TOPOLOGY PROCEEDINGS

Volume 13, 1988

Pages 137-160

http://topology.auburn.edu/tp/

CONTINUA ARBITRARY PRODUCTS OF WHICH DO NOT CONTAIN NONDEGENERATE HEREDITARILY INDECOMPOSABLE CONTINUA

by Michel Smith

Topology Proceedings

Web: http://topology.auburn.edu/tp/

Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

CONTINUA ARBITRARY PRODUCTS OF WHICH DO NOT CONTAIN NONDEGENERATE HEREDITARILY INDECOMPOSABLE CONTINUA

Michel Smith

Let $X = [0,\infty)$, let βX be the Stone-Cech compactification of X, and let $X^* = \beta X - X$. (See [W], [S1] for background information.) The author has shown [S2] that if κ is a cardinal then the topological product $\alpha \in \mathbb{K} \times \mathbb{K}$ does not contain a nondegenerate hereditarily indecomposable continuum. This result is surprising in view of Bellamy's result [Be] which implies that every nondegenerate subcontinuum of X* contains a nondegenerate indecomposable continuum. Also in the metric case Bing [Bi] showed that every two dimensional continuum contains a nondegenerate hereditarily indecomposable continuum. Therefore every product of two nondegenerate metric continua contains a nondegenerate hereditarily indecomposable continuum.

It is the purpose of this paper to generalize the author's original result. Let X denote a locally compact $\sigma\text{--compact}$ metric space. We define the property of uniformly subdecomposable and show that if compact subsets of X have this property then X* does not contain a hereditarily indecomposable continuum. Futhermore if X is a locally compact $\sigma\text{--compact}$ metric space so that X* does not contain a nondegenerate hereditarily indecomposable continuum then $\prod\limits_{\alpha \in \mathsf{K}} \mathsf{X}^*$ also does not contain a nondegenerate hereditarily indecomposable continuum.

Definitions and Notation

If X is a space and H \subseteq X then $\operatorname{Cl}_{\mathbf{Y}}(\mathsf{H})$ denotes the closure of H in X and $\operatorname{Bd}_{\mathbf{X}}(\mathbf{H})$ denotes the boundary of H in X. If $Y = \prod_{n \in \mathbb{N}} X$ is a product space and $n \in \kappa$ then π_n : Y + X_n is the natural projection of Y onto the $n^{\frac{th}{n}}$ coordinate space. The set of positive integers is denoted by N. If X is a metric space then the space βX will be identified with the space of ultrafilters of closed subsets of X [W] and the points of X will be identified with the fixed ultrafilters in βX . If 0 is open in X then $\operatorname{Rgn}_{\beta X}(0)$ denotes the open set in βX defined by $\operatorname{Rgn}_{\beta X}(0)$ = $\{u \in \beta X | 0 \text{ contains a set in } u\}$. The subscript βX may be omitted for notational convenience. If X is a locally compact metric space and H is a closed subset of X then the spaces ${\tt H}^{\star}$ and ${\tt X}^{\star} \, \cap \, {\tt Cl}_{{\tt R}\,{\tt X}}{\tt H}$ are homeomorphic and are sometimes identified. If G is a collection of subsets of X so that if G' is a finite subcollection of G then some member of q is contained in OG' then G is called a filter base of subsets of X.

If X is a space then K(X) denotes the space of compact subsets of X with the standard hyperspace topology (see [N]), and C(X) denotes the subspace of K(X) consisting of the elements of K(X) which are subcontinua of X. If X is compact (metric) then so are K(X) and C(X).

We now wish to define a general class of metric spaces whose remainders will not contain hereditarily indecomposable continua.

Definition. The metric space X is uniformly subdecomposable if and only if in each closed (with respect to the Hausdorff metric) collection Z of subcontinua of X a closed collection W of subcontinua can be inscribed so that each member of Z contains a member of W and the members of W admit a decomposition into two subcontinua A(I) and B(I) so that non-empty subcompacta a(I) can be chosen in A(I) - B(I) with $a(I) \cap \bigcup \{B(J) | J \in W\} = g$ and analogous compacta b(I) can be chosen in B(I) - A(I).

Definition. Suppose that G is a set each element of which is a collection of subsets of the space X. let Ls(G) = $\bigcap \{Cl_{RX}(\bigcup g) \mid g \in G\}$. Note that $p \in Ls(G)$ if and only if $p \in \beta X$ and every open set in βX containing pintersects a set in each element of G.

The following lemma follows easily from the definition.

Lemma 1.1. If G is a set of collections of subsets of the space X then Ls(G) is closed in βX .

Assume in the following lemmas that X is a locally compact metric space.

