TOPOLOGY PROCEEDINGS

Volume 12, 1987

Pages 159-171

http://topology.auburn.edu/tp/

ON THE COUNTABLE BOX PRODUCT OF COMPACT ORDINALS

by

Soulian Yang and Scott W. Williams

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

 $\textbf{E-mail:} \quad topolog@auburn.edu$

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

ON THE COUNTABLE BOX PRODUCT OF COMPACT ORDINALS

Soulian Yang and Scott W. Williams 2

If X is a topological space, then $\sigma^K X$ (the box product of K many copies of X) denotes the product $\Pi^K X$ with the topology induced by the family of all sets of the form $\Pi_{\alpha \in K} U_{\alpha}$, where each U_{α} is an open set in X. For a recent survey on box products, see [Wi2].

Consider the following theorem due to M. E. Rudin:

0.1 Theorem. Assume the Continuum Hypothesis holds. Then, for each ordinal λ , $\Box^\omega \lambda$ + 1 is paracompact.

The conclusion to this theorem has been expanded to the larger class of compact spaces ([Kul]) and ω_1 many factors ([Wi3]). Under the set-theoretic statement-there is κ -scale in $^\omega\omega$ -the best result was " $\sigma^\omega\omega_1$ + 1 is paracompact" ([Wil]). We offer our main result:

0.2 Theorem. Suppose that for some cardinal κ there is a $\kappa\text{-scale}$ in $^\omega\omega.$ Then, for each ordinal λ , $\Box^\omega\lambda$ + 1 is paracompact.

1. Preliminaries

Given a set X, $\overset{\omega}{X}$ is the set of functions from ω to the set X. For f and g in $^{\omega}X$, define f =* g if they differ on

¹ Author's work completed while visiting S.U.N.Y. Buffalo.

²Author's work partially supported by N.S.F. grant.

only finitely many coordinates. We denote the resulting quotient set by $\nabla^{\omega}X$ and write $[f] = \{q: q = *f\}$.

Suppose X is an ordinal set. There are two very different but similarly defined orders on $V^{\omega}X$. First of all, define $f \leq *g$ (f,g $\in \sigma^{\omega}X$) provided that f(n) > g(n) for only finitely many $n \in \omega$; define f < *g provided that f(n) > g(n) for only finitely many $n \in \omega$. Then we define

It is trivial that [f] = [g] iff f =* g and both orders, <* and <*, are partial orders on $\nabla^{\omega}X$.

In this paper, for each $x \in V^{\omega}X$, we fix some $f_X \in X$ and identify $x = [f_X]$ with f_X .

Suppose, f,g $\in \nabla^{\omega} X$. We define

 $[f,g] = \{h \in \nabla^{\omega}X \colon f \leq^* h \leq^* g\} = \nabla_{n \in \omega}[f(n),g(n)],$ and call [f,g] basic set iff both sets {n: g(n) is limit ordinal, f(n) = g(n)} and {n: f(n) is a limit ordinal} are finite.

Suppose κ is a cardinal. The statement there is a $\kappa\text{-scale}$ in $^\omega\omega$ means there is an order preserving injection from κ into $^\omega\omega$ whose range is confinal in $(^\omega\omega,<^\star)$.

Suppose Z is a topological space. Then $\nabla^{\omega}Z$ denoted the quotient space induced by =* on $\sigma^{\omega}Z$. This is known as the nabla product. We make strong use of an important lemma due to K. Kunen (see [Wi2]):

- 1.1 Lemma. If Z is locally compact and paracompact then
- (1) $V^{\omega}Z$ is paracompact iff $D^{\omega}Z$ is paracompact;
- (2) $\nabla^{\omega} z$ is a P-space (every G_{δ} -set is open).

So we need only to prove $\nabla^{\omega}{}_{\lambda}$ + 1 is paracompact in order to prove 0.2.

