
tions of M and N, respectively. Then, type(M U {a}) =
type(N U {b}) = a + 1 and |(M U {a}(a)| = |(NU {b}(a)| = 1.
Hence, by [M-S] there is a homeomorphism h of M U {a} onto
N U {b}. Obviously, h(a) = b. Hence, h(M) = N.

We also observe that by [M-S] it follows that the set
of all non-homeomorphic compact spaces having type < a is

countable.
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2. Let a be a limit ordinal number and let B = o + m
where m is a non-negative integer.

By P(o,m) we denote the set of all pairs (X,K) where
K is a compact space having type o + n for some non-negative
integer n > m and X is a subset of K such that type(X) = B =

(o) (a) ).

o + m and KNK c X (hence, K\K(u) = XN\X

By TP(a,m), m > 1, we denote the set of all 3-tuples
(a,X,K) such that (X,K) € P(a,m) and a € X(B_l) = x(a+m-l).
If (X,K(X)) € P(a,m) then by B(K(X)) we denote the

set of all open and closed subsets of K(X). By B(X) we
denote the set of all subsets U' of X of the form U' = U N X
where U € B(K(X)).

Let e be a subset of TP(a,m) and (a,X,K(X)) € e. A
neighbourhood U' € B(X) of a is called standard for the
subset e iff for every (b,Y,K(Y)) € e there exist a neigh-
borhood V' € B(Y) of b and a homeomorphism h of U' onto V'
such that h(a) = b.

We observe that if (a,X,K(X)) € TP(o,m) and a € U €

B(K(X)) then (a,Unx,U) € TP(o,m).

Lemma 1. For a given o there exists a finite set
ETP(a,m) = {eT,--°,eﬁ(m)}whose elements are sybsets of

TP (0.,M) such that:

m e e m =

1) e U U ek(m) TP (a,m),
m m C s .

2) e; N ej =03 <ifi# 3,

3) if (a,X,K(X)) €e], i =1,°**,k(m), and a € U €

B(K(X)) then (a,UNX,U) € e?,
4) if (aleK(X)) € teT_l’ i= l,"‘,k(m), then a has a

standard neighbourhood for the subset e?.
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Proof. We may assume that all spaces are metric. We
prove the lemma by induction on m.

Let m = 1. By ei (resp. eé) we denote the set of all
elements (a,X,K(X)) of TP(a,m) such that the space X is
locally compact (resp. is not locally compact) at the point
a.

We prove that the set ETP(aq,m) = {ei,e;} is the required
set. Indeed, it is clear that the properties 1)-3) of the

lemma are satisfied.

Suppose that (a,X,K(X)) € ei and (b,Y,K(Y)) € ei. Since

(a) +(a)

X and Y consist of isolated points (in the relative

topology), there are U € B(K(X)) and v € B(K(Y)) such that:
1) the sets U' = U N X and V' =V N Y are compact and
2) Un x(“) = {a} and V N Y(a) = {b}. Obviously, type(U') =
type(V') = o + 1, (U')(a) = {a} and (V')(a) = {b}. Hence,
the sets U' and V' are homeomorphic (see [M-S]). Moreover,
if h is an arbitrary homeomorphism of U' onto V' then
h(a) = b.

Since the construction of the set U' is independent
of the construction of the set V', the neighbourhood U' of

a is standard for the element ei.

1

Now, suppose that (a,X,K(X)) € el and (b,Y,K(Y)) € e,

2
For every i = 1,2,+++ there exists Ui € B(K(X)) (resp.

vV, € B(K(Y))) such that: 1) U, n X(a) = {a} (resp.

(a) _
v, ny = {b}), 2) a €U, , SU; (resp. b €V, , SV,),

1 i

3) the set (Ui\Ui+l) N X (resp. (Vi\Vi+l) N Y) is not com-

pact and 4) lim diam(Ui) = 0 (resp. lim diam(Vi) =.0).

i i+
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Since K(X)\(K(X))(a) c X by properties 1) and 2) it

_ (), _
follows that (Ui\U ) N X = (Ui\Ui+1) n (XX ) =

i+l
(UNU; 1) 0 (K(X)~(K(x)) (¥). Hence, the set (UNU L) N X

as an open subset of K(X) is locally compact.

On the other hand, the set Ui\Ui+ is compact and the

1
set (Ui\Ui+l) N X is not compact. Hence, (Ui\Ui+l) n

(K(X))(a) # g#. It then follows that type((Ui\U ) N X) = o.

i+l

Similarly, the set (Vi\Vi+l) N Y is locally compact
and type((vi\vi+l) N Y) = a, Hence, there is a homeomorphism
hi of (Ui\Ui+l) N X onto (Vi\Vi+l) ny.

We construct a map h of Ui = Ul N X onto Vi = Vl ny
setting h(a) = b and considering that h coincides with the
map hi on the set (Ui\Ui+l) N X. By property 4) of the
sets Ui and Vi it follows that the map h is a homeomorphism

1
As in the first case, since the construction of the set

of Ui onto V

1]
51

neighbourhood Ui of a is standard for the element e%.

is independent of the construction of the set Vi, the

Suppose that the lemma is true for m < my, My > 2,

m.-1
For every element e € Uigl ETP(a,i) we consider a

fixed 3-tuple (a(e),X(e) ,K(X(e))) of e and a fixed standard

neighbourhood U(e) of a(e) in X(e) for the element e.

(Bo-l)
Let p = (a,X,K(X)) € TP(a,mO). Set Xl = XX
(BO-Z)
where B, = o + m,. Obviously, type(X;) = Bo-l, Xy =
(30-2) (Bo—l)
X ~X and (Xl,K(X)) € P(a,mo-l).

In the set ETP(a,m.,-1l) we define a subset ETP(a,m,-1,p)
0 0

as follows: an element e of ETP(a,mo—l) belongs to
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ETP(a,mO—l,p) iff for every neighbourhood W € B(K(X)) of a
(80-2)

there exists a point x € Wn Xl

such that (x,Xl,K(X))
€ e (hence, (x,Wn xl,w) € e).

For every e € ETP(a,mO-l,p) by X(e,p) we denote the
(60-2)
1
Obviously, if e # €y then X(el,p) n X(ez,p) =g.

set of all points x € X for which (x,Xl,K(X)) € e,

We observe that type ({a} U X(e,p)) = 2 and {a} =
({a} U x(e,p)) V).

We say that the element e € ETP(a,mO-l,p) is compact
(resp. non-compact) if the space {a} U X(e,p) is locally
compact (resp. is not locally compact) at the point a.

A sequence U?,Ug,--- of elements of B(K(X)) is called

a normal sequence of p if: 1) a € U§+l = UE, i=1,2,ee.,

b (87D o (Bg-2)
2) U7 0 X = {a}, 3) Uy on X c ueEETP(a,mo_l’p)x(e,p),
4) lim diam(uii’) = 0, 5) the set {a} U (Ui’ n X(e,p)) is a

i+m

compact set if e is a compact element and 6) for every
i=1,2,«+ the set (UE\U§+1) n X(e,p) is infinite if e is
a non-compact element.

Since ETP(o,m,-1) is finite, the existence of a normal

0
sequence is easily proved.

Let U?,Up,--- be a normal sequence.

o (Bg=2)
Let Ul n X1 = {xl,xz,---}. If oo > 0 then for

every i we consider a point c; of UE such that:

(o) (o, +1)
1) c; € (U{) i \(UE) i where a; < a, 2) iig a; = a
and 3) lim d(ci,xi) = 0 where d(ci,xi) is the distance

100

between ci and xi.
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o (Bg2)

For every point x € uyn X1 = {xl,xz,---} we

consider an element Ul(x) € B(K(X)) such that: 1) x € Ul(x)
P - - .

c U7, 2) if X # xj then Ul(xi) n Ul(xj) g, 3) if

P_yP P_yP ;
X € Ui\Ui+l then Ul(x) c Ui\Ui+l’ 4) if o > 0 then c; '3 Ul(x)

for every i = 1,2,+++ and 5) lim diam(U,(x;)) = 0.
i-roo

p (60-2)
Since the set Ul n Xl

of isolated points (in the relative topology) the existence

is countable and consists

of such elements of B(K(X)) is easily established.

We observe that if x € X(e,p) then by property 3) of
the lemma (x,Ul(x) n X, Ul(x)) € e. Hence, there exist a
neighbourhood U(x) € B(Ul(x)) c B(K(X)) of x and a homeo-
morphism h(x) of U(e) onto U(x) n X such that h(x) (a(e)) = x.

Set U = {a} U U

U(x) and U = {a} U (U?\U).
x€uPnx
1

(80-2>
1
Obviously, U = cl(U).

We prove that (U N X,U) € P(a,io) where i < mo—l.

0
Indeed, if o > 0 then by the choice of the points Civ

i=1,2,++- it follows that type (U) > a. On the other

~ (80_2)

hand, since U N Xl = @ it follows that type(U N X) <

o + mo—l.

Let y € C1(U) n U. By the construction of the points
(80-2)
Cyr i=1,2,++ and the sets (Ux) where x € U? n Xl
it follows that y € cl({cl,cz,---}). This means that

y € (U)(a). In particular, a € (U)(a).
Hence, if z € U\(U)(a) then z € cl(U). This means
that z € U N X. Thus, U\(U)(a) cu N Xx.

There exists an integer i, such that type(U N X) =

0

o + i,. Hence, (U N X,U) € P(a,io) where i

0 < m,-1,

0—-"0
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There exists an integer il < iO and a neighbourhood

U,(a) € B(U) of a such that type(al(a) NX) =q+i
(a+il-l)

1 and

a € (al(a) n Xx) . Hence, (a,al(a) n X,al(a)) €
TP(a,il).

By e(p) we denote the element of ETP(a,il) which con-~-
tains the 3-tuple (a,al(a) n X,Gl(a)).

By induction it follows that the element e(p) is not
dependent on the choice of the neighbourhood al(a) of a in
u.

There exists a neighbourhood G(a) € B(al(a)) of a and
a homeomorphism h(p) of U(e(p)) onto G(a) N X such that
h(p) (a(e(p))) = a.

