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ON THE COUNTABLE BOX PRODUCT 

OF COMPACT ORDINALS 

2Soulian Yang! and Scott W. Williams

If X is a topological space, then oK X (the box product 

of K many copies of X) denotes the product nKx with the 

topology induced by the family of all sets of the form 

natKu , where each U is an open set in X. For a recenta a 

survey on box products, see [Wi2]. 

Consider the following theorem due to M. E. Rudin: 

0.1 Theorem. Assume the Continuum Hypothesis holds. 

Then~ for each ordinal ~~ oW~ + 1 is paracompact. 

The conclusion to this theorem has been expanded to 

the larger class of compact spaces ([Kul]) and w many
l 

factors ([Wi3]). Under the set-theoretic statement-­

there is K-scale in ww-- the best result was "owwl + 1 is 

paracompact" ([Wil]). We offer our main result: 

0.2 Theorem. Suppose that for some cardinal K there 

is a K-scale in ww• Then~ for each ordinal A~ oW A + 1 is 

paracompact. 

1. Preliminaries 

Given a set X, w~ is the set of functions from w to the 

set X. For f and g in wx , define f =* 9 if they differ on 

lAuthor's work completed while visiting S.U.N.Y. Buffalo. 

2Author's work partially supported by N.S.F. grant. 
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only finitely many coordinates. We denote the resulting 

quotient set by VWX and write [f] {g: 9 =* fl. 

Suppose. X is an ordinal set. There are two very 

different but similarly defined orders on VWX. First of 

all, define f ~* g (f,g E oWX) provided that f(n) > g(n) 

for only finitely many n E Wi define f <* g provided that 

f(n) > g(n) for only finitely many nEw. Then we define 

[f] <* [g] if f <* gi 

[f] <* [g] if f <* g. 

It is trivial that [f] = [g] iff f =* 9 and both orders, 

<* and <*, are partial orders on VWX. 

In thiu paper~ for each x E VwX~ we fix some f E x x
 

and identify x = [f ] with f •
 x x
 

Suppose, f,g E VWX. We define
 

[f,g] = {h E VWX: f <* h <* g} = V _ [f(n),g(n)],
nEw
 

and call [f,g] basic set iff both sets {n: g(n) is limit
 

ordinal, f(n) = g(n)} and {n: f(n) is a limit ordinal} are 

finite. 

Suppose K is a cardinal. The statement there is a 

K-scale in Ww means there is an order preserving injection 

from K into Ww whose range is confinal in (ww,<*). 

Suppose Z is a topological space. Then VWZ denoted 

the quotient space induced by =* on oW z• This is known as 

the nabla product. We make strong use of an important 

lemma due to K. Kunen (see [Wi2]): 

1.1 Lemma. If Z is locally compact and paracompact then 

(1) VWZ is paracompact ilf owz is paracompact; 

(2) VWZ is a P-space (every Go-sct is open). 
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So we need only to prove VWA + 1 is paracompact in 

order to prove 0.2. 

1.2 Definition. A space X is called specially para-

compact provided that each open cover of X has a refinement 

consisting of pairwise disjoint basic sets. 

The symbol #(a) denotes the statement: VWa + 1 is 

specially paracompact. According to 1.1 #(a) implies 

VWa + 1 is paracompact. 

1.3 Theorem. If there is a K-scale in ww, then #(w )l 

is true. 

This theorem has been proved by Williams in [Wil]. But 

he stated in [Will a weaker proposition: VWwl + 1 is 

paracompact if 3 is a K-scale in ww. In fact, his proof 

really is a stronger one. 

1.4 Lemma. Suppose A is an ordinal. Then every 

clopen set in VWA + 1 is a union of pairwise disjoint basic 

sets. 

This result is implicitly proved in [Ru]. But it is 

not so easy to extract from Rudin's paper. Fortunately, in 

this paper, we need only some particular cases of the lemma: 

first case, the clopen set is a difference set between two 

basic sets; second case, the clopen set is an intersection 

of countably many basic sets. Both are not so hard to prove. 

We leave it to the readers. 
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2. Tops Refinement 

2.1 Definition. A set Mew x (A + 1) is called a matrix 

provided that there is b E A + 1 for each n < w such that 

(n,b) EM. 

2.2 Definition. Suppose f E ~WA + 1. If there is a 

member (n,b) of M for all but finitely many n, such that 

f(n) b, then we say that f is on the matrix M. The set 

{f E ~WA + 1: f is on the matrix M} is denoted by D(M). 

2.3 Lemma. Assume #(w ) is true. If a matrix M is
1

countable and D(M) is closed~ then D(M) is specially para-

compact. 