1.2 Definition. A space X is called specially paracompact provided that each open cover of X has a refinement consisting of pairwise disjoint basic sets.

The symbol $\#(\alpha)$ denotes the statement: ∇^{ω}_{α} + 1 is specially paracompact. According to 1.1 $\#(\alpha)$ implies ∇^{ω}_{α} + 1 is paracompact.

1.3 Theorem. If there is a $\kappa\text{-scale}$ in $^\omega\omega\text{,}$ then $\#\left(\omega_1\right)$ is true.

This theorem has been proved by Williams in [Wil]. But he stated in [Wil] a weaker proposition: $\nabla^{\omega}_{\omega_1} + 1$ is paracompact if \exists is a κ -scale in $^{\omega}_{\omega}$. In fact, his proof really is a stronger one.

1.4 Lemma. Suppose λ is an ordinal. Then every clopen set in $\nabla^\omega \lambda$ + 1 is a union of pairwise disjoint basic sets.

This result is implicitly proved in [Ru]. But it is not so easy to extract from Rudin's paper. Fortunately, in this paper, we need only some particular cases of the lemma: first case, the clopen set is a difference set between two basic sets; second case, the clopen set is an intersection of countably many basic sets. Both are not so hard to prove. We leave it to the readers.

2. Tops Refinement

- 2.1 Definition. A set $M\subset\omega\times(\lambda+1)$ is called a matrix provided that there is $b\in\lambda+1$ for each $n<\omega$ such that $(n,b)\in M$.
- $2.2\ \textit{Definition}. \quad \text{Suppose } f \in \nabla^{\omega} \lambda \ + \ 1. \quad \text{If there is a}$ member $\langle \ n,b \ \rangle$ of M for all but finitely many n, such that $f(n) = b, \text{ then we say that } f \text{ is on the matrix M.} \quad \text{The set}$ $\{ f \in \nabla^{\omega} \lambda \ + \ 1: \ f \text{ is on the matrix M} \} \text{ is denoted by D(M).}$
- 2.3 Lemma. Assume $\#(\omega_1)$ is true. If a matrix M is countable and D(M) is closed, then D(M) is specially paracompact.

Proof. Since M is countable and D(M) is closed, it is easy to find an embedding map E from a basic set $[\overline{0},g]\subset \nabla^\omega \omega_1 + 1 \text{ into } \nabla^\omega \lambda + 1, \text{ such that } \mathrm{E}([\overline{0},g]) = \mathrm{D}(\mathrm{M}),$ where $\overline{0}=\langle 0,0,\cdots \rangle$ and $g<\star\overline{\omega}_1=\langle \omega_1,\omega_1,\cdots \rangle.$ In fact, $\mathrm{M}_n=\{b\in\lambda+1:\langle n,b\rangle\in\mathrm{M}\cap\{\{n\}\times(\lambda+1))\}$ is countable and is a closed set for all but finitely many n. Let n_n be the order type of $\mathrm{M}_n.$ If M_n is closed, then n_n is a successor ordinal, $\mathrm{n}_n=\mathrm{n}_n+1.$ Let $\mathrm{g}=\langle \mathrm{n}_0,\mathrm{n}_1,\cdots,\mathrm{n}_n,\cdots \rangle.$ Obviously, we can define an embedding map $\mathrm{E}:[\overline{0},\mathrm{g}]\to\nabla^\omega\lambda+1$ satisfying $\mathrm{E}([\overline{0},\mathrm{g}])=\mathrm{D}(\mathrm{M})$ in natural way. Moreover, $\mathrm{g}<\star\overline{\omega}_1$ since $\mathrm{n}_n<\mathrm{m}_n<\mathrm{m}_n<\mathrm{m}_n<\mathrm{m}_n<\mathrm{m}_n$ is closed in $\mathrm{V}^\omega\omega_1+1.$ It implies D(M) is specially paracompact.