The set G(a) n cl(a) is an open and closed subset of
cl(a) n ﬁ. There exists an open subset al(a) of cl(a)
such that Uj(a) n 0 = 0(a) N cl(0).

By U(a) we denote the union of all elements U(x),

(B _2)
P 0
x € Ul n Xl

properties of the sets U(x) we have cl(U(a))~U(a) =

such that U(x) N Ul(a) # @. By the

c1(U(a)) N0 =0 (a) N0 =0(a) N cl(U). From this fol-
lows that the set U(a) = U(a) U U(a) is an open and closed
subset of K(X). Obviously, a € U(a).

We observe that the element e(p) is dependent on the

P yP,...

choice of the normal sequence Ul , the points c.,

i
i=1,2,+++ and on the choice of the standard neighbourhoods
1 .

m. -1

In the set Uigl ETP(a,i) we define an order as follows:

U(x), x € UE n x

o™
we set e.” < e.” iff, either m, < m,, Or my = m, and 3y < 3y

J1 Js
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Choosing the suitable normal sequence UE,UE,---, the
points <y and the neighbourhoods U(x), we may consider that
the element e(p) is the least possible.

Now we define the set ETP(a,mO). Let p,q € TP(a,mO).
We say that the elements p and g of TP(a,mO) belong to an
element of ETP(a,mO) iff: 1) ETP(a,mo-l,p) = ETP(a,mO-l,q),
2) an element e of ETP(a,mO-l,p) is compact iff this element
is compact as an element of ETP(a,mo-l,q) and 3) e(p) = e(q).

Obviously, properties 1)-3) of the lemma are satisfied.

We prove property 4) of the lemma.

Let e be the element of ETP(aO,mO) which contains
(a,X,K(X)). We prove that the neighbourhood U(a) N X of a
is a standard neighbourhood for the element e.

Indeed, let g = (b,Y,K(Y)) be an element of e. For
the 3-tuple g we consider all sets which were constructed
for the 3-tuple p. For these sets we use the same notations
replacing only letters p,a,x,X and U by letters g,b,y,Y and
V, respectively.

We prove that there is a homeomorphism h of U(a) n X
onto V(b) N Y such that h(a) = b.

Let ﬂ = h(gq) ° h_l(p). Then ﬁ is a homeomorphism of
U(a) N X onto V(b) N ¥ such that h(a) = b.

On the other hand, there exists an integer k such that

Ug < U(a) and VE c V(a).
(By=2) (By—2)

Between the sets U(a) N X, 0 and V(b) N Yy
there exists a one-to-one correspondence such that: 1) if
X € X(e,p) and x corresponds to y then y € Y(e,q) and 2) if

e is a noncompact element of ETP(a,mo—l,p)
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and X € (UE\U§+1) n X(e,p), i > k + 1, or x € (U(a)\U£+l) n
X(e,p) then y € (V%\Vg+l) n Y(e,q) or y € (V(b)\VE+l) nye,q),
respectively.

Let x correspond to y. Then (x,Ul(x) n X,Ul(x)) and
(y,Vl(y) n Y,Vl(y)) belong to the same element e of
ETP(a,mO—l). Hence, the map h(y)h—l(x) is a homeomorphism
of U(x) n X onto V(y) N ¥ such that (h(y)h™1(x)) (x) = y.

Now, we construct the map h. First, we observe that
Ua) N X = (U(a) N X) U ((G(a)~(0(a) N c1(U))) N X). This

is true because each point z € (U(a) N cl(U)) N X is a limit

1 , that is, z belongs to the set

point for the set X

(B,~-1)
X 0 which is impossible by the choice of the set UE.
Also, we have V(b) N ¥ = (V(b) N ¥) U ((V(b)~(¥(a) N

cl(v))) 0 ).
(By-2)

Let z € U(a) N X. If Z € U(a) then there is x € Xl

such that z € U(x). In this case we set h(z) =
(h(y)h™1(x)) (z). 1If z = a then we set h(a) = b.

If z € a(a) N X then we set h(z) = ﬁ(z). By the above
properties of the sets U(a) N X and V(b) N Y it follows that
h is a homeomorphism of U(a) N X onto V(b) N Y,

Thus, U(a) N X is a standard neighbourhood of a for
the element e.

The proof of the lemma is completed.

Remark. Let G(a,m), m > 0, be the set of all spaces X
for which there exists a compact space K such that (X,K) €
.P(a,m). By PG(o,m), m > 1, we denote the set of all pairs

(a,X) where X € G(a,m) and a € X(a+m—1).
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We say that the elements (a,X) and (b,Y) of PG(a,m)
are equivalent (write (a,X) ~ (b,Y)) iff there exist open
and closed neighbourhoods U and V of a and b in X and Y,
respectively, and a homeomorphism h of U onto V such that
h(a) = b. Obviously, the relation "~" is an equivalence
relation.

By EPG(o,m) we denote the set of all equivalence
classes.

Obviously, if (a,X) € PG(o,m) then for some compact
space K, (a,X,K) € TP(a,m) and, conversely, if (a,X,K) €
TP (a,m) then (a,X) € PG(o,m).

By property 4) of Lemma 1 it follows that if (a,X,K(X))
and (b,Y,K(Y)) belong to an element of ETP(o,m) then
(a,X) ~ (b,Y).

Hence, the set EPG(a,m) is finite. Moreover, every
element of EPG(a,m) is a finite union of elements of ETP(o,m).
We observe that the set ETP(a,m) is not defined uniquely.

Let e be a subset of PG(a,m) and (a,X) € e. An open
and closed neighbourhood U of a in X is called standard for
e iff for every (b,Y) € e there are an open and closed
neighbourhood V of b in Y and a homeomorphism h of U onto
V such that h(a) = b.

Since every element EPG(a,m) is a finite union of
elements of ETP(a,m), by property 4) of Lemma 1 it follows
that for every element e of EPG(a,m) and for every (a,X) € e,

the point a has a standard neighbourhood in X.
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3. Lemma 2. The set G(o,m) s countable.

Proof. We prove the lemma by induction on m.

Let m = 0. If a = 0 then G(0,0) = {@g}. Ifa >0
then every element of G(a,0) is a locally compact space
having type a. Since every two locally compact spaces
having type a are homeomorphic, the set G(a,0) is a single-
ton.

Suppose that the lemma is true for m < m,, my > 1.

We prove that the set G(a,mo) is countable.

Let X € G(a,mo). By K(X) we denote a compact space

such that (X,K(X)) € P(a,mo).
(a+m0—l)
Suppose that X = {xl,x2,"'} is an infinite
set. Then, for every i = 1,2,*** there exists a point
(ui) (ai+l)

c; € X such that: 1) ¢y € X ~X , Where oy < o,
2) }im a, = o and 3) }im d(ci,xi) = 0, where d(ci,xi) is
i j+oo

the distance between <y and Xi'

(u+mo—l)
If the set X is finite and X # K(X) then by Cir
(di)
i=1,2,*** we denote a point of X such that: 1) cy € X ~
(ai+l)
X , where oy < o, 2) lim a, = o and 3) there is a
i
point ¢ € K(X)~X such that lim c, = c.
j>oo
(a+m0—l)
For every X € X we consider a neighbourhood
Ul(x) € B(K(X)) of x such that: 1) if X # xj then
(a+mo—l)
Ul(xi) n Ul(xj) = @, 2) if the set X is infinite
(a+m0—1)
then lim diam(Ul(xi)) = 0 and 3) if X is infinite
1>
(a+m,.~1)

or X 0 is finite and X # K(X) then cj £ Ul(x) for
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(otmy-1)
every j = 1,2,+++ and x € X .

For every element e € ETP(a,mO) (see Lemma 1) by X(e)

(0(,+m0-1)

we denote the set of all points x € X for which

(o+m,.-1)

(x,X,K(X)) € e. Obviously, X 0

= UeGETP(a,mO)X(e)°

If x € X(e) then (x,Ul(x) n X,Ul(x)) € e. Hence,
there are a neighbourhood U(x) € B(K(X)) of x and a homeo-
morphism h(x) of U(e) (see Lemma 1) onto U(x) N X such
that U(x) < Ul(x) and h(x) (a(e)) = x.

Set X' = K(X)N(U U(x)). Obviously, X' is a

xex (¢tmo-1)

compact space and if X = K(X) then type(X' n X) < a+m0-l.

(a+m, -1)

If X # K(X), in particular if X 0

is an infinite
set, then by the choice of the points Cir we have type (X' n

(0+m,~1)

X) > a, 1In this case, if X
a

0 is finite then it is

clear that X'~ (X' € X' N X. This means that X n X' €

G(a,i), i < mo—l, because type (X n'x") < a+m0-l.

(oa+m_ -1)

Let X 0

be infinite. Set X'' = U
x€X

Obviously, if z € (X'~(x') {*))~cl(X'') then z € X' n X.

(a+mg-1) U (%) -

If z € X' N cl(X'') then by the choice of the sets

(a+m_ -1) (a+m_-1)

Uj(x), x €x 0 it follows that z € cl(X  ° ) and,

hence, z € cl({cy,c,,*++}). This means that z € x1) (@)
Hence, X'\(X')(a) € X' N X and since type(X' N X) > a
we have X' N X € G(a,i), 1 < mo-l.

Let Y be an element of G(a,m For the space Y we

0)'
construct the sets Y(e), e € ETP(a,mo), the neighbourhoods

-1) (a+m0-l)
, the homeomorphisms h(y), v € ¥ ’

(o+m

U(y), vy €Y 0

and the space Y' N Y as we constructed the corresponding
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sets and homeomorphisms for the space X.

Now, we prove that the spaces X and Y are homeomorphic
if: 1) for every e € ETP(a,mO), |X(e)| = |¥(e)| and 2) the
spaces X' N X and Y' n Y are homeomorphic.

Indeed, let h' be a homeomorphism of X' n X onto

¥Y' n Y. By the condition |X(e)| = |Y(e)| it follows that

(a+m,=1) (a+m0-1)
between the sets X and Y there is a one-to-
(a+m,-1)
one correspondence such that if x € X
(a+m0-l)
toy €y then (x,X,K(X)) and (y,Y,K(Y)) belong to

0 corresponds

the same element of the set ETP(a,mO-l).

