TOPOLOGY PROCEEDINGS Volume 13, 1988

Pages 73–82

http://topology.auburn.edu/tp/

QUASICOMPONENTS AND SHAPE THEORY

by

JERZY DYDAK AND MANUEL ALONSO MORÓN

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

QUASICOMPONENTS AND SHAPE THEORY

Jerzy Dydak and Manuel Alonso Morón

K. Borsuk [Bo] (p. 214) constructed a functor A: $SH_{CM} \rightarrow TOP$ from the shape category of compacta to the topological category such that $\Lambda(X)$ is the space of components of X. Moreover, for every fundamental sequence $f = \{f_k, X, Y\}$ from X to Y and for every component C of X, $\{f_k, C, \Lambda(C)\}$ is a fundamental sequence from C to $\Lambda[f](C)$. Several authors (see $[Ba_{1,2,3}]$, [G] and [S]) tried to generalize this result to non-compact spaces (locally compact or metrizable). In the present paper we show that the correct setting for possible generalizations is the shape analogue of quasicomponents.

Given a space X let ΔX be the set of all quasicomponents of X with the quotient topology. $p_X: X \rightarrow \Delta X$ is the projection and S: HTOP \rightarrow Sh denotes the shape functor (see [D-S]) from the homotopy category to the shape category. For any map a: $X \rightarrow Y$ and $X_0 \in \Delta X$ there is a unique element of ΔY containing $a(X_0)$. That means the map $p_Ya: X \rightarrow \Delta Y$ factors through ΔX , so there is a continuous map $\Delta(a): \Delta X \rightarrow \Delta Y$ such that $\Delta(a)p_X = p_Ya$. Moreover, a homotopic to b implies $\Delta(a) = \Delta(b)$. Thus we have a functor Δ : HTOP \rightarrow TOP from the homotopy category to the topological category. If one wants to get a functor λ : SH \rightarrow TOP from the shape category, the natural way is to take the Čech system { x_u, p_{uv}, cov } of x (x_u are the nerves of numerable coverings u of x) and define $\Delta(x)$ as the inverse limit $\lim_{\leftarrow} \{\Delta x_u, \Delta(p_{uv}), cov\}$ (with the inverse limit topology) of the system { $\Delta x_u, \Delta(p_{uv}), cov$ }.

Theorem 1. If every open cover of ΔX admits an open refinement consisting of mutually disjoint sets, then the natural map $\Delta X \rightarrow \tilde{\Delta}(X)$ is a homeomorphism.

Proof. The map $\Delta X \rightarrow \tilde{\Delta}(X)$ is always one-to-one. Indeed, if F and G are two different quasicomponents of X, then there is an open-closed set U in X with U containing F and X-U containing G. The covering $U = \{U, X-U\}$ determines X_{U} such that F and G are sent to two different points of $\Delta X_{U} = X_{U}$.

Claim. If C is a closed set in ΔX , then the image of C in $\Delta(X)$ is equal to $\Pi\{\Delta p_{ij}(C): U \in C \cup V\} \cap \Delta(X)$.

Proof of Claim. Obviously the image of C in $\Delta(X)$ is contained in $\Pi\{\Delta p_{U}(C): U \in COV\} \cap \Delta(X)$. Suppose $\{c_{u}, u \in COV\} \in \Pi\{\Delta p_{U}(C): u \in COV\} \cap \Delta(X)$. Then $\{p_{u}^{-1}(C_{u}), u \in COV\}$ is a system of open-closed sets in X. If its intersection has a mutual point with C, we are done. So let us assume $\cap \{p_{u}^{-1}(C_{u}), u \in COV\} \subset X - C$. Notice that the sets $X-p_{u}^{-1}(C_{u}), u \in COV\} \subset X - C$. Notice that the sets $X-p_{u}^{-1}(C_{u}), u \in COV$, are open-closed in X. Thus there is a refinement W of $\{X - C\} \cup \{X - p_{u}^{-1}(C_{u}), u \in COV\}$ consisting of mutually disjoint open-closed sets. By the definition of the Čech system of X, $W \in COV, X_{u}$ is the nerve of W and $p_{u}: X + X_{u}$ is an enumeration of W. In our case $X_{\mathcal{W}}$ is a 0-dimensional complex and $p_{\mathcal{W}}: X \to X_{\mathcal{W}}$ maps each element U of \mathcal{W} onto the vertex U of X. Observe that $\Delta X_{\mathcal{W}} = X_{\mathcal{W}}$ and $C_{\mathcal{W}}$ must be a vertex U_0 of $X_{\mathcal{W}}$. On the other hand U_0 is contained in $X - p_{\mathcal{V}}^{-1}(C_{\mathcal{V}})$ for some \mathcal{V} . Thus $p_{\mathcal{V}}(C_{\mathcal{W}})$ is disjoint with $C_{\mathcal{V}}$, a contradiction.