Lemma 1.2. Suppose that K is a subcontinuum of X*, p and q are two points of K and U is an open set in X so that there is an element $H_p \in p$ and an element $H_q \in q$ so $\textit{that} \ \ \textbf{H}_{\text{D}} \subseteq \textbf{U} \ \textit{and} \ \ \textbf{H}_{\text{G}} \subseteq \textbf{X} \ - \ \textbf{Cl}_{\textbf{X}} \textbf{U}. \quad \textit{Then} \ \ \textbf{Cl}_{\textbf{B}\textbf{X}} (\textbf{B} \textbf{d} \textbf{U}) \ \cap \ \textbf{K} \neq \emptyset.$

Proof. Assume $Cl_{RX}(BdU) \cap K = \emptyset$. Let $V = X - Cl_XU$. Then $K \subseteq Rgn(U) \cup Rgn(V)$ because $Cl_{gX}(BdU) \cap K = \emptyset$. But $p \in Rgn(U)$ and $q \in Rgn(V)$, and Rgn(U) and Rgn(V) are disjoint open sets in βX . This contradicts the connectedness of K.

Lemma 1.3. Suppose that J is a set of collections of subsets of X which is a filter base and for each $j \in J$, j is a collection of continua. Suppose further that M is a collection of closed subsets of X which is a filter base such that if $j \in J$ then $\cup j$ contains an element of M, and that u is an ultrafilter in βX that extends M. Furthermore for each $j \in J$ and $H \in u$ let $f(j,H) = \{I \in j | I \cap H \neq \emptyset\}$ and let $F = \{f(j,H) | j \in J$, $H \in u\}$. Then Ls(F) is a continuum in βX which contains u.

Proof. Assume the hypothesis of the lemma and let $j \in J$ and $H \in u$. Then there is a set $\hat{H} \in M$ so that $\hat{H} \subset \cup$ j. Then $\hat{H} \cap H \neq \emptyset$ and $\hat{H} \cap H \subset \cup$ j. So some element I of j intersects $\hat{H} \cap H$. So $I \in f(j,H)$. Therefore for each $j \in J$ and $H \in u$ we have $f(j,H) \neq \emptyset$.

Assume that $u \not\in Ls(F)$. Then there is an open set 0 containing u and an element $f(j,H) \in F$ so that $(\cup f(j,H)) \cap 0 = \emptyset$. Since $u \in 0$ there is an element $H' \in u$ such that $H' \subset 0 \cap X$. By hypothesis there is an element $H'' \in M$ so that $H'' \subset U$ j. Therefore $H \cap H' \cap H'' \in u$. But $H \cap H' \cap H'' \subset 0 \cap X$ and $H \cap H' \cap H'' \subset U$ f(j,H) which is a contradiction. Therefore $u \in Ls(F)$.

Suppose that Ls(F) is not a continuum. Then Ls(F) is the union of two disjoint compact sets A and B, and assume $u \in A$. Let U_A and U_B be disjoint open sets containing A and B respectively. Then Ls(F) $\subset U_A \cup U_B$. For each point $x \in \beta X - U_A \cup U_B$ there is an open set 0_x and an element $f(j_x, H_x)$ of F so that $(\cup f(j_x, H_x)) \cap 0_x = \emptyset$. Some finite

TOPOLOGY PROCEEDINGS

subcollection 0_{x_1} , 0_{x_2} , ..., 0_{x_n} of $\{0_x | x \in \beta X - U_A \cup U_B\}$ covers βX - U_A \cup U_B . Let H be an element of u with $\overset{\frown}{H} \subseteq U_{\underline{h}}$, let j be an element of J which is a subset of $j_{x_1} \cap j_{x_2} \cap \cdots \cap j_{x_n}$, and let $\hat{H} = \hat{H} \cap H_{x_1} \cap \cdots \cap H_{x_n}$. But then $(\bigcup_{i=1}^{n} (\bigcup_{i=1}^{n} (\bigcup_{i=1$ of f(j,H) intersects \hat{H} and cannot intersect $\bigcup_{i=1}^{n} 0_{x_{i}}$ and hence cannot intersect βX - $U_{\lambda} \cup U_{\beta}$. Furthermore each element of f(j,H) is connected and intersects U_n . Therefore \cup f(j,H) \subset U_{λ}. Therefore Ls(F) \subset U_{λ} which is a contradiction.

Theorem 1. Let X be a locally compact o-compact space so that every compact subspace of X is uniformly subdecomposable. Then X* does not contain a nondegenerate hereditarily indecomposable continuum.