A homeomorphism h of X onto Y is constructed as fol-

(a+m,.-1)

lows: 1) if z € U(x) N X where x € X 0

then we set

-1 (a+m0—l)
h(z) = h(y) ((h(x)) (z)) where y is the point of Y

which corresponds to x and 2) if z € X' N X then h(z) =
h'(z).

From the above it follows that since the set ETP(a,mo)
is finite, the sets G(a,m), 0 < m < m,, are countable and
the set of all compact spaces having type less than a is
countable, the set G(a,mo) is countable. The proof of the

lemma is completed.

Remark. From Lemma 2 it follows that the set of all
spaces having a finite type is countable. On the other
hand it is easy to prove that the set of all spaces whose
type is a given infinite ordinal number has power greater

than or equal to the continuum.

4. Lemma 3. Let X be a space having type o+m where

a g a limit ordinal number and m is a non-negative integer.
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If Y is a metric compactification of X and dim Y < 0 then
there exists a compactification K of X such that: 1) natural
projection m of Y onto K exists, 2) type(K) < a + 2m +
min{a,1}, 3) type(X u (K\K(a))) = qa +m 4) Z¢f K =

{zl,zz,---} then lim diam(n_l(zi)) = 0 and 5) for a given
i+

e > 0, diam(n Y(z)) < ¢ for every z € K.

The proof of this lemma is similar to the proof of
Theorem 3 of [I-T]. This lemma is used in the proof of

Lemma 4.

5. Lemma 4. Let X be a metric space of rim-type < @ +n
where o s a limit ordinal number and n is a non-negative
integer. Then, there exist an extension Z of X and a basis
B(2) = {Tl,Tz,--'} of open sets of Z such that: 1) the set
Bd(Ti), i=1,2,*** s a compact set, 2) type(Bd(Ti)) <
a + 2n + min{a,l}, i =1,2,°°+, 3) T, = Int(cl(Ty)),
i=1,2,°°°, 4) Bd(Ti) n Bd(Tj) =@ <if i # 3j, and

5) type((BA(T,) n X) U (BA(T;)~(BA(T,)) *)) < o + n.

The proof of this lemma is similar to the proof of
Theorem 8 of [I-T].

The extension Z is constructed in the same way as the
space Z is constructed in the proof of Theorem 8 of [I-T].
Instead of Theorem 3 of [I-T] which is used in the proof
of Theorem 8 of [I-T] we use here Lemma 3.

The basis B(Z) = {Tl,Tz,-°-} of the theorem is a sub-
basis of {Ql,Q2,°°'} (see Theorem 8 of [I-T]) such that

BA(T; N BA(T;) = § if i # 3.
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We observe that in the present paper X is a subset of
its compactification or extension, while in [I-T] a com-
pactification of X is a pair (K,h), where K is a compact
space and h is a homeomorphism of X into a dense subset of
K. Therefore, in Lemma 3 we consider the compactification
K of X as the quotient space of the partition {n_l(z),

z € K} of Y and we identify x of X with the point {x} of
the above partition. Also, in Lemma 4 we identify a point
x of X with the point f(x) of [O,l]N (see Theorem 8 of

[I-T]).

II. 1. By Ln' n=1,2,-++, we denote the set of all

ordered n-tuples il-°-in, where ik =0o0or l, k = 1,°*°,n.
© . .
Set L0 = {g} and L = Un=0Ln’ For n = 0, by i i, we

denote the element @ of L. We say that the element il"-in
of L is a part of the element jl---jm if, either n = 0, or

1 <n<mand ik = jk for every k < n. The elements of

L are denoted also by T,T,Tl etc. If I = ije++i  then by

10 (resp. Il) we denote the element iye+*i 0 (resp. ij-+-i 1)
of L.

By An' n=1,2,++, we denote the set of all ordered
n-tuples il---in, where ik' k =1,**+,n is a positive
integer. Set A = U:=1An. The elements of A are denoted by
a,Betc. Leta €N, BEAM, a=ijeeei, B=jjeerj . We
write B > o if 1 < n < m and iy = j, for every k < n.
Obviously, if a,B € A, and B > o then B = a. Also, for

every a € A, the set of all elements B € A 41 such that

B > @, is a countable non-finite set.
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By C we denote the Cantor ternary set. By CT’ where

|

= ilo--in € L, n > 1, we denote the set of all points of

C for which the k-th digit in the ternary expansion,

k =1,¢¢¢,n, coincides with 0 if ik = 0 and with 2 if

ik = 1. Also, set Cﬂ = C. For every subset s of Lk’

k =20,1,-+, we set Cs = UTESCT' For every point a of C

and for every integer n > 0 by f(a,n) we denote the element

e Ln for which a € CT' Obviously, this element is uniquely

determined. For every subset F of C and for every integer

n=20,1,2,+-+ by st(F,n) (it is called the n-star of F in

C) we denote the union of all sets CT’ where 1 € Ln' such

that CI NF #@. I1If F = {a} then we set st(F,n) = st(a,n).
Let D be a partition of a subset S of C, T an element

of Lk and t an arbitrary subset of Ln’ where k,n =

0,1,2,++«., Set D(1l) = {d € D: 4 is not singleton},

Dy = {d € D: d n CTO Z @, dn CIl #9, dc CTO ] ch}'

D = ug, Dy and D(k,t) = {4 € D : an CF # @, j € t and

1€Lk
. — 8] _ — = .
d c Ufetc§}' Obviously, 1) D(l) = Up— Pk # Dr n Dj g if
I,J*eLkand'i';éi, 3) DklnDk2=¢ifkl;£k2 and
4) D(k,t;) nD(k,t,) =¢ if £, L, t, ¢ L and t; # t,.

We say that the degree of an element d of D is k and we

write deg(d) = k iff d € Dk'

For every integer k > 0 by D* we denote the subset of

k

S which is the union of all elements of Dk'

2. By M(a), where o is an ordinal number we denote a
countable family of spaces for which the a-derivative is
empty. We suppose that two different elements of M(a) are

not homeomorphic.



84 Iliadis

A partition D of a subset S of C is called M(a)-parti-
tion iff 1) D is an upper semi-continuous partition, 2) every
element of D is a singleton or consists of two points and
3) for every pair of integers k and n, k,n = 0,1,2,°++, and
for every subset t of Ln there exists an element M(D,k,t) €
M(a) which is homeomorphic to the subset D(k,t) of the quo-
tient space D.

By h(D,k,t) we denote a homeomorphism of M(D,k,t) onto
D(k,t). 1In the future we suppose that for a given M(a)-
partition the homeomorphisms h(D,k,t) are fixed.

By A we denote a family of pairs (S,D), where S is a
non-empty subset of C and D is a M(a)-partition of S (it
is supposed that § £ D). We suppose that the power of A is
less than or equal to the continuum,

By S(A) we denote the set of all subsets S of C such
that there exists a pair (S,D) € A. If (Sl,Dl) and
(Sz,Dz) are different elements of A then we consider Sl

and S, as different elements of S(A) (though Sl = 82).

2
If S € S(A) then by D(S) we denote the corresponding
M(a)-partition of S such that (S,D(S)) € A.

Since the power of A is less than or equal to the
continuum, for every element i € L there exists a subset
S(I) of S(A) such that: 1) S(#) = S(A), 2) s(I) ns(3) =4
if 1,3 € Ly+ I#73, 3) s(i) = s(i0) U s(1I1) and 4) for
every Sl,S2 € S(a), Sl # 52 there exists an integer k > 0
and elements 1,3 € Lys i # J such that s, € S(I) and
s, € 5(3).

Let (Sl,Dl), (SZ'DZ) € A. We say that the elements

Sl and 82 of S(A) are (k,n)-equivalent, where k,n = 0,1,°*°**,
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if 1) there exists an element i € L, such that 5,,S, € s(1)
and 2) for every subset t of Ln we have M(Dl,k,t) = M(Dz,k,t).

By S(k,n) we denote the set of all classes of the
(k,n)-equivalence. It is easy to see that the set S(k,n)
is countable.

Let Q be a subset of an element of S(k,n). If t is
a subset of Ln and S € Q then the element M(D(S),k,t) of
M(a) is independent of S. This element is denoted by
M(Q,k,t).

Consider the set C x S(A). For every subset Q of S(Aa)
we set J(Q) = {(a,S) € C x S(A): a € S, S € Q}. The
set J(S(A)) is also denoted by J(A).

A subset y of J(Q) is called a D-set of J(Q) with
respect to (k,n)-equivalence iff there exist a subset
t(y) of Ln and an element z(y) of M(Q,k,t(y)) such that

Y = Ugeq (h(D(S) ,k,t(y)) (z(y)) x {S}).

For every S € Q we denote by y(S) the element h(D(S),k,
t(y)) (z(y)) of D(S). Obviously, y(S) x {S} =y n (C x {S})
and y(S) € Dk(S) = (D(S))k. Also, for every S € Q and for
every d € Dk(S) there exists a uniquely determined D-set
y of J(Q) with respect to (k,n)-equivalence such that
d=y(s).

The ordinal number type(y(S),Dk(S)) is independent
of S. This ordinal number is called the type of y with
respect to Q (denoted by type(y)). The number k is called
the degree of the D-set y (denoted by deg(y)).

It is easy to see that if Yy is a D-set of J(Ql) with

respect to (kl,nl)—equivalence, Yy is a D-set of J(Qz) with
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respect to (kz,nz)-equivalence, S€ QN Q,and y,(8) #

y,(S) then y; n y, = #.

3. As it is mentioned in the introduction, in part
II of this paper we construct a space denoted by T(A) which
will be used in part III as a universal element. The points
of the space T(A) are the elements of some partition of the
set J(A). The elements of this partition which are not
singletons, are countable. These elements (denoted by
d(a,m)) and some subsets of J(A) (denoted by U(y,m,k-1))
are constructed by induction in the next "lonyg" lemma.
The subsets U(y,m,k-1) define some neighbourhoods of the
points d(a,m) in the space T(A). The topology of the space
T(A) is not quotient because in the set - J(A) there is no
topology. Moreover, the topology of T(A) is not quotient
with respect to the "natural" topology which may be defined

in the set J(4).