Notice that for each X_u the set $\Delta p_u(C)$ is closed in the discrete space ΔX_u (here $p_u: X \rightarrow X_u$ are the projections). Since $\Pi\{\Delta p_u(C): u \in COV\}$ is closed, we infer $\Delta X \rightarrow \tilde{\Delta}(X)$ is closed. Taking C = X we get that $\Delta X \rightarrow \tilde{\Delta}(X)$ is onto.

Corollary 1. The natural map $\Delta X \rightarrow \Delta(X)$ is a homeo-morphism if one of the following conditions is satisfied:

a. ΔX is paracompact and dim $\Delta X = 0$,

b. X is locally compact metrizable and each component of X is compact.

Proof. Case a) follows from Theorem 3 in [E] (p. 278). In case b) X is a topological sum of compact metrizable spaces (see [Ba₂], p. 258).

Remark. In [M] (proposition 1.4) it is shown that each quasicomponent of X is connected provided X is normal, $p_X: X \rightarrow \Delta X$ is closed and ind(ΔX) = 0.

Theorem 2. Suppose $f: X \to Y$ is a shape morphism, Y is paracompact, $\dim \Delta Y = 0$ and $p_Y: Y \to \Delta Y$ is closed. If B is a closed subset of ΔY and $A \subset \Delta X \cap \Delta(f)^{-1}(B)$, then there exists a unique shape morphism

$$f_{0}:p_{X}^{-1}(A) \rightarrow p_{Y}^{-1}(B) \text{ such that } S(j)f_{0} = f \cdot S(i), \text{ where}$$

i: $p_{X}^{-1}(A) \rightarrow X \text{ and } j: p_{Y}^{-1}(B) \rightarrow Y \text{ are inclusions.}$

Theorem 2 is a simple consequence of the following:

Lemma 1. Suppose B is a subset of a paracompact space Y such that each neighborhood of B in Y contains an open-closed neighborhood of B in Y. Let $\{Y_{U}, P_{UV}, COV\}$ be the Cech system of Y. For each covering $U \in COV$ consider the subcomplex N(U|B) (equal to the nerve of U restricted to B) of Y_{U} and let B_{U} be the union of all components of points of N(U|B) in Y_{U} . Then the natural pro-homotopy map $B \rightarrow \{B_{U}, U \in COV\}$ satisfies the continuity condition.

Proof. COV is the set of all numerable coverings of Y, Y_U is the nerve N(U) of U and p_U: $Y \rightarrow Y_U$ is an enumeration of U (see [D-S], pp. 20-22). The induced maps B \rightarrow B_U will be denoted by q_U. We need to show two properties:

a. For each map f: $B \rightarrow K \in ANR(M)$ there is $u \in COV$ and f_{II} : $B_{II} \rightarrow K$ with f homotopic to $f_{II}q_{II}$.

b. If $f_u, h_u: B_u \rightarrow K$ are maps such that $f_u q_u$ is homotopic to $h_u q_u$, then there is $V \geq u$ with $f_u q_{Vu}$ is homotopic to $h_u q_{Vu}$, where $q_{Vu}: B_V \rightarrow B_u$.

Since we can change K up to homotopy type we may assume K is a complete metric space, and therefore it is an ANE for paracompact spaces (see [D-K]). If f: B \rightarrow K, we extend f to f': V \rightarrow K, where V is an open-closed set containing B, and then we extend f' to f": Y \rightarrow K. Since Y \rightarrow {Y_U, $U \in A$ } satisfies the continuity condition, there is $U \in COV$ and g_U : Y_U \rightarrow K with f" homotopic to $g_U g_U$. Now take $f_U = g_U | B$.