Proof. Since M is countable and D(M) is closed, it 

is easy to find an embedding map E from a basic set 

[O,g] c ~wwl + 1 into ~WA + 1, such that'E([O,g]) = D(M), 

where 0 ( 0, 0 , • •• ) and g <* wI = (w 1 ' wI' • •• ). In f ac t, 

M = {b E A + 1: (n , b ) E M n ({n} x ( A + I»} is coun tab 1e 
n 

and is a closed set for all but finitely many n. 

Let be the order type of M If M is closed, then Ilnn n n n 

is a successor ordinal, Tl = + 1. Let gn ~n = < J,JO' ~ l' • • • , 

~ , ... >. Obviously, we can define an embedding map
n 

E: [O,g] -+ ~wA + 1 satisfying E([O,g]) = D(M) in natural 

way. Moreover, g <* wI since < wI • [O,g] is speciallyJ.J n 

paracompact since #(w
l 

) and [O,g] is closed in V
W

wI + 1. 

It implies D(M) is spkcially paracompact. 

Suppose B c VWA + 1. Remember that we have fixed 

f E x for each x E ~wA + 1. Let x
 

B = {f (n): x E B}.
n x 
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If B is countable, then the matrix 

M(B) = U {{n,p): p E B}n<w n 

is also countable, where IT denotes the closure of B in 
n n 

A + 1. Moreover, D(M(B)~ is a closed set since D(M(B)) = 

'V E IT •n w n 

2.4 Definition. Suppose that [a,b] is a basic set in 

VWA + 1, B c 9wA + I is countable and R is an open cover 

of [a,b]. The notion of tops refinement of n relative to 

Band [a,b] is defined by the following cases: 

Case 1. D(M(B)) n [a,b] =~. There is an open set 

U E R such that b E U. We choose a basic set V satisfying 

b E V and V c U n [a,b]. In this case, the tops refinement 

is a singleton basic set {V}. 

Case 2. D(M(B)) n [a,b] ~~. Assume # (WI). By 2.3, 

D(M(B)) is specially paracompact since D(M(B)) is closed. 

Then D(M(B)) n [a,b] also is specially paracompact. Hence 

there is a refinement U of R consisting of pairwise disjoint 

basic sets which cover D(M(B)) n [a,b]. We call U tops 

refinement of R relative to Band [a,b]. 

Since a tops refinement might not cover [a,b], we 

notice that a tops· refinement need not be a refinement in 

the usual sense. However, we wish to make use of those 

sets not belonging to the tops refinement. 

2.5 Lemma. Suppose 13 c VWA + 1 is countable" [a,b] is 

a basic set in VWA + land R is an open cover of [a,b]. 1'hen 

there is a tops refinement U of R relative to Band [a,b]" 

and there is a partition 7' of [a,b] iHtO basic sets such 

that U c 7'. 



164 Yang and Williams 

Proof. By 2.3 D(M(B» is specially paracompact. Then 

K = D(M(B)) n [a,b] is specially paracompact. For K, as a 

subspace of VWA + 1, there is a refinement V of {U n K: 

U E R} consisting of pairwise disjoint basic sets in K. The 

tops refinement U of R relative to Band [a,b] can be 

induced by V in the following way. 

First of all, we define a map from V into the family 

of all basic sets in VWA + 1. If V = [r,s] n K E V, 

r,s E K, we define $(V) = [r,s] c [a,b] by the following 

clauses: 

(1) r(n) <	 s(n). Define r(n) from r(n). If r(n) is a 

successor	 ordinal; define 

r(n) = sup{p E A + 1 : p < r(n) & p E K } + 1 n

if r(n) is a limit ordinal and S = {p E A + 1 : p < r(n) & 

p E K } ~	 ~; define r(n) = a(n) if r(n) is a limit ordinal 
n 

and S = ~. 

(2) r(n) = s (n). In this case s(n) is an isolated 

point of K . Define r(n) = s(n) if s(n) is still an n 

isolated point in A + 1. If sen) is a limit ordinal, then 

we define r(n) in the same way as we did in (1). 

We claim that: 

(a) V = $(V) n K for every V E Vi 

(b) ~(V) = {~(V): V E V} is pairwise disjoint; 

(c) U<p (V)	 is a basic set. 

The clauses (a) and (b) are trivial. We prove (c). 