Lemma 5. For every integer k = 0,1,2,°°** and for
every element o of Ak+l there exist:

i) an integer n(d) > k + 1,

ii) a set s(a) which is a subset of an element of the
set S(k,n(Q)) (it is possible that s(a) = @),

iii) an ordering y(a,0),y(a,l),y(%,2),*** of the set of
all D-sets of J(S(a)) with respect to (k,n(Q))-equivalence
(it is possible that for some integers m, y(o,m) = @),

iv) a finite sequence d(a,0),d(a,l),+++,d(o,k) of sub-

sets of J(S(a)) (it is possible that for some integers m,

d(a,m) = g),
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v) a subset U(Y,m,k-1) of J(S(Y)), for every Y € Aq,

l1<g<kand 0 <m<gq -1 (it is possible that for some

@) and

Y and m, U(Y,m,k-1)

3

vi) a subset s(y,m,a) of Ly (@) for every Y € Aq
1<qg<k, 0<m<gq-1and Y < a such that:

1) n(@) >n(B) ¢fa>F

2) S(A) = Uge, S(@).

1
3) If o, @, € L a; # o, then S(ay) 0
S(Ez) = f.
4) If B € A then S(B) = vg

a€EA
E>§k+l

S(a).

5) If 0 <m <k, Y€AN ,_ Tand ¥ < O then

d(a,m) = y(¥,m) n J(S(@)).
6) If?EAq, l<g<kand 0 <m<gq -1 then
d(?lm) c U(?Imlk-l) .

7) If?ﬁAq,liqik,oimgq-land

d(Y,m) = @ then U(Y,m,k-1) = @.
8) If Y € Ay, Yp €Ay, 1<qa<k, 12q <k,
0<m<g-1,0<m <q'-1, k; <k and

a(y,m < U(Y;,m,k,-1) then U(Y,m,k-1) <
U(?l,ml,kl-l) .

9) If ¥y €Mhg, Yy €A 12a 2k, 12q" <Kk

q
0<m <q'-1,02<m <q" -1 and d(Y;,m) #

d(y,,my) then U(Y;,m,k-1) N U(Y,,m,,k-1) = g.
10) If?eAq, 1<gq<k-1,0<m<q-1,
S € S(Y), d € D(S) and (4 x {s}) n U(Y,m,k-1)

# @ then 4 x {S} < U(Y,m,k-2).

1) If Y €Ay, 1 <q<k, 0<m<qg=-1,Y:a,
S € s(a), 4 €Dy p-q(8), @ x {s} = d(¥,m n
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(C x {S}), d' € D(S) (1), d' # 4 and Q"' =
st(d,n(a)) then, either deg(d') > k or
deg(d') =g -m - 1 and type(d',Dq_m_l(S)) <

type (dl,Dq_m_l (s)).

12) If Y € Aq’ l<g<k,0<m<qg-1, y<a,
S € S(a), d € D(S) and d x {S} = d(y,m) N

(C x {S}) then st(d,n(a)) = CS(?,m,E)'

13) If Yy € Aq, l<g<kand 0 <m<gq -1 then

U(y,m,k-1) = U ((c x S(a)) N

o>Y,0€h ;s (Y,m,Q)

J(S(a))).

14) If ¥ € A 0<m<k, y<a, S € S(a),

1
€ D(S,), d; x {8;} =

k+1-m’

S, € S(a), d, € D(s;), d

2 1 2
y(y,m 0 (Cx {s;}, d, x {8,} = y(y,m n
(C x {s,}) then st(d,,n(a)) = st(d,,n(a)).

Proof. We prove the lemma by induction on k.

Let k = 0. Set n(a) = 1 for every o € A;. There
exists a one-to-one correspondence between the set S(0,1)
and a subset of Al. If Q € S(0,1) corresponds to o € Al,
then we set S(a) = Q. If there is no element of S(0,1)
which corresponds to o € A, then we set S(a) = 4.

For every o € Ayr let y(a,0),y(a,1),++ be an ordering
of the set of all D-sets of J(S(a)) with respect to (0,1)-
equivalence. Set d(o,0) = y(a,0), a € A;.

Obviously, properties 1), 2), 3), 5) and 14) are true
for k = 0.

Suppose that the lemma is true for all integers k < p,

p > 0. We prove the lemma for k = p.



TOPOLOGY PROCEEDINGS Volume 11 1986 89

For every S € S(y), y € Aq’ g < p and for every d(y,m),
0 <m<gq- 1, by d(S,?,m) we denote the element of D(S)
for which d(S,y,m) x {S} = d(y,m) n (C x {S}). For every
U(y,m,k-1), where y € Agr 12 a<k 0<m<qg-1and
k <p-1hby U(S,Y,m,k-1) where S € S(Y) we denote the sub-
set of S for which U(S,Yy,m,k-1) x {s} = U(Y,m,k-1) N (C x
{s}). obviously, if d(y,m) = @ or U(Y,m,k-1) = @ then
d(s,y,m) = § or U(S,Y,m,k-1) = @, respectively. We observe
that by property 13) it follows that the set U(S,Y,m,k-1)
is an open subset of S. Also, for every Y € Ap+l-m’
0 <m<p, SE€ S(Y) we denote by y(S,Y,m) the element d
of D(S) for which d x {8} = y(Y,m) n (C x {s}).

Let o € Ap+l' There exists a uniquely determined
element B € Ap such that B < o, Let s € S(B).

There exists an integer tl(S,p) > 0 such that if
Y €N v Ehgul<cac<p 0cm<qg-1,1<q" <p,

0<m <q' -1, k; <p, SE€S(F) N S(y;) and d(y,m) <

1
U(;i'ml’kl-l)’ then st(d(S,?,m),tl(S,p)) c U(S,?l,ml,kl—l).

Also, there exists an integer t2(S,p) > 0 such that
if y; € Agrs ?2 € Agnr 1<q's p,l1<q"<p, 0<m <

g' -1, 0<m, <qg" -1, S € S(‘Y’l) n s(?z) and d(?l,ml) #

2
d(?z,mz), then st(d(S,'y_l,ml), t,(s,p)) n st(d(s,72,m2),
ty(s,p)) = 4.

Since D(S) is an upper semi-continuous partition there
exists an integer t,(S,p) > 0 such that if Y <B, Y€ Aq’
l1<g<p-1,0<m<qg~=-1,d€D(S) and d N st(d(s,y,m),
t3(S,p)) # @, then d < U(S,?,m,p-Z).

Finally, since 1) D(S) is an upper semi-continuous

partition, 2) Dk(S), k =0,1,2,+++, is a closed subset of
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D(S) having type < o and 3) Dk (8) nD_ (S) =g, k, # k.,
— 1 ky 1 2

there exists an integer t4(S,p) > 0 such that if Y € Aq'
l1<gq<p, 0<m<qg-1,%<B d €D(S)(1), d' # d(S,y,m)
and d' c st(d(S,?,m),t4(S,p)), then, either deg(d') > p,

or deg(d') = g - m - 1 (we observe that deg(d(y,m)) =

(s)).

g -m~- 1) and type(d',D (s)) < type(d(S,?,m),Dq

g-m-1 -m-1
set t(s,p) = max{n(B),t (8,p),t,(S,p),t;(S5,p),t,(S,p),
p+l}.
Now, in the set S(B) we define an equivalence relation.

Let S,,S, € S(B). We say that S; ~ S, if and only if

1’72 1 2
1) t(Sl,p) = t(Sz,p), 2) Sl and 82 are (p,t(Sl,p))—equiva—
lent, 3) st(d(Sl,?,m),t(Sl,p)) = st(d(Sz,Y,m),t(Sz,p)) for

every Y < B, Y € Aq, l1<g<pand 0 <m<gqg-~-1and

>

) st(y(Sl,Y,m),t(Sl,p)) = st(y(SZ,?,m),t(SZ,p)) for every
s 0 <m < p.

It is clear that the set of all equivalence classes is
countable. Hence, there exists a one-to-one correspondence
between this set and a subset of the set of all elements §

of A for which B < §. 1If there is no equivalence class

p+l
which corresponds to the element o, then we set S(u) = #.
In the opposite case, we denote by S(a) the equivalence
class which corresponds to the element a.

Set n(a) = t(S,p) where S € S(a). Obviously, the
number n(a) is independent of the element S of S(a).
Let y(a,0),y(a,1l),*++ be an arbitrary ordering of the

set of all D-sets of J(S(a)) with respect to {(p,n(a))-

equivalence.
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set d(¥,m) = y(y,m) N J(S(a)) where Y € Ayq_pr ¥ < O
and m = 0,1,«+.,p.

Let Yy € Mg l1<g<p,y<a 0<m<g-=-1and
S, € S(a). We define the sets s(y,m,a) and U(y,m,p-1)
setting s(y,m,a) = {1 € Ln(a): Cy < st(d(So,y,m),n(E))}

and U(y,m,p-1) ((st(d(s,y,m),n(a)) x

= U—e — — —_
aiy,aeAP+l,S€S(a)
{s}) n J(s(a))) (*)
By condition 3) of the definition of the equivalence
relation in the set S(B) it follows that the set s(y,m,a)

is independent of S, € S(a). Obviously, if d(y,m) = ¢,

0
then s(y,m,a) = # and U(y,m,p-1) = @.

Now, we prove that the properties of the lemma are
true for the k = p.

Property 1) follows by the definition of the number
n(a). Property 2) is independent of p. Properties 3) and
4) follow by the construction of thesets S(a), o € Ap+l'
Property 5) follows by the determination of the set d(o,m).
Properties 6) and 7) follow by the construction of the sets
U(y,m,p-1).

It is easy to see that properties 8), 9), 10) and 11)
follow by the definition of the numbers tl(s,p), tz(s,p),
t3(S,p) and t4(S,p), respectively, and by the construction
of the sets U(y,m,p-1). Property 12) follows by the defini-
tion of the sets s(y,m,q).

In the type (*) using the poperty 12) we have

((st(d(s,y,m),n(a)) x {S}) n J(s(n))) = (C

Uses (a) s(y,m,a)

S(a)) N J(S(a)). From this follows property 13).
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Property 14) follows by condition 4) of the definition
of the equivalence relation in the set S(B). The proof

of the lemma is completed.