Proof. Let $K \subseteq X^*$ be a nondegenerate continuum. Let $p \in K$, U be an open set in X so that $p \in Rgn(U)$, K $\not\subseteq Cl_{gX}U$, and let $H \in p$ be such that $H \subseteq U$. Since X is σ -compact there exists be a sequence of compact sets H_1, H_2, \ldots with $H_i \cap H_j = \emptyset$ if $i \neq j$, $\bigcup_{i=1}^{\infty} H_i \subset H$, and $\bigcup_{i=1}^{\infty} H_i \in p$. Let U_1 , U_2 , \cdots be a sequence of open sets in X so that $H_i \subseteq U_i \subseteq Cl_XU_i \subseteq U$ and $Cl_X(U_i)$ is compact for all i and $Cl_XU_i \cap Cl_XU_i = \emptyset$ if $i \neq j$. Let \hat{U} denote $\bigcup_{i=1}^{\infty} U_i$ and let \hat{H} denote $\bigcup_{i=1}^{\infty} H_i$.

Let $Q = Cl_{gx}Bd(\hat{U})$. By Lemma 2, $Q \cap K \neq \emptyset$.

Let G be the set to which the collection g belongs if and only if g is an open set in βX which contains K. If $g \in G$ then let Tg be the collection to which I belongs if and only if I is a subcontinuum of $\text{Cl}_{X}(\hat{\mathbb{U}})$ which intersects both Q and $\hat{\mathbb{H}}$ and which lies in $\text{Cl}_{X}(X \cap g)$.

Claim 1. Tg $\neq \emptyset$ for all g \in G.

Proof. Suppose $g \in G$ and $Tg = \emptyset$. Let d be an open set in βX such that $K \subseteq d \subseteq Cl_{\beta X}d \subseteq g$. Let $W = X \cap d$. Let $H' \subseteq H$ be such that $H' \subseteq W$ and $H' \in p$. Let $H_{\underline{i}}' = H_{\underline{i}} \cap H'$. Then by assumption no subcontinuum of $Cl_XW \cap Cl_XU_{\underline{i}}$ intersects both $H_{\underline{i}}'$ and Q. So $Cl_XW \cap Cl_XU_{\underline{i}}$ is the union of two disjoint compact sets $A_{\underline{i}}$ and $B_{\underline{i}}$ with $H_{\underline{i}} \subseteq A_{\underline{i}}$ and $Q \cap (Cl_XW \cap Cl_XU_{\underline{i}}) \subseteq B_{\underline{i}}$. Furthermore since $BdU_{\underline{i}} \subseteq Q$ we have $A_{\underline{i}} \subseteq U_{\underline{i}}$. Then $A_{\underline{i}} \cup B_{\underline{i}} \subseteq g$ for all \underline{i} . Let U_A and U_B be disjoint open sets in X so that $Cl_XU_{\underline{i}} \cap Cl_XU_{\underline{i}} = \emptyset$,

 $\cup_{\mathtt{i}=\mathtt{l}}^{\mathtt{w}} \ \mathtt{A}_{\mathtt{i}} \ \subseteq \ \mathtt{U}_{\mathtt{A}} \ \subseteq \ \mathtt{Cl}_{\mathtt{X}} \mathtt{U}_{\mathtt{A}} \ \subseteq \ \hat{\mathtt{U}} \ \ \mathtt{and}$

 $\cup_{\mathtt{i}=1}^{\infty}\ \mathtt{B}_{\mathtt{i}}\ \subset\ \mathtt{U}_{\mathtt{B}}\ \subseteq\ \mathtt{g}.$

so $\operatorname{cl}_X w \cap \operatorname{cl}_X u_i \subset u_A \cup u_B$, $\operatorname{cl}_{\beta X} (w \cap \hat{u}) \subset \operatorname{cl}_{\beta X} u_A \cup \operatorname{cl}_{\beta X} u_B$.

Let K' be the closure in βX of the component of $K \cap \operatorname{Rgn}(\hat{U})$ which contains p. By construction $\operatorname{Cl}_{\beta X} U_A \subset \operatorname{Rgn}(\hat{U})$ and $\operatorname{Cl}_{\beta X} U_A \cap Q = \emptyset$. However $Q \cap K \subset d \subset g$ and K' must intersect $\operatorname{Bd}(d \cap \operatorname{Rgn} \hat{U})$. But $K' \subset d$ so K' intersects $\operatorname{Bd}(\operatorname{Rgn}\hat{U})$, hence $K' \cap Q \neq \emptyset$. By Lemma 1.2, $\operatorname{Cl}_{\beta X}(\operatorname{Bd}U_A) \cap K' \neq \emptyset$. Let $q \in \operatorname{Bd}_{\beta X}(\operatorname{Rgn}(U_A)) \cap K'$. There exists $J \in q$ so that $J \subset \hat{U}$ and $J \subset W$, so $J \subset \operatorname{Cl}_X \hat{U} \cap \operatorname{Cl}_X W$, so $\bigcup_{i=1}^\infty A_i \cup \bigcup_{j=1}^\infty B_j \in q$, so either $J \cap (\bigcup_{i=1}^\infty A_i) \in q$ or

 $\label{eq:contradiction} \begin{array}{l} J \, \cap \, (\cup_{i=1}^\infty \ B_i) \, \in q. \quad \text{In either case q $\not\in$ Bd(Rgn(U_{\Bar{A}}))$ which is a contradiction and Claim 1 is verified.} \end{array}$

Claim 2. $\{Tg | g \in G\}$ is a filter base.