Suppose B \subset $\nabla^{\omega}\lambda$ + 1. Remember that we have fixed $f_x \in x$ for each $x \in \nabla^{\omega}\lambda$ + 1. Let

$$B_n = \{f_x(n) : x \in B\}.$$

If B is countable, then the matrix

$$M(B) = \bigcup_{p < \omega} \{(n, p) : p \in \overline{B}_p\}$$

is also countable, where \overline{B}_n denotes the closure of B_n in λ + 1. Moreover, D(M(B)) is a closed set since D(M(B)) = $\nabla_{\mathbf{n} \in \omega} \overline{\mathbf{B}}_{\mathbf{n}}$.

2.4 Definition. Suppose that [a,b] is a basic set in $\triangledown^{\omega}{}_{\lambda}$ + 1, B \subset $\triangledown^{\omega}{}_{\lambda}$ + 1 is countable and \Re is an open cover of [a,b]. The notion of tops refinement of R relative to B and [a,b] is defined by the following cases:

Case 1. $D(M(B)) \cap [a,b] = \emptyset$. There is an open set U \in \mathbb{R} such that b \in U. We choose a basic set V satisfying $b \in V$ and $V \subset U \cap [a,b]$. In this case, the tops refinement is a singleton basic set {V}.

Case 2. $D(M(B)) \cap [a,b] \neq \emptyset$. Assume $\#(\omega_1)$. By 2.3, D(M(B)) is specially paracompact since D(M(B)) is closed. Then $D(M(B)) \cap [a,b]$ also is specially paracompact. Hence there is a refinement U of R consisting of pairwise disjoint basic sets which cover $D(M(B)) \cap [a,b]$. We call U tops refinement of R relative to B and [a,b].

Since a tops refinement might not cover [a,b], we notice that a tops refinement need not be a refinement in the usual sense. However, we wish to make use of those sets not belonging to the tops refinement.

2.5 Lemma. Suppose $B \subset \nabla^{\omega} \lambda + 1$ is countable, [a,b] is a basic set in $\nabla^{\omega} \lambda + 1$ and R is an open cover of [a,b]. Then there is a tops refinement U of R relative to B and [a,b], and there is a partition P of [a,b] into basic sets such that $U \subset P$.

Proof. By 2.3 D(M(B)) is specially paracompact. Then $K = D(M(B)) \cap [a,b]$ is specially paracompact. For K, as a subspace of $\nabla^{\omega} \lambda + 1$, there is a refinement V of $\{U \cap K: U \in \mathcal{R}\}$ consisting of pairwise disjoint basic sets in K. The tops refinement U of \mathcal{R} relative to B and [a,b] can be induced by V in the following way.

First of all, we define a map from V into the family of all basic sets in $V^{\omega}_{\lambda} + 1$. If $V = [r,s] \cap K \in V$, $r,s \in K$, we define $\phi(V) = [\overline{r},s] \subset [a,b]$ by the following clauses:

(1) r(n) < s(n). Define $\overline{r}(n)$ from r(n). If r(n) is a successor ordinal; define

 $\overline{r}(n) = \sup\{p \in \lambda + 1 \colon p < r(n) \& p \in K_n\} + 1$ if r(n) is a limit ordinal and $S = \{p \in \lambda + 1 \colon p < r(n) \& p \in K_n\} \neq \emptyset$; define $\overline{r}(n) = a(n)$ if r(n) is a limit ordinal and $S = \emptyset$.

(2) r(n) = s(n). In this case s(n) is an isolated point of K_n . Define $\overline{r}(n) = s(n)$ if s(n) is still an isolated point in $\lambda + 1$. If s(n) is a limit ordinal, then we define $\overline{r}(n)$ in the same way as we did in (1).

We claim that:

- (a) $V = \phi(V) \cap K$ for every $V \in V$;
- (b) $\phi(V) = {\phi(V): V \in V}$ is pairwise disjoint;
- (c) $U\phi(V)$ is a basic set.