4. By T(A) we denote the set of all non-empty sets of

the form d(o,m), o € A 0 <m<kand k =0,1,2,+++ and

k+1' -
all singletons {x} where x belongs to J(A) and does not
belong to any set d(a,m). The elements d(o,m) (resp. {x})
of the set T(A) are called elements of the first kind (resp.
the second kind),

By U(A) we denote the set of all sets U(y,m,k-1),
Y € Aq, 1<q<k,0<m<qg=-1and k =0,1,2,--+ and all
sets of the form (Ct x S(a)) n J(A) where t is a subset of

L, k=0,1,2,°-+ and a € A.

K’

If U € U(A), then by 0(U) we denote the set of all
elements of T(A) which are contained in the set U. If
U = U(y,m,k-1) or U = (Cy x S(a)) n J(A) then we set
O(y,m,k-1) = O(U) or O(Ct,S(E)) = 0(U), respectively.

By O(A) we denote the set of all sets O(U), U € U(A).
Obviously, the set O(A) is countable.

In the future, the sets U(y,m,k-1) and O(y,m,k-1)
(resp. (Ct x S(A)) n J(A) and O(Ct,s(a))) are called ele-
ments of the first kind ( resp. the second kind) of the
sets U(A) and O(A), respectively.

Also, for every S € S(Yy), y € Aq' l1<q,0<m<gqg-1,
by d(s,y,m) (resp. y(S,?,m)) we denote the element d of
D(S) for which d x {S} = d(y,m) n (C x {S}) (resp. d x {S} =

y(y,m) n (C x {S})). Obviously, d € D 1(8) (resp.

q-m-

d € Dq_l(S)).
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Lemma 6. The set O(A) is a basis of open sets for a
topology on T(A).

Proof. It is sufficient to prove that: 1) for every
d € T(A) there exists O € O(A) such that d € O and 2) if
1 l,O2 € O(A), then there exists O € O(A)
such that d € 0 < 0, N O,.

Let d € T(A). If d = d(a,m), o € Apyp @and 0 < m < Kk

de o, N O2 where O

or 4@ = {(a,S)} where S € S(a) then, obviously, d € 0(C,S(a))
= 0 € 0(Aa).
Let d € O1 n O2 where 01,02 € O0(A). First, we suppose

that 4 = {x}, where x = (a,S). Then, there exist Tl’IZ € L

and El’az € A such that d € O(CT ,S(El)) <0, and
1

If O, or O, is an element of the

ace 0(c32,5(a2)) < 0,. 1 )

first kind, then the existence of Il or TZ of L follows by
the structure of the elements of U(A) of the first kind

(see property 13) of Lemma 5). et I € L and o € A such
that a € CI c CIl n CIZ and S € S(a) < S(al) n S(az).

Obviously, d € 0(Cy,S(a)) = 0 < 0y N O,.

1 2
Now, let d = d(y,m), Yy € Aq, 0

in

m<gq-1.

First, we prove that if d(?,m) c O(Ct,S(E)) = O' € 0(a),

where t c L and B € Agrr then d(y,m) < O(Y,m,k-1) < 0' for
k > max{n,g+l}. 1Indeed, let k > max{n,qg+l}, o € Ay,q and

Y < a. Since d(y,m) # @ and d(y,m) < O(Ct,S(E)) we have

v

that S(y) < S(B). Hence, S(a) < S(B). Let S € S(a).

Since d(s,y,m) x {S} € d(y,m) = C_ x S(B) we have d(S,y,m)

t

c Ct. By property 12) of Lemma 5 we have Cs(?,m,a)

<C

st(d(s,y,m),n(a)). Since n(a) >k + 1 > n, Cs(?,m,a) <

£
Hence, Cs(?,m,E) x S(a) < Ct x S(B) for every a > vy,
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a € Ap,,. From the structure of the set U(y,m,k-1) (see

property 13) of Lemma 5) we have U(y,m,k-1) < C_ x S(B).

t
Thus, d(y,m) ¢ O(y,m,k-1) c o',

Using the above proposition (and properties 6) and 8)
of Lemma 5) we may find integers kl > 0 and k2 > 0 such

that d € O(?,m,kl-l) c 0, and d € O(?,m,kz-l) c O Set

2
0 = 0(U), where U = U(Y,m,k-1), k > max{kl,kz}. Then

d € 0c O, nO,. The proof of the lemma is completed.

1 2

5. In the future, in the set T(A) we consider the

topology which has the set O(A) as a basis of open sets.

Lemma 7. The space T(A) is a Hausdorff space.

Proof. Let dl,d2 € T(A), dl # d2. Consider the cases:
1) 4, = {(al,Sl)}, dz = {(az,Sz)}, 2) 4, = {(a,s)},
d, = d(y,m), y € Aq, 0<m<qg-1and3) 4 = d(?l,ml),
Yo € Agur 9" 29", 0 <m < q' -1,

d2 = d(;zlmz)l 71 € Aqll

q
0 < m, < q" - 1.
In the first case, either a; # a2, or Sl # Sz. By

the definition of the (k,n)-equivalence, if a; # a, (resp.

2
JeL,

Sl # Sz), then there exist an integer n > 1 and i, n

I # 73 (resp. 51,52 € A, El # Ez) such that a; € Cy and

a, € Ci (resp. S, € S(El) and s, € S(Ez)) (we observe that
Sl # 82 means that the elements Sl and 52 of S(A) are dif-
ferent though it is possible that Sl = 82 as subset of C).
Set 0, = 0(Cy, S(a')) and 0, = o(Cs3, S(a")), where a',a" € A
S, € S(a') and S

1 2
O(C,S(Ez))). Then d; € O

€ S(a") (resp. 0, = O(C,S(El)) and 0, =

17 d2 € O2 and O1 n 02 =g.

ll
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In the second case, either S ¢ S(y), or S € S(y) and
agd(s,ym. Let S ¢ S(Y), y' € Ag and s € S(Y'). Setting

0, = 0(C,S(y")) and O, = O0(C,S(y)) we have d, € 0., 4, € O

1 1 1’ "2 2

and Ol n O2 =4g.

Let S € S(y) and a £ d(S,y,m). There exists an integer

2

k > g + 1 such that st(a,k) N st(d(s,y,m),k) = g. Let

o € Apypr S € S(a), 0, = O(st(a,k),S(a)) and O, = O(y,m,k-1).

1
and d2 €0

2

Obviously, d1 €0 By property 13) of Lemma 5

1 2°
we have that U(y,m,k-1) N (st(a,k) x S(a)) = (Cs(V,m,a)
S(a)) N (st(a,k) x S(a)).

Since n(a) > k + 1, by property 12) of Lemma 5,

st(d(s,y,m),k) 2 Since st(a,k) N st(d(s,y,m),k)

CcC_ ,— - .
s(y,m,a)
= § we have U(y,m,k-1) N (st(a,k) x S(a)) = g. Hence,
o, no,=g.
In the third case, setting 0, = 0(?l,ml,k-l) and
0, = 0(72,m2,k-l), where k > q' + 1, by properties 6) and

9) of Lemma 5, we have dl € Ol' d2 € 02 and Ol n 02 = g.

The proof of the lemma is completed.

6. Lemma 8. If U € U(A) then BA(O(U)) < {d € T(a):
dnu#g@,dn (J(A)NU) # 9},

Proof. Let d € BA(O(U)) = cl(O(U))~NO(U). Since d ¢ U,
dn (J(A)NU) # #. We prove that d N U # g. It is sufficient
to prove that if d N U = @, then d € cl1(0(U)).

Consider the following cases: 1) 4 = {(a,S)}, U = (Ct
x S(a)) N J(A), t <L and a € Ayr 2) @ = {(a,8)}, U =
U(y,m,k-1), y € Aq’ 0<m<gqg-1and k >q, 3) d =d(y,m),

VGAq,oimiq—l,U=(cth(E))nJ(A),tgLnand

el

eAq,and4)d=d(7,m),7€A,oimiq-1,

q
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U =U(y;,m,k-1), ¥; € Agrr 0 < m < q' - 1and q' < k.

In the first case, since d N U = @, we have, either

agc,,orsgsS(a). Ifat¥g C., then st(a,n) N c = 4.

tl
Let B € Ay and S € S(B) then (st(a,n) x S(B)) n (c, x

S(a))

g. Setting O = O(st(a,n),S(B)) we have that d € O
and O n O(U) = @. This means that d ¢ cl1(0(U)).

If S £ S(a) then setting O = 0O(C,S(B)) where B € Aq
and S € S(B), we have d € 0 and O n O(U) = @, that is
d £ cl(o(u)).

In the second case, either S ¢ S(?) or there exists

an element o € A such that o > ¥, S € a and a £ C

k+1 s(y,m,a)°
This follows by the structure of the set U(?,m,k-l) (see
property 13) of Lemma 5). If S ¢ y, then setting

0 = 0(C,S(y;)), where ?i € hg and S € S(y;) we have d € O
and O n O(y,m,k-1) = @, that is, 4 ¢ cl(0(U)).

If a g C X where o € Meypr & >7Yand S € a,

s(y,m,o

then st(a,n(a)) n C = ¢ and hence, (st(a,n(a)) x

s(Y,m,a)

S(a)) n ((C x S(a)) n J(A)) = (st(a,n(a)) x S(a)) n

s (y,m, o)
U(Y,m,k-1) = g. Since d € O = O(st(a,n(a)),S(a)),
d £ cl(o(u)).

In the third case, if S(Y) n S(a) = @, then U(y,m,g-1)
NU =g, that is, d € cl(0(U)). Let S(Y) n S(a) # #. Then
for every S € S(y) n S(a) we have d(S,y,m) n C, = # and,
hence, st(d(s,y,m),n) n Cy = g, that is, (st(d(s,y,m),n) x
{S}) nU = @g. From this and by properties 12) and 13) of
Lemma 5, it follows that U(y,m,k-1) n U = @ if k = max{q,n},

that is, d € cl(0(U)).
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In the fourth case, obviously, d(y,m) # d(?l,ml). If
S(Y) n S(Vl) = @, then U(y,m,k-1) n U(Vl,ml,kl-l) = ¢ for
every k > q, that is, d g cl(0(U)).