If f_{U}, h_{U} : $B_{U} + K$ are maps such that $f_{U}q_{U}$ is homotopic to $h_{U}q_{U}$, choose an open-closed neighborhood V of B in Y with $q_{U}(V)$ contained in B_{U} . By extending the homotopy between $f_{U}q_{U}$ and $h_{U}q_{U}$ we may assume that those two maps are homotopic as maps from V to K. Let $W = (U|V) \cup (U|Y - V)$. Define a map s: $Y_{W} \rightarrow K$ (t: $Y_{W} \rightarrow K$) as $f_{U}P_{WU}$ on N(U|V) ($g_{U}P_{WU}$ on N(U|V)) and constant on N(U|Y - V). Then sp_{W} is homotopic to tp_{W} , so there is $V \geq W$ with sp_{VW} is homotopic to tp_{VW} . Since $N(U|V) = B_{W}$, we are done.

A simple consequence of Theorem 2 is the following:

Corollary. Suppose f: $X \rightarrow Y$ is a shape isomorphism of paracompact spaces. If both maps $p_X: X \rightarrow \Delta X$, $p_Y: Y \rightarrow \Delta Y$ are closed and dim $\Delta X = \dim \Delta Y = 0$, then for every $X_0 \in \Delta X$ there is a shape equivalence $f_0: X_0 \rightarrow Y_0 = \tilde{\Delta}(f)(X_0)$ such that $S(j)f_0 = fS(i)$, where is $X_0 \rightarrow X$ and j: $Y_0 \rightarrow Y$ are inclusions.

Here is a partial converse to the above Corollary:

Theorem 3. Suppose f: $X \rightarrow Y$ is a closed map of paracompact spaces such that for every $X_0 \in \Delta X$ the

restriction $f_0: X_0 \rightarrow Y_0 = \Delta(X_0)$ of f is a shape equivalence and $\Delta(f): \Delta(X) \rightarrow \Delta(Y)$ is a bijection. If $p_Y: Y \rightarrow \Delta Y$ is closed and dim $\Delta Y = 0$, then f is a shape equivalence.

Proof. Replacing Y by the mapping cylinder of f we may assume that f is the inclusion of a closed set X into Y. We need to show that for each map a: $X \rightarrow K \in ANR(M)$ there is an extension a': $Y \rightarrow K$. Since we can change K up to homotopy type we may assume K is a complete metric space, and therefore it is an ANE for paracompact spaces (see [D-K]). For each $X_0 \in \Delta X$ we can extend a $|X_0$ to $Y_0 \in \Delta Y$ containing X_0 . Subsequently we extend a from X to an open-closed neighborhood V of Y_0 in Y. Now, choose a refinement of $\{V\}$ consisting of mutually disjoint open sets and it is clear how to define an extension of a.

If a,b: $Y \rightarrow K$ are two maps such that a |X and b |X are homotopic, we proceed similarly as above to show that a and b are homotopic.

Remark. Theorem 3 is a generalization of Theorem 4.5.5 in [D-S] (p. 62).

Theorem 4. Suppose X is a paracompact space such that $p_X: X \rightarrow \Delta X$ is closed and $\dim \Delta X = 0$. If for every $X_0 \in \Delta X$ the deformation dimension $def-dim(X_0)$ is less than or equal to n, then $def-dim(X) \leq n$.

Proof. It suffices to show that for every simplicial complex K (with the metric topology) any map f: $X \rightarrow K$ is homotopic to a map g with $g(X) \subset K^{(n)}$.

Claim. If def-dim(Y) \leq n, then any map g: $Y \neq \bigcup_{p=1}^{\infty} K^{(p)} \times [p,\infty)$ is homotopic to a map which values lie in $\bigcup_{p=1}^{n} K^{(p)} \times [p,\infty)$.

Proof of Claim. Since the identity map

$$\bigcup_{p=1}^{\infty} K_{w}^{(p)} \times [p,\infty) \rightarrow \bigcup_{p=1}^{\infty} K^{(p)} \times [p,\infty)$$

is a homotopy eugivalence (here K_w means K with the weak topology) we can factor g up to homotopy through $L = \bigcup_{p=1}^{\infty} K_w^{(p)} \times [p,\infty)$ (L is considered with the natural CW structure) and using the fact that def-dim(Y) \leq n we can push g into $L^{(n)}$ which is contained in $L_n = \bigcup_{p=1}^n K^{(p)} \times [p,\infty)$.