The clauses (a) and (b) are trivial. We prove (c). In fact, let $h_n = \sup K_n$, then

$$[a,h] = U\phi(V),$$

where $h = X_{n < \omega}^h h_n$. Let us prove this equality. Suppose $x \in [a,h]$. Then $a(n) \le x(n) \le h(n)$ for almost all n. Let

$$m(n) = min P$$
, if $P = \{\alpha \in K_n : \alpha > x(n)\} \neq \emptyset$;
 $m(n) = h(n)$, if $P = \emptyset$; $m = (m(0), m(1), \dots, m(n), \dots)$.

Since $m \in K$, there is a $V = [r,s] \cap K$ such that $m \in V$. Then

$$\overline{r}(n) < r(n) < x(n) < m(n) < s(n)$$

according to (1), (2) and r,m,s \in K. It means $x \in \phi(V)$. Then $x \in U_{\varphi}(V)$. So far we have proved the inclusion "c". The other inclusion "c" is trivial.

Notice that every ϕ (V) contains only one member V of V, and V \subset U for some U \in \Re . Without loss of generality, we suppose U is a basic set. Then we can find naturally a basic set ψ (V) in $\nabla^{\omega}\lambda$ + 1 such that

$$V \subseteq \psi(V) \subseteq \phi(V)$$
 and $\psi(V) \subseteq U$.

Let

$$U = \{ \psi(V) : V \in V \}, \ \# = \{ \phi(V) \setminus \psi(V) : V \in V \} \cup \{ [a,b] \setminus [a,h] \}$$

Then

$$[a,b] = [a,h] \ \cup \ ([a,b] \setminus [a,h]) = (\cup \mathcal{U}) \ \cup \ (\cup \mathcal{H}).$$
 By 1.4, every member of \mathcal{H} is a union of pairwise disjoint basic sets. Hence there is a collection \mathcal{G} of pairwise disjoint basic sets such that $\cup \mathcal{G} = \cup \mathcal{H}$. Then $\mathcal{P} = \mathcal{U} \cup \mathcal{G}$ is a partition of $[a,b]$ and $\mathcal{U} \subset \mathcal{P}$.

2.6 Definition. Every element of $\nearrow U$ is called an uncovered tape.

3. The Proof of the Main Theorem

We assume that there is a κ -scale in $^\omega\omega$. We are going to prove that $\#(\lambda)$ is true for every ordinal λ .

For simplicity, let $X=\nabla^{\omega}\lambda+1$. Suppose $\mathcal R$ is an open cover of X. We intend to build a tree T consisting of basic sets (exactly, of uncovered tapes). The tree T is ordered by > and the height of T is ω_1 , where the order > is defined by

 $[a,b] > [r,s] \text{ iff a } \leq^* r \leq^* s \nleq^* b \\ (s \lneq^* b \text{ means } s \leq^* b \text{ and } s \neq^* b). \text{ Simultaneously, we will} \\ \text{construct a collection } G_\alpha \text{ of basic sets for each ordinal} \\ \alpha < \omega_1 \text{ so that } \mathcal{U} = U\{G_\alpha\colon \alpha < \omega_1\} \text{ is a refinement of } \mathcal{R} \\ \text{covering X. All of them subject to the following restrictions:}$

- (3.1) The level 0, which is denoted by T_0 , of T is $\{X\}$ and $G_0 = \emptyset$.
- (3.2) T_α denotes the α 'th level of T. Then (UT_α) U (UG_α) = X and the elements of T_α U G_α are pairwise disjoint for every α < ω_1 .
- (3.3) For each α < ω_1 and V \in G_{α} there is an U \in $\mathcal R$ such that V \subset U.
- (3.4) The elements of $U_{\alpha<\eta}G_{\alpha}$ are pairwise disjoint for all $\cdot\eta$ < ω_{η} .
- $(3.5) \ \alpha < \beta < \omega_1 \ \text{implies} \ G_\alpha \subset G_\beta \ \text{(Then we have}$ $U(G_\beta \backslash G_\alpha) \subset UT_\alpha, \ \alpha < \beta, \ \text{which follows from (3.2) and the}$ inclusion $G_\alpha \subset G_\beta$).
- (3.6) Suppose A is a branch of η 'th subtree $\cup \{T_\alpha : \alpha < \eta\}$, $\eta < \omega_1$, then the length of A is η , and the intersection ηA is non-empty.