Let S(Y) n S(?l) # 9. If q <k, then by property 9)
of Lemma 5, U(?,m,kl-l) n U(?i,ml,kl—l) = ¢, that is,
d g cl(o(u)).

If q > k;, then 71 < Y. By the structure of the set
U(?l,ml,kl-l) (see property 13) of Lemma 5) there exists an

element a € A such that y, < o, o < y, d(y,m) € C x S(a)
k1+1 1 = = <

and d(y,m) n (C x S(a)) = g. Hence, as in the

S (-Y-l lmlla)
third case, there exists an integer k > g such that
-1)

U(;Imlk-l) n (C X S(E)) = U(?Imlk-l) n U(Vllml'k

s(-Y—llmlla) 1

= @, that is d £ cl1l(0(U)). The proof of the lemma is com-

pleted.

7. Lemma 9. The space T(A) is a regular space.

Proof. Let d € O(U), U € U(A). We must prove that
there exist U, € U(A) such that 4 € O(UO) c cl(O(UO)) c 0(U).

Consider the cases: 1) d = {(a,S)}, U = (C_ x S(a)) n
2) d = {(a,8)}, U = U(Y,m,k-1),

J@), tcL ,, and o € A

+1 k+1’
Y € Aq, 0O<m<g-landq<k, 3 d=d(y,m), U

A

UGygomysky=1), Y € Ay 0 <m<g=-1, ¥ €A,y 0<m <

q' - 1land q' <k; and 4) d = d(y,m), U = (c, x S(a)) n J(a),

YE€EA,O<m q-l,tELnand'&'EA

g9 k+1°

In the first case, since D(S) is an upper semi-continu-

A

ous partition, there exists an integer q > max{k+1l,n+1l} such

that if d' € D(S) and d' n st(a,q) # @, then d' c C,.
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Let § € Aq+l and S € S(5). Set U; = (st(a,q) x 5(3))
n J(A). By the choice of the integer q, d c O(Ul) c 0(U).
We prove that cl(O(Ul)) c 0(U) U F where F is a finite set.
’ Let d1 € Bd(O(Ul)). By Lemma 8 dl is an element of the
first kind. Let dl = d(al,ml) where 61 € Aq' and 0 < W<
q' - 1. By F we denote the set of all such elements dl for
g' < g+ 1l. It is easy to see that the set F is finite.

Now, suppose that q' > g + 2. We prove that d, € 0(U).

1
Indeed, in the opposite case, by Lemma 8 we have that
dl n Ul # @ and dl n (J{(A)NU) # g. Let (al,Sl) € dl n Ul
and (az,Sz) € d1 n (J(A)NU) .

By property 14) of Lemma 5 (setting k + 1 =g', m = m,

and o = 31) if m; > 0 we have that st(d(Sl,Ei,ml), n(gl)) =

1
st(d(Sz,Ei,ml), n(El)). If my =0, then d(El,O) = y(§l,0).
Since Sl and 82 are (q'—l,n(gi))-equivalent there exist a

subset t(dl) of L and an element z(dl) of M(S(El),

n(s;)
q' - 1, t(d;)) such that h(D(S;), q' - 1, t(d;)) (z(d))) =
d(Sl,Ei,O) and h(D(Sz), q' -1, t(dl))(z(dl)) = d(Szlgl.O)-
This means that d(Sl,El,O) € D(Sl)(q' - 1),t(dl)) and
d(5,,8,,0) € D(5,) (g' - 1,t(d;)), that is, st(d(S;,8,,0),

st(d(s

n(gl)) 0),n(§i)). Thus, st(d(Sl,gl,m

D
,ml),n(Ei)) for 0 <m < g' - 1. Since

Z'El’
n(s§,)) = st(d(s,,s;
n(El) >q' > g + 2 from the above it follows that

d(s ,ml) n st(a,q) # # and d(Sl,gl,ml) n (C\Ct) # 0.

1781

Hence, since t Ln+l we ‘have that d(Sl,dl,ml) € D (Sl),

1

< n. Since S, and S are (q,n(8))-equivalent, there

k

where kl

is an element 4' € D (S) such that st(d',n(§)) =
1
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st(d(Sl,El,ml),n(E)). From the above and since n(§) > q +
1>n+ 1 it follows that d' n st(a,q) # # and 4' n (C\Ct)

#4.
By the choice of the set st(a,q) this is impossible.

Hence, d, n (J(A)~NU) = g, that is, dl € 0O(U).

1
Since the space T(A) is Hausdorff, there is an open

neighbourhood O(UO), U, € U(A) of dl such that O(UO) nNrFr=g

0

and O(UO) < 0o(U Then d € O(UO) < cl(O(UO)) < 0(U).

-
In the second case, by the structure of the set

U(y,m,k-1) (see property 13) of Lemma 5) there exists an

o ' " - — -
element ¢ € Ak+l such that 4 € U' where U' = CS(y,m,a)

S(a) € U. By the first case there exists U, € U(A) such

0
that d € 0(Uy) € c1(0(Uy)) € O(U') € O(U).

Consider the third case. Let k be an integer such that
k > max{kl,q}. Then, by property 8) of Lemma 5 we have that

d € U(y,mk) < U(Vl,ml,kl—l). Set U = U(y,m,k). We prove

that d € 0(U;) < cl(0(Uy)) < O(y,m,k-1) € O(V).

Indeed, let d, € cl(O(UO))\O(UO). Then, by Lemma 8,

1
d1 n U0 # §. Obviously, d1 is an element of the first kind.

Let d; = d(§,m') where § € Agn and 0 < m' < q" - 1.
If g" < k + 1, then by property 9) of Lemma 5, we must
have that U(y,m,k) N U(§,m',k) = @ which is impossible.
Hence, gq" > k + 1. This means that there exists an
element o € A, , such that y < @ < §, that is, S(8) < S(@)
c S(y). By the structure of the set U(y,m,k) (see property

13) of Lemma 5) we have d, N U(y,m,k) = d, N ((C

1 1 s(.Y-Imla)

S(a)) N J(A)) # . This means that there is an element Sl

of S(§) such that d(Sl,X,m') nc ) # #. We prove

s(y,m,a
that this is true for every S € S(3).
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Indeed, let S € S(§). By property 5) of Lemma 5 we
have d(§,m') = y(§',m'} n J(S(T)), where §' € Aq"-m' and
i < §. Obviously, y(§,8',m') = d(s,§,m'). If m' # 0, then
by property 14) of Lemma 5 st(y(SlE',m'),n(g)) =
st(y(s,§',m"),n(8)), that is, st(d(s,,§,m'),n(d)) =
st(d(s,§,m'),n(3)). Since n(d) > n(a) it follows that
d(s,§,m') n Csvmm 7P

Suppose now that m' = 0. Then d4(§,0) = y(§,0), that
is, d(§,0) is a D-set of S(§) with respect to (g"-1,n(3))-
equivalence (see property 5) of Lemma 5). Hence, there

exist a subset t(dl) of L and an element z(dl) of

n(s§
M(s(3),q" - 1,£(d;)) such éh;t h(D(S)),q" - 1,t(d;)) (2(d;))
= d(Sl,g,O) and h(D(S) ,q" - l,t(dl))(z(dl)) = d4(s,§,0).
This means that d(Sl,E,O) € D(Sl)(q" - l,t(dl)) and
d(s,s,0) € D(S)(q" - 1,t(d;)), that is, st(d(s,,§,m"),
n(d)) = st(d(s,s,m},n(T)) = Ct(dl)‘

As above, since n(§) > n(a) and d(Sl,E,O) nec

# g

Thus, for all cases, for every S € S(§) we have

S (?lmla)

# @ we have that d(s,§,0) n Cs(?,m,a)

d(s,s,m') ncC By property 10) of Lemma 5, we

s(yma 77
have that d(s,§,m') x {S} < U(y,m,k-1) for every S € S(3)

and, hence, d(§,m') < U(y,m,k-1), that is, 4, = a(§,m') €

1

o(y,m,k-1) < O(U). Hence, d € 0(U;) < c1(0(U,)) < O(U).
Finally, consider the fourth case. There exists an

integer k; > g such that d ¢ U(?,m,kl) c (C, x S(a)) n J(a)

(see the proof of Lemma 6). By the third case, there exists

U0 € U(A) such that d € O(UO) c cl(O(qo)) c 0(U). The

proof of the lemma is completed.
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8. Lemma 10. For every O € O(A), type(Bd(0)) < a.
Proof. For every element d(g,m), where g € LY
0 <m < k, by type(d(a,m)) (resp. deg(d(a,m))) we denote
the ordinal number type(y(y,m)) (resp. the integer deg(y(o,m)),
where Y € Mes1l-m’ Y < o and d(a,m) = y(y,m) n J(S5(a))).

Since D(S) is an M(qg)-partition, for every S € S(A) we

have that type(d(a,m) < o for every d(a,m).

Let O € O(A). Consider two cases: 1) O = 0O(U), where

c
[

(C, x s(B)) nJ(A), tcL, BeEA, n=0,1,:-,

=1,2,+++ and 2) O = O(U), where U = U(y,m,k-1), Y € Agr

fle}
|

A

m<qg-1, qg<k.
Consider the first case. Let d(a,m) € Bd(0), where

€ Aq" 0 <m<gq' - 1. Let k > max{q',n,q}. We prove

that if d, = d(El,ml) € Oo(o,m,k-=1) n Bd(0), where El g

< q" -1 and d(El,ml) # d(o,m), then type(d(al,ml))

€ A
0 < my
< type(d(a,m)).

Indeed, let y € Aq'-m’ Y < @, 71 € Aq“_ml, 71 < El,
d(a,m = y(y,m) n J(S(a)), d(a;,m) = y(?l,ml) n J(S(El))
and S € S(El) N S(a). By the above definition of the type
of the elements of T(A) of the first kind we have that
type(d(al,ml)) = type(y(?l,ml)) and type(d(a,m)) =
type (y(y,m)).