In fact, let h sup K , then n n
 

[a,h]
 

where h = Xn<whn. Let us prove this equality. Suppose 

x E [a,h]. Then a(n) < x(n) < h(n) for almost all n. Let 
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m(n) min P, if P = {u E K : U > x(n)} 1 0;n 

m(n) h(n), if P = 0; m = (m(O),m(l),··.,m(n), ••. ). 

Since m E K, there is a V [r,s] n K such that ill E V. Then 

r(n) < r(n) < x(n) < m(n) < s(n) 

according to (1), (2) and r,m,s E K. It means x E ~(V). 

Then x E U<P(V). SO far we have proved the inclusion "e". 

The other inclusion ":::>" is trivial. 

Notice that every <P(V) contains only one member V of 

V, and V c U for some U E R. Without loss of generality, 

we suppose U is a basic set. Then we can find naturally 

a basic set ~(V) in VWA + 1 such that 

V e ~(V) C <P(V) and ~(V) e U. 

Let 

u { ~ (V): V E V}, II {<t> (V),~ (V): V E V} U 

Then 

[a,b] = [a,h] U ([a,b]'[a,h]) = (uU) u (ull). 

By 1.4, every member of H is a union of pairwise disjoint 

basic sets. Hence there is a collection ~ of pairwise dis­

joint basic sets such that uy = uN. Then ~ = U u Y is a 

partition of [a,b] and U e ~. 

2.6 Definition. Every element of ~U is called an 

uncovered tape. 

3. The Proof of the Main Theorem 
W 

We aSSUI11e that there is a K-scale in w. We are going 

to prove tha.t #(A) is true for every ordinal A. 
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For simplicity, let X = VWA + 1. Suppose R is an open 

cover of X. We intend to build a tree T consisting of basic 

sets (exactly, of uncovered tapes). The tree T is ordered 

by > and the height of T is wI' where the order> is defined 

by 

[a,b] > [r,s] iff a <* r ~* s ~* b 

(s ~* b means s.~* band s ~* b). Simultaneously, we will 

construct a collection G of basic sets for each ordinal a 

a < wI so that U = U{G : a < wI} is a refinement of R a 

covering X. All of them subject to the following restric­

tions: 

(3.1) The level 0, which is denoted by TO' of T is {xi 

and GO = ~. 

(3.2) T denotes the a'th level of T. Then (UTa) Ua
 

(UG ) = X and the elements of T U G are pairwise disjoint
a a a 

for every a < wI. 

(3.3) For each a < wI and VEGa there is an U E R such 

that V c U. 

(3.4) The elements of Ua<nGa are pairwise disjoint for 

all ·n < wI. 

(3.5) a < S < WI implies G C G (Then we have a S 

U(GS'G ) c UTa' a < S, which follows from (3.2) anu thea 

inclusion G C GS) · a 

(3.6) Suppose A is a branch of n'th subtree U{T : a < n},a 

n < WI' then the leng~h of A is n, and the intersection nA 

is non-empty. 

Suppose ~ < WI. We assume inductively that, for each 

C < ~, T , G , a < C have been built and satisfy (3.1)-(3.6)a a 
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by taking t instead of wI in the statements. It is easy to 

check that T , G , a < ~, also satisfy (3.1)-(3.6) by taking
a a 

~ instead of WI in the statements. 

Now we built T~ and G~ by the following way. 

First of all, we claim that 

na<~ (UTa) = u{nA: A E B}, (1) 

where B is the collection of all branches of the with sub-

tree U{T : a < ~}. It follows trivially from (3.6) and a 

(3.2) • 

Suppose A = {va = [aa,b ] E T o. < ~ } is a branch. a o. • 

We conclude that A = nA ;f ~, because there is no (w,w*) 

w 
gap in W and ~ < WI· Moreover, the set A is clopen since 

~ < WI and X is a P-space (by 1.1) . Then A = USA where 

SA is a collection of pairwise disjoint basic sets (by 1.4). 

Let 13 {b · [ao.,b ] E A} • By 2.5 there is a tops= a· a 

refinement U of 7? relati ve to b and C, C E and thereSA' 

is a partition 'Pc of C such that Uc c 'Pc· Let 

W = {A = nA: A E B}. 

We define 

G (U{U : c E SA & A E W} ) u (U {G : a < ~} ) , 

c 

w c 0. 
(2) 

TlJ U{7'c'Uc : C E SA & A E W}. 

If [r,s] E T 
~ , then [r, s] < Va for all Va E A. In fact, 

[r,s] E 'P for some C E and some A E W, then [r, s] c ASAC 

C Va for every Va E A. On the other hand, [r, s) ~ Uc 
implies s ~ uUc • But the top of V = [aa,b ] , is an 

a a bu' 

element of UUC · Hence s ~* b. 