Suppose μ < ω_1 . We assume inductively that, for each ξ < μ , T_{α} , G_{α} , α < ξ have been built and satisfy (3.1)-(3.6)

by taking ξ instead of ω_1 in the statements. It is easy to check that T_{α} , G_{α} , α < μ , also satisfy (3.1)-(3.6) by taking μ instead of ω_1 in the statements.

Now we built $\mathbf{T}_{_{11}}$ and $\mathbf{G}_{_{\overline{11}}}$ by the following way.

First of all, we claim that

$$\bigcap_{\alpha \leq 1} (UT_{\alpha}) = U\{ \cap A \colon A \in \mathcal{B} \}, \tag{1}$$

where β is the collection of all branches of the μ 'th subtree $U\{T_{\alpha}: \alpha < \mu\}$. It follows trivially from (3.6) and (3.2).

Suppose $A=\{V_{\alpha}=[a_{\alpha},b_{\alpha}]\in T_{\alpha}\colon \alpha<\mu\}$ is a branch. We conclude that $A=\cap A\neq\emptyset$, because there is no (ω,ω^{\star}) gap in $^{\omega}\omega$ and $\mu<\omega_{1}$. Moreover, the set A is clopen since $\mu<\omega_{1}$ and X is a P-space (by 1.1). Then $A=US_{A}$ where S_{A} is a collection of pairwise disjoint basic sets (by 1.4).

Let B = $\{b_{\alpha}\colon [a_{\alpha},b_{\alpha}]\in A\}$. By 2.5 there is a tops refinement \mathcal{U}_{C} of \mathcal{R} relative to B and C, C \in S_{A} , and there is a partition \mathcal{P}_{C} of C such that $\mathcal{U}_{C}\subset \mathcal{P}_{C}$. Let

$$W = \{A = \cap A : A \in \mathcal{B}\}.$$

We define

$$G_{\mu} = (U\{\mathcal{U}_{C} \colon C \in S_{A} \& A \in W\}) \ U \ (U\{G_{\alpha} \colon \alpha < \mu\}),$$

$$T_{\mu} = U\{\mathcal{P}_{C} \backslash \mathcal{U}_{C} \colon C \in S_{A} \& A \in W\}.$$
(2)

If $[r,s] \in T_{\mu}$, then $[r,s] < V_{\alpha}$ for all $V_{\alpha} \in \hat{A}$. In fact, $[r,s] \in \mathcal{P}_{C}$ for some $C \in S_{A}$ and some $A \in W$, then $[r,s] \subset A$ $\subset V_{\alpha}$ for every $V_{\alpha} \in A$. On the other hand, $[r,s] \notin \mathcal{U}_{C}$ implies $s \notin U\mathcal{U}_{C}$. But the top of $V_{\alpha} = [a_{\alpha}, b_{\alpha}]$, b_{α} , is an element of $U\mathcal{U}_{C}$. Hence $s \neq *b$.

The rest of the job is to check if T_{α} , G_{α} , $\alpha < \mu + 1$ still satisfy (3.1)-(3.6) by taking $\mu + 1$ instead ω_1 . We check the clause (3.2) and leave the rest to the readers.