Suppose g: X \rightarrow K. Since the projection $\pi: L' = \bigcup_{p=1}^{\infty} K^{(p)} \times [p, \infty) \rightarrow K$ is a homotopy equivalence (π induces isomorphisms of homotopy groups at each point), there is g': X \rightarrow L' with g' $\approx \pi g$. Given any quasicomponent X₀ of X, g'|X₀ is homotopic to g₀ with g₀(X₀) contained in L_n. Since L' is an ANE for paracompact spaces (see [H], p. 63), we can find an open closed neighborhood V₀ of X₀ in X such that g'|V₀ is homotopic to a map with values in L_n. Finally we can find a covering V of X consisting of mutually disjoint open sets such that g'|V is homotopic to a map with values in L_n for every V in V. Now, it is clear that g' is homotopic to g and its values are in K⁽ⁿ⁾.

Remark. In the compact metrizable case Theorem 4 was proved by S. Nowak [N].

Theorem 5. Suppose X is a paracompact space such that $p_X: X \to \Delta X$ is closed and dim $\Delta X = 0$. If F is a closed covering of X such that $p_X^{-1}(p_X(F)) = F$ and every $B \in F$ is movable (uniformly movable), then X is movable (uniformly movable).

Proof. We will prove only the uniformly movable case. The proof of the movable case is similar. Let $\{X_{U}, P_{UV}, COV\}$ be the Čech system of X. By Lemma 1, the natural pro-homotopy map $B + \{B_{U}, U \in COV\}$ satisfies the continuity condition for each $B \in F$. Thus for each covering $U \in COV$ and for each $B \in F$ there is a covering $V(B) \in COV, V(B) \geq U$, and a shape morphism $g_B: B_{V(B)} \neq X$ such that $S[p_{U}]g_B = S[p_{V(B)U}]$. Choose an open refinement W of $\{(p_{V(B)})^{-1}(B_{V(B)}): B \in F\}$ consisting of mutually disjoint open sets. Now, we define an open refinement V of U as follows: given W in W we choose $B \in F$ with $W \subset (p_{V(B)})^{-1}(B_{V(B)})$ and declare the elements of V intersecting W to be precisely $W \cap V(B)$. Notice that $N(W \cap V)$ is contained in $B_{V(B)}$, so that we can piece together g_B 's to get g: $N(V) = X_U + X$ with $S[p_{U}]g = S[p_{VU}]$.

Remarks. Theorem 5 is related to Theorem 3.1 of [M]. In [D-S-S] there is an example of a non-movable metrizable space X such that each of its quasicomponents is movable. The same example shows that one cannot drop both of the hypotheses (p_{y} closed and dim $\Delta X = 0$) in Theorem 4.

References

- [Bo] K. Borsuk, Theory of shape, Polish Scientific Publishers, Warsaw 1975.
- [Ba₁] B. J. Ball, Shapes of saturated subsets of compacta, Colloq. Math. 24 (1974), 241-246.
- [Ba₂] B. J. Ball, Quasicompactifications and shape theory, Pacific J. Math. 84 (1979), 251-259.
- [Ba₃] B. J. Ball, Partitioning shape-equivalent spaces, Bull. Acad. Pol. Sci. 29 (1981), 491-497.
- [D-K] J. Dydak and G. Kozlowski, A generalization of the Vietoris-Begle theorem, Proc. Amer. Math. Soc. 102 (1988), 209-212.
- [D-S] J. Dydak and J. Segal, Shape theory: An introduction, Lecture Notes in Math. 688, Springer Verlag, 1978, 1-150.
- [D-S-S] J. Dydak, J. Segal and Stanislaw Spiez, A nonmovable space with movable components, Proceedings of the Amer. Math. Soc. (to appear).
- [E] R. Engelking, Outline of general topology, North-Holland Publishing Co., Amsterdam 1968.
- [G] S. Godlewski, On components of MANR-spaces, Fund. Math. 114 (1981), 87-94.
- [H] S. T. Hu, Theory of retracts, Wayne State University Press, Detroit, 1965.
- [M] M. A. Morón, Upper semicontinuous decompositions and movability in metric spaces, Bull. Acad. Pol. Sci. 35 (1987), 351-357.
- [N] S. Nowak, Some properties of fundamental dimension, Fund. Math. 85 (1974), 211-227.
- [S] J. M. R. Sanjurjo, On a theorem of B. J. Ball, Bull. Acad. Pol. Sci. 33 (1985), 177-180.

University of Tennessee

Knoxville, TN 37996

and

E. T. S. de Ingenieros de Montes Universidad Politecnica de Madrid Ciudad Universitaria Madrid-28040, SPAIN