On the other hand, type(y(?l,ml) = type(d(S,El,ml),
Dq“_ml_l(s)) and type(y(Y,m)) = type(d(S,a,m), Dyt o1 (S))
Since d(al,ml) c U(a,m,k-1) we have that q" > k + 1, because
in the opposite case U(El,ml,k-l) N U(a,m,k-1) = ¢ which is
impossible. Hence, there exists an element 3 € Ak+l such

that @ < § < El' Let S € S(El). Then, by the structure
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of the set U(a,m,k-1) (see property 13) of Lemma 5) we have
that d(s,&l,ml) c st(d(S,a,m),n(§)). By property 1ll1) of
Lemma 5, either deg(d(S,al,ml)) > k, or deg(d(S,ai,ml)
g' -m -1 and type(d(s,al,ml),Dq,_m_l(s)) < type(d(S,a,m),
Dql_m_l (S) ) .

Since d(al,ml) € Bd(0), S(El) N S(B) # #. Since
q" >k +1>q, S(El) c S(B). Let (a;,8;) € d(&l,ml) n u.
Then d(Sl,ai,ml) nc,#4.

We prove that if d(Sl,El,ml) c Ct' then for every

S € S(al) we have that d(S,al,ml) c Ct.
Indeed, let d(S;,o0;,m) € C, and S € S(a;). Ifm >0,

then by property 14) of Lemma 5 st(d(S;,a;,m),n(a;)) =
st(d(S,El,ml),n(El)). Since n(al) >g"+1>k+2>n+2

we have that st(d(S,El,ml),n(El)) c C_ and, hence,

t
d(s,&l,ml) c Cy-

If m 0, then the set d(al,O) = y(al,O) is a D-set

1
of S(El) with respect to (q"-l,n(El))-equivalence. This

means that there is a subset t(dl) of Ln(E ) and an element
1

z(dl) of M(S(El),q" - l,t(dl)) such that h(D(Sl),q" -1,
t(d;)) (z(d;)) € D(q" - 1,t(d;)) and h(D(8),q" - 1,t(d;))
(z(dl)) € D(q" - l,t(dl)), that is, st(d(Sl,Ei,O),n(El)) =

st(d(s,al,O),n(al)) = Ct(dl)' Since n(ul) >n + 2 and

d(Sl,Ei,O) c C, we have that d(S,El,O) < C,.

Hence, for all S € S(El) we have that d(S,El,ml) S Cer
that is, d(al,ml) c (C, x S(B)) N J(A). This means that
d(a;,m;) £ BA(0) which is impossible.

Thus, d(S;,0;,m;) N C_ # ¢ and d(S,,a;,m;) ¢ C.. This

means that deg(d(Sl,al,ml)) = deg(d(al,ml)) <n-1c«<k.
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Hence, deg(d(Sl,ai,ml)) =q'-m-1=q" -m -1 and

1
type(d(a;,m)) < type(d(a,m)).

From the above it follows that if type(d(a,m)) = 1,

then O(a,m,k-1) n Bd(0) = {d(a,m)}, that is, the point
d(o,m) is an isolated point of Bd(0O). Hence, type(d(a,m),
Bd(0)) = 1, that is, type(d(o,m),Bd(0)) < type(d(u,m)).
By induction, it follows that for every point d(a,m) of
Bd(0) we have type(d(a,m),Bd(0)) < type(d(a,m)). Hence,
type (Bd(0)) < a.

We now consider the second case. We prove that the

set Bd(0) is the free union of the sets Bd(o(cs(?,m,a)’

S(@))), o>y, a € Meyre

Indeed, let d(B,m;) € Bd(O) where B € Aq, and 0 < my %

q' - 1. If q' < k, then by property 9) of Lemma 5,
0(B,m;,k-1) n Oo(y,m,k-1) = #, that is, d(B,m;) ¢ BA(0).
Hence, q' > k. Since q' > g and d(?,ml) n u(y,m,k-1) # ¢
it follows that there exists an element o of Ak+l such that
B, that is, S(B) ¢ S(a). Hence, d(E,ml) n u(y,m,k-1) =

<
d(B,my) n ((C x S(2)) n J(A)) and A(B,m;) NI (A)~

s(y,m,q)
U(Y,mk-1)) ¢ d(Bym) n (JAINC (7 =) * S(@))). This
means that d(E,ml) € Bd(O(Cs(V m a),s(a)).
Conversely, let d(B,ml) € Bd(O(CS(y’m,E),S(a))), where

K+1 and y < a. Then

x S(@)) n J(A)) # # (see Lemma 8),

B € Agre 0 <mp <q' -1, o € A

d(B,ml) n ((Cs(vlm'a)

that is, d(8,m;) n U(Y,m,k-1) # #. If q' <k, then
U(B,m;,k-1) n U(Y,m,k-1) = § which is impossible. Hence,

q' > k. There exists an element a € A such that B > @,

k+1
that is, S(B) < S(a). From this it follows that
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d(g,my) n (J(A)N(C x S(a))) ¢ U(y,m,k-1) and,

S (Vlmr(l_)
hence, d(E,ml) n (J(A)NU(y,m,k-1)) # @#. This means that
d(E,ml) € BA(0). Moreover, if Ei € Ay, and El # o, then

S(B) n s(a;) = #. Hence, d(g,m) n (C x S(ap)) = @

s (?,mnal)

that is, d(g,m;) ¢ Bd(O(CS(V,m,al),S(El))).

Hence, Bd(0(C ,s(&i))) n Bd(o(C

s(?,m,&i) s(Y,m,a,)’
S(az))) = @ for every ajroy € Apqr 0g # aye
Also, the sets O(C,S(El)) and O(C,S(Ez)) are open

neighbourhoods of the sets BA(O(C

s(y,m,5;)"S(e))) and

Bd(O(C ,S(Ez))), respectively, with empty inter-

S (7lm132)
section.
Thus, Bd(0) is the free union of the closed sets

Bd(0(C y#S(@)), @ > ¥, @ €N, . By the first case,

s (7:%5
for every a > y, a € Ak+l’ we have that type(Bd(O(cs(?,m,E)'
s(@))) < a.

Hence, type(Bd(0)) < o. The proof of the lemma is

completed.

9. Corollary. The space T(A) is metrizable with a

countable basis space having type < a.

III. 1. By R(<a) we denote the set of all spaces
having rim-type < a.

A pair (S,D) where S is a subset of the Cantor ternary
set C and D is a partition of S is called a representation
of a space X iff the quotient space D is homeomorphic to
the space X.

Let o = B + n where B is a limit ordinal number and n

is a non-negative integer.
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Let M(a) be a countable set of spaces having the
property: a space X is homeomorphic to an element of M(a)
iff, either X is a compact space and type(X) < B, or X is
an element of the set G(Bf,m), where 0 < m < n. We consider
that two different elements of M(a) are not homeomorphic.
The existence of such set follows by Lemma 2.

A representation (S,D) of a space X is called a
M(a) -representation iff the partition D of S is a

M{(o)-partition.

Lemma 11. Let X € R(<a). There exists an element
§ of R(La) containing X topologically and having an
M(a)-representation.

Proof. Let X € R(<a). Let Z be an extension of X and
B(z) = {Tl,Tz,"'} be a basis of open sets of Z having all

the properties of Lemma 4.
i

As in section I.5 of [I4] we set A0 = cl(Ti) and
Ai = Z\Ti, i=1,2,**+., For every il'“im € Lm, m=1,2,°°"°
we set Z, .= A} N +»+n A" . We define a subset S(z)
1,°°*1 1 1
1 m 1 m

of C and a map gq(Z) of S(2) into Z. The point a of C belongs

to S(Z2) if and only if zf(a,l) n ZI(a,Z) N e # g,

Obviously, for every point a € S(Z), the set ZT(a 1) n
14

N*++ is a singleton. If {x} = 2T(a,1) " Z— n

’1(a,2) I(a,2)
+++, then we set q(Z)(a) = x.

1

Set D(Z) = {(q(Z)) ~(x): x € zZ}. Obviously, D(Z) is

a partition of S(Z). Also, set BA(B(Z)) = u°°

ToqBA(T,) .

The set S(2Z), the map q(Z) and the partition D(Z) have
the following properties (see section I.5 and Lemma 2 of

[1,1):



106 Iliadis

1) q(2) (Cy n s(2)) = zg, ieL,

2) if x € BA(B(Z)) then (q(Z))-l(x) consists of one
point only,

3) if x € BA(B(2)) then (q(2)) Y(x) consists of exactly
two points,

4) the map g(zZ) is continuous,

5) the map gq(Z) is closed,

6) the partition D(Z) is an upper semi-continuous par-
tition of S(Z).

Let p(Z) be the natural projection of S(Z) onto D(2Z).
Since D(Z) is upper semi-continuous, the projection p(2) is
closed.

Let 1(Z2) be the map of Z onto D(Z) for which p(Z) =
i(Z) o g(2z). Obviously, the map i(Z) is one-to-one. Since
both maps p(Z) and gq(Z) are continuous and closed, the map
i(Z) is also continuous and closed. Hence i(Z) is a homeo-
morphism of Z onto D(Z).

Set X = X U (U, (BA(T;)~(BA(T,)) (8))). By Lenma 4,
§ is an element of R(<a).

Also, set S(X) = (q(2)) }(X), D(X) = i(2) (X). Obviously,
() THOE) = s(X). Let i(X) = i(2)]5 a®) = a(@) g3,
and p(X) = P(2)|g g - Obviously, p(X) = i(X) o q(X). It
is clear that the map p(ﬁ) is continuous and closed. Hence,
D(ﬁ) is an upper semi-continuous partition and the space
D(g) has the quotient topology. Since i(ﬁ) is a homeo-
morphism of § onto D(g), the pair (S(ﬁ),D(ﬁ)) is a repre-
sentation of 2.

We prove that (S(ﬁ),D(§)) is an M(a)-representation

~

of X. By the above properties 2) and 3) of the map g(Z)
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it follows that every element of D(ﬁ) is a singleton, or
it consists of exactly two points.

Hence, in order to prove that (S(ﬁ),D(ﬁ)) is a
M(q) -representation it is sufficient to prove that for
every integer k > 0 and for every subset t of Lm,
m=0,1,2,«++ the subset D(%)(k,t) is homeomorphic to an
element of the set M(q).