It is easy to check that

$$(\bigcap_{\alpha < \mu} (UT_{\alpha})) U (U_{\alpha < \mu} (UG_{\alpha})) = X.$$
 (3)

Now we prove

$$(UT_{\mu})$$
 U $(UG_{\mu}) = X$,

i.e. (3.2) holds. In fact, if $x \in X$, then either $x \in \cap_{\alpha < \mu} (UT_{\alpha}) \text{ or } x \not\in \cap_{\alpha < \mu} (UT_{\alpha}). \text{ If } x \in \cap_{\alpha < \mu} (UT_{\alpha}), \text{ then } x \in U(\cap A: A \in B) \text{ by the equality (1). Thus}$

$$x \in \cap A = A$$
,

$$x \in C$$
,

where $A \in \mathcal{B}$, $C \in S_A$ and $A = US_A$. Because $C = U\mathcal{P}_C$ and $U_C \subset \mathcal{P}_C$, we have

$$x \in (U(\mathcal{P}_{C} \setminus \mathcal{U}_{C})) \cup (U\mathcal{U}_{C}).$$

So

$$\mathbf{x} \in (\mathbf{UT}_{\mathbf{u}}) \ \mathbf{U} \ (\mathbf{UG}_{\mathbf{u}}).$$
 (4)

If $x \notin \Omega_{\alpha < \mu}(UT_{\alpha})$, then the fact (4) follows from (3) and (2).

The clauses (3.2), (3.3) imply that $\mathcal{U}=\mathrm{U}\{\mathsf{G}_\alpha\colon \alpha<\omega_1\}$ is a refinement of $\mathcal R$ and the elements of $\mathcal U$ are pairwise disjoint. Is $\mathcal U$ a cover of X? We have to prove the following theorem in order to answer the question.

3.7 Theorem. Suppose $A=\{v_{\alpha}=[a_{\alpha},b_{\alpha}]\in T_{\alpha}\colon \alpha<\omega_{1}\}$ is a branch of the tree T. Then $\cap A=\emptyset$.

Proof. If the conclusion is false, then there is a point $x \in \Omega A$. Let B_{μ} denote the set $\{b_{\alpha} \colon \alpha < \mu\}$. $M(B_{\mu})$ x denote such a submatrix of $M(B_{\mu})$ that

$$M\left(B_{_{\boldsymbol{U}}}\right) \, \big| \, \boldsymbol{x} \; = \; \left\{ \left\langle \; \boldsymbol{n} \,, \, \boldsymbol{j} \; \right\rangle \, \in \; M\left(B_{_{\boldsymbol{U}}}\right) \, \colon \; \boldsymbol{n} \; < \; \boldsymbol{\omega} \,, \; \; \boldsymbol{j} \; > \; \boldsymbol{x} \left(\boldsymbol{n}\right) \, \right\} \,.$$

We say that a point b \in X extends a matrix M if there is an infinite set E \subset ω such that b(n) < j for all n \in E and \langle n,j \rangle \in M.

We conclude that, for each $\mu < \omega_1$, b_μ extends $M(B_\mu) \mid x$. In fact, since $[a_\mu, b_\mu] \in T_\mu$, there is a basic set $C \subset \cap \{V_\alpha \in T_\alpha \colon \alpha < \mu\}$ such that

$$[a_{\mu}, b_{\mu}] \in \mathcal{P}_{C} \setminus \mathcal{U}_{C}.$$

Because \mathcal{U}_{C} covers D(M(B $_{\mu}$)) \cap C, and \mathcal{P}_{C} is a partition of C, we have

$$[a_{\mu},b_{\mu}] \cap D(M(B_{\mu})) = \emptyset.$$

Hence

$$[x,b] \cap D(M(B_{11})) = \emptyset.$$
 (5)

If the assertion fails then for every infinite $E\subset \omega$ there is some $n\in E$ and $\xi\in \overline{(B_\mu)_n}$ with $x(n)<\xi\leq b(n)$. So we can find an $m\in \omega$, for each n>m, there is $\xi_n\in \overline{(B_\mu)_n}$ with $x(n)<\xi_n\leq b(n)$. Let $f(n)=\xi_n$ for every n>m. Then $f\in [x,b]$ $\cap D(M(B_n))$.