The rest of the job is to check if T G , Ct < ~ + 1a' a 

still satisfy (3.1)-(3.6) by taking ~ + 1 instend WI. We 

check the clause (3.2) and leave the rest to the readers. 



168 Yang and Williams 

It is easy to check that 

(n (UT» U (U (UG) ) X. (3) 
a<~ a a<~ a
 

Now we prove
 

(UT ) U (UG ) = X, 
~ ~ 

i.e. (3.2) holds. In fact, if x E X, then either 

x E n (UT)' or x ~ n (UT). If x E n (UT), then 
a<~ a a<~ a a<~ a 

x E U (nA: A E· B) by the equality (1). Thus 

x E nA = A, 

x E C, 

where A E B, C E SA and A USA. Because C u7'C and 

Uc c 7'c' we have 

x E: (U(7'c,U » U (uU ).
C c

So 

) x E (UT ) U (UG ). (4) 
~ ~ 

If x ~ n (UT), then the fact (4) follows from (3) and 
a<~ a 

(2) • 

The clauses (3.2), (3.3) imply that U = U{G : a < wI}
a \ 

is a refinement of ~ and the elements of U are pairwise 

disjoint. Is U a cover of X? We have to prove the follow­

ing theorem in order to answer the question. 

3.7 Theorem. Suppose A = {Va = [aa,b ] ETa: a . wI}a 

is a branch of the tree T. Then nA = ~. 

Proof. If the conclusion is false, then there is a 

point x E nA. Let B ,denote the set {b : a < ~}. 
~ a 

M(B ) tx denote such a submatrix of M(B ) that 
~ ~ 

M(B )fx = {(n,j) E M(B): n < w, j > x(n)}. 
~ ~ 

We say that a point b E X extends a matrix M if there is an 

infinite set E c w such that b(n) < j for all nEE and 

< n, j ) E M. 
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We conclude that, for each ~ < wl' b~ extends M(B~) fx. 

In fact, since [a~,b~] E T~, there is a basic set 

C c n{v ETa: a < ~} such thata 

[a~,b~] E 'Pc'Uc . 

Because U covers D(M(B~» n C, and 'Pc is a partition of C,c 

we have 

[a ,b ] n D(M(B» S. 
~ lJ ~ 

Hence 

[x,b] n D(M(B » = S. (5)
lJ 

If the assertion fails then for every infinite E c w there 

is some nEE and C E ~ with x(n) < C < b(n). So we 
~ n 

can find an mEw, for each n > m, there is C E ~ with n ~ n 
x(n) <, C < b(n) . Let f(n) for every n > m. Then n Cn
 

f E [x,b] n D(M(B ».
 
~ 

It is contradictory to (5) • 

There are only wI many b ' s. So the extending will 
~ 

go many	 times. It is impossible. Why? SupposewI
 

< is an ordinal. We define inductively
lJnj wI 

min{ n: x (n) < b (n) < b (n) }, 
n lJnj 

~nJ'+l if 3n > ~ . (x(n) < b (n) < b (n})
nJ	 n ~nj 

lJ ., if .ifn	 > IJ . (x (n) < b (n) < b (n) )
nJ n] n ~nj 

and b = b O• Then 
~nO 

x(n) < •••	 < b . (n) < ••• < b (n) < b (n) , (* ) 
- nJ - - lJnl lJnO 

for every n < w. There just are finitely many "<" appear­

ing in the line (*) since every b is an ordinal. So 
lJnj 

there is a minimum among b 's (j = 0,1,···). Let 
lJnj 
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b(n) = min{b (n): j < w},
 
lJnj
 

lJ = min{lJ .: b (n) b(n)}.
n nJ lJ nj
 

It is clear that for each n < w there is not any ordinal
 

Tl > J..1 such that n 

x (n) < b (n) < b (n).

Tl J..1
 n 

Let 

Y = sup{lJ : n < w}.n 

Y < WI since every lJ < WI. If the extending goes WI manyn 

times, then b extends M(B ). It implies that there is an y y
 

infinite set E c W such that
 

x (n)	 < b (n) < b (n), nEE,
Y lJ n 

since every b is on the matrix M(B). It is a contradic­
lJ	 Yn
 

tion.
 

It is similar to the equality (3) that the following 

equality holds 

(n <	 (UT) U (U < (UG) ) X. 
a WI a a WI a 

The theorem 3.7 implies 

n <	 (UT) = ~. 
a Wi a
 

So
 

U <	 (UG) X. 
a WI a 

i. e.	 lj covers X. 
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