Let k > 0 be an integer and let t be a subset of the
set Lm’ m > 0. Consider the set D(g)(k,t). Obviously,

D(X) (k,t) = D(2) (k,t) n D(X).

Let 4 € D(2)(k,t). Then, d = (q(Z))-l(x) for some
x € %Z. By the definition of the map i(2), (i(2)) (d) = x.
By the construction of the set S(Z) it follows that

d € D(2), _; if and only if x € BA4(T On the other hand,

k)’
an CI # @ if and only if x € ZT (see property 1) of the

set S(Z) and the map q(2Z)). Hence, (i(2)) 1(D(2)(k-1,t)) =

(n ZI) n Bd(Tk). Set Bdt(T ZZ) n Bd(Tk).

k) = (zet
Since Bd(Ti) n Bd(Tj) = @ if i # j we have that the

et

set Bdt(Tk) is an open and closed subset of the set Bd(Tk).
We have (i(X)) 1(D(X) (k-1,t)) = Bd, (T,) N X. Hence,
if type(Bdt(Tk)) < B, then Bdt(Tk) = ﬁ. This means that
D(g)(k—l,t) is homeomorphic to Bdt(Tk) and, hence, it is
homeomorphic to an element of M(a), because Bdt(Tk), as a
compact space having type < B, is homeomorphic to an
element of M(a).
Suppose that type(Bdt(Tk)) > B. Then, Bdt(Tk)\
(Bdt(Tk))(B) c § and since Bdt(Tk) n § < Bd(Tk) n § =
(X 0 (BTN U Bam AT ) (we have) type (Bd (Ty)

N X) < B + n. The above means that the set Bd (T, ) N X and,
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hence, D(X) (k=1,t) is homeomorphic to an element of M(qy).

The proof of the lemma is completed.

2. A representation (S(X),D(X)) of a space X is called
complete if the set C\(U;=001(Dﬁ(§))) is a subset of the

set S(X).

Lemma 12. Let X € R(<a). There exists an element X*
of R(<a) containing topologically the space X and having a
complete M(q)-representation.

Proof. Let X be a space and (S(ﬁ),D(ﬁ)) be the M(a)-
representation of § constructed in Lemma 11.

Set S_(X) = S(X) U (ON(UP_ocl(DA(X)))). By D_(X) we
denote a partition of the set Sc(§) which is defined as
follows: 1) every element of the set D(i)(l) is an element
of the partition Dc(ﬁ) and 2) if x € Sc(ﬁ) and x does not
belong to any element of D(ﬁ)(l) then the singleton {x} is
an element of Dc(ﬁ).

since D_(X) (1) = D(X) (1) the partition D_(X) is an
M(a)-partition of the set Sc(§). Hence, by the construc-
tion of the set Sc(ﬁ), the pair (Sc(ﬁ),Dc(ﬁ)) is a complete
M(o)-representation of the quotient space Dc(ﬁ). Obviously,
the space D(ﬁ) and, hence, the spaces § and X are homeo-
morphic to a subset of the space Dc(ﬁ). Setting X* = Dc(ﬁ)

we complete the proof of the lemma.

3. Theorem. In the family R(<o) there exists a uni-
versal element T having the property of finite intersection
with respect to a given subfamily R, of R(ga), where the

power of Ry 18 less than or equal to the continuum.
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Proof. Let X € R(<a). By Lemma 12 there exists a
space X* ¢ R(i“) containing topologically the space X and
having a complete M(a)-representation (S(X*),D(X*)).

By A' we denote the set of all pairs (S(X*),D(X¥*))
where X € R(fa)\Rl' We consider that if (S(Xi),D(Xi)) and
(S(Xg),D(XE)) are different elements of A' then, either
S(Xi) # S(X;), or D(Xi) # D(XE). We observe that for every
element (S(X*),D(X*)) the set D(X*) (1) uniquely determines
the set S(X*). Since the set D(X*) (1) is uniquely deter-
mined by a sequence of countable subsets of C X C we have
that the power of A' is less than or equal to the continuum.

By A, we denote the set of all pairs (S(X*),D(X¥*))

1
where X € R,. We consider that if Xl and X, are different

1 2
elements of Ry then (S(XI),D(Xi)) and (S(X;),p(xs)) are
different elements of Al'

Let A be the free union of the sets A' and Al. Then,
the power of A is less than or equal to the continuum,

Set T = T(A) where T(A) is the space constructed in
section II for the set A. By the corollary of section II.9,
T is a metrizable space with a countable basis having
rim-type < a, that is, T is an element of R(ia).

Let (S(X*),D(X*)) be an element of A. Consider the
subset T(S(X*)) of T(A) which consists of the points d of
T(A) for which d n (C x {S(X*)}) # 4.

We prove that the subset T(S(X*)) of T(A) is homeomorphic
to the quotient space D(X¥*).

We observe that by the construction of the elements of

T(A) (see Lemma 5) it follows that if 4 € T(S(X*)), then the
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subset d' of S(X*) for which d' x {S(X*)} = d N (C x {S(X*)})
is an element of D(X¥*).

Conversely, if d' is an element of D(X*), then there
exists an element d € T(S(X*)) such that d' x {S(X*)} =
dan (Cc x {s(x*)}).

We define a map h(X*) of T(S(X*)) into D(X*) setting
h(X*) (d) = d'. Obviously, the map h(X*) is one-to-one and
"onto."

Now, we prove that H(X*) is a homeomorphism of T(S(X*))
onto D(X*). Indeed, let h(X*)(d) = d' and let V be an open
neighbourhood of d' in D(X*). Since D(X*) is an upper semi-
continuous partition of S(X*) we may assume that there is
an open subset V' of S(X*) such that the set V is the set
of all elements of D(X*) which have a non-empty intersec-
tion with V'. There exists an integer m > 0 such that

st(d',m)

n

V'. Obviously, there is a subset t of Lo for
which Ct = st(d',m). Consider the set O(Ct,S(A)). This is
an open subset of T(A) which contains the element d. Set
W= T(S(X*)) n O(Ct,S(A)). The set W is an open neighbour-
hood of d in the space T(S(X*)).

We prove that h(X*) (W) < V. 1Indeed, let d1 € W. Then,

dl c C_ x S(A). Hence, if h(X*)(dl) = di, then di c C_ and,

t t
hence, di c V', that is, di € V. Thus, h(X*) (W) c V and,
hence, h(X*) is a continuous map.

Conversely, let W be an open neighbourhood of d in
T(S(X*)) and d = (h(x*)) 1(a'). we may assume that

W= T(S(X*)) n O, where O is an element of O(A) (see section

II.4). There is a neighbourhood Ol € O(A) of d in T such
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that d € Ol E.CI(Ol) c O (see Lemma 9). Let O, = O(U),

1
where U € U(A). By V' we denote the open subset of C for
which V' x {S(X*)} = U U (C x {S(X*)}. Obviously, d' c V'.
By V we denote the open subset of D(X*) which consists of
elements di of D(X*) such that di c V'. Obviously, V is
an open neighbourhood of d in D(X¥*).

We prove that (h(X*))_l(V) c W. Indeed, let 4 € V.,

1
Then, di c V'. Hence, di x {S(X*)} < U. This means that
if d) = (h(x*))71(d}) then d, N U # §. By Lemma 8,
d, € cl1(0(U)) and, hence, d, € O. Since d, € T(S(X¥*)),

1 1 1
d, € W. Thus, (h(X*))-l(V) © W and the map (h(X"*))_l is

1
continuous. Hence, the map h(X*) of T(S(X*)) onto D(X¥*)
is a homeomorphism.

Let (S(XI),D(Xi)) and (S(XE),D(XE)) be two different
elements of A, We prove that the set T(S(Xi)) n T(S(X;))
is finite.

Indeed, the elements S(Xi) and S(Xg) of S(A) are
different. Hence, there exist an integer k > 0 and two

different elements El and 62 of the set Ak+ such that

1
S(X§) € S(a;) and S(X§) € S(a,).
Suppose that 4 € T(S(XI)) n T(S(XE)). Obviously, d
is an element of the first kind. Let d = d(a,m), a € Aq
and 0 <m <q-1. Ifqg >k + 1 then, either a Zz El or
o 1 EZ‘ This means that, either d N (C x S(XI)) = g, or
dn (C x S(Xg)) = @. In both cases, 4 ¢ T(S(Xi)) n T(S(XE)).
Hence, g < k + 1. Obviously, the set of all points
d(a,m) of T for which o € Aq' 0 <m<g=-landg<k+1
is finite. Hence, the set T(S(Xi)) n T(S(X;)) is finite,

too.
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Now, let X be an element of R(<a). By g{(X) we denote

a homeomorphism of X into D(X*). Set iX = (h(x*))_l o g(X).

Obviously, i, is a homeomorphism of X into T(S(Xi)) c T.

X
Hence, the space T is a universal element of the family
R(<a).

Let X, and X, be two different elements of R,. Then,

1 2 1
S(Xi) and S(xg) are different elements of S(A). Hence, the

set T(S(X¥*¥)) N T(S(X%)) is finite. Then, the set i, (X,;) N
1 2 Xl 1

iX (Xz) is finite, too. Thus, the space T has the property
2

of finite intersection with respect to subfamily Rl of

R(<a). The proof of the theorem is completed.

Corollary 1. In the family R(L0) there exists a
universal element having the property of finite intersec-

com

tion with respect to the subfamily R (<o) of all compact

spaces having rim-type < a.

Using Theorem 8 of [I-T] and Theorem 3 of [I4] we

have

Corollary 2. Let o = B + n where B is a limit ordinal
number (or 0) and n is a non-negative integer. There
exists a continuum of rim-type < B + 2n + min{a,l} having
the property of finite intersection with respect to the

family of all compact spaces of rim-type < a.
In particular,

Corollary 3. There exists a continuum of rim-type 2
having the property of finite intersection with respect to

the family of all rim-finite compact spaces.
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Corollary 4. For a given space X of rim-type < a there
exists a space of rim-type < o having the property of finite
intersection with respect to the family of all closed sub-

sets of X.
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