It is contradictory to (5).

There are only ω_1 many b_μ 's. So the extending will go ω_1 many times. It is impossible. Why? Suppose $\mu_{n,j} < \omega_1$ is an ordinal. We define inductively

$$\mu_{nj+1} = \begin{cases} \min\{\eta\colon x(n) < b_{\eta}(n) < b_{\eta}(n)\}, \\ \text{ if } \exists_{\eta} > \mu_{nj}(x(n) < b_{\eta}(n) < b_{\mu_{nj}}(n)) \\ \\ \mu_{nj}, \text{ if } \not\exists_{\eta} > \mu_{nj}(x(n) < b_{\eta}(n) < b_{\mu_{nj}}(n)) \end{cases}$$

and $b_{\mu_{n0}} = b_0$. Then

$$x(n) < \cdots < b_{nj}(n) < \cdots < b_{\mu_{nl}}(n) < b_{\mu_{nl}}(n) < b_{\mu_{nl}}(n), (*)$$

for every n < ω . There just are finitely many "<" appearing in the line (*) since every b is an ordinal. So there is a minimum among b 's (j = 0,1,...). Let

$$b(n) = \min\{b_{\substack{\mu_{nj} \\ \mu_{nj}}}(n) : j < \omega\},$$

 $\mu_n = \min\{\mu_{nj} : b_{\substack{\mu_{nj} \\ \mu_{nj}}}(n) = b(n)\}.$

It is clear that for each n < ω there is not any ordinal η > μ_n such that

$$x(n) < b_{\eta}(n) < b_{\mu_n}(n)$$
.

Let

$$\gamma = \sup\{\mu_n : n < \omega\}.$$

 $\gamma<\omega_1$ since every $\mu_n<\omega_1.$ If the extending goes ω_1 many times, then b_γ extends $M(B_\gamma)$. It implies that there is an infinite set $E\subset\omega$ such that

$$x(n) < b_{\gamma}(n) < b_{\mu_n}(n), n \in E,$$

since every b is on the matrix $M(B_{\gamma})$. It is a contradiction.

It is similar to the equality (3) that the following equality holds

$$(n_{\alpha < \omega_1}(UT_{\alpha})) U (U_{\alpha < \omega_1}(UG_{\alpha})) = X.$$

The theorem 3.7 implies

$$n_{\alpha < \omega_1} (UT_{\alpha}) = \emptyset.$$

So

$$U_{\alpha < \omega_1} (UG_{\alpha}) = X.$$

i.e. U covers X.

References

- [Kul] K. Kunen, On paracompactness of box products of compact spaces, Trans. A.M.S. 240 (1978), 307-316.
- [Ku2] _____, Set Theory, An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics 102, North-Holland (1980).
- [Ro] J. Roitman, Paracompact box products in forcing extensions, Fund. Math. 102 (1978), 219-228.

- [Ru] M. E. Rudin, Countable box products of ordinals, Trans.
 A.M.S. 192 (1974), 121-128.
- [vD] E. K. van Douwen, Covering and separation properties of box products, Surveys in general topology, Academic Press (1980), 55-129.
- [We] W. A. R. Weiss, Versions of Martin's axiom, Handbook of set-theoretic topology, North-Holland (1984), 827-886.
- [Wil] W. Williams, Boxes of compact ordinals, Top. Proc. 1 (1977), 631-642.
- [Wi2] ____, Box products, Handbook of set-theoretic topology, North-Holland (1984), 169-200.
- [Wi3] _____, Paracompactness in box products, Proc. of the 12th Winter School on Abstract Analysis, Rend. del Circ. Matem. di Palermo (1984), 313-328.

Beijing Teacher's College

Beijing P.R. China

and

S.U.N.Y. Buffalo

Buffalo, New York 14214