 $\textit{Proof.} \quad \text{Let g}_1 \text{ and g}_2 \text{ be elements of G and let g} \in G$ be $\text{g}_1 \, \cap \, \text{g}_2. \quad \text{Then}$

Tg ⊂ Tg₁ ∩ Tg₂.

So the claim is easily verified by finite induction.

Claim 3. Tg is a closed subset of C(X) for all $g \in G$.

Proof. Suppose that Tg is not closed in C(X) and that I_1 , I_2 , \cdots is a sequence of elements of Tg which converges to a point $I \in C(X)$ and $I \not\in Tg$. Without loss of generality we may assume that there is an integer k so that $I_n \subset \operatorname{Cl}_X U_k$ for all n. Therefore I must also lie in $\operatorname{Cl}_X U_k$; furthermore since $I_n \subset \operatorname{Cl}_X (X \cap g)$ for all n we have $I \subset \operatorname{Cl}_X (X \cap g)$. Since \hat{H} and \hat{Q} are closed and $\hat{Q} \cap I_n \neq \emptyset$ and $\hat{H} \cap I_n \neq \emptyset$ for all n then $\hat{I} \cap \hat{H} \neq \emptyset$ and $\hat{I} \cap \hat{Q} \neq \emptyset$. Therefore $\hat{I} \in Tg$ and so Tg is closed.

Note that since each element of Tg intersects both Q and \hat{H} it follows that each element of Tg is nondegenerate.

Let $\overset{\circ}{g} \in G$. Let $T^n = \{I \in T\overset{\circ}{g} | I \in Cl_X(U_n)\}$. Then $T\overset{\circ}{g} = \bigcup_{n=1}^{\infty} T^n$ and $T^n \in C(Cl_XU_n)$. So by hypothesis for each n there exists a subset W^n of T^n and mappings A^n , $B^n \colon W^n \to C(Cl_X(U_n))$; a^n , $b^n \colon W^n \to K(Cl_X(U_n))$ which satisfy the definition of uniformly subdecomposable. Let $W = \bigcup_{n=1}^{\infty} W^n$ and let A, $B \colon W \to C(X)$; a, $b \colon W \to K(X)$ be defined by $A = \bigcup_{n=1}^{\infty} A^n$, $B = \bigcup_{n=1}^{\infty} B^n$, $a = \bigcup_{n=1}^{\infty} a^n$, and

 $b = \bigcup_{n=1}^{\infty} b^n$. These are well-defined maps since the domains of the unioned maps are disjoint compact sets.

Let S: W \rightarrow K(X) be defined by S(I) = A(I) \cap B(I). It is not difficult to verify that S is also continuous. Let $\tilde{G} = \{g \in G | g \subset \tilde{g}\}$. For each $g \in \tilde{G}$ let Wg = $\{J \in W | f \in G\}$ there exists $f \in Tg$ so that $f \in Tg$ and let $f \in Tg$ and let $f \in Tg$ by $f \in Tg$. Thus $f \in Tg$ is a closed subset of X. Let $f \in Tg$ by $f \in Tg$. Since $f \in Tg$ is a filter base then so is $f \in Tg$ and hence so is $f \in Tg$. Therefore there is an ultrafilter $f \in Tg$ which extends $f \in Tg$ consider the solution $f \in Tg$.

For each $g \in G$ and $L \in u$ let

$$\begin{array}{l} \ell_{A}(g,L) \; = \; \{A(I) \, \big| \, I \; \in \, \text{Wg and I} \; \cap \; L \neq \emptyset \} \\ \\ \ell_{n}(g,L) \; = \; \{B(I) \, \big| \, I \; \in \, \text{Wg and I} \; \cap \; L \neq \emptyset \}. \end{array}$$

Claim 4. $l_A(g,L) \neq \emptyset$ and $l_B(g,L) \neq \emptyset$.

Proof. Let $g \in G$ and $L \in u$. Then since u extends E we have $L \cap Eg \neq \emptyset$. So there is an element $I \in Wg$ so that $S(I) \cap L \neq \emptyset$, but $S(I) \subset A(I) \subset I$, so $I \cap L \neq \emptyset$. Thus $A(I) \in \ell_A(g,L)$. So $\ell_A(g,L) \neq \emptyset$ and similarly $\ell_B(g,L) \neq \emptyset$.

Define FA =
$$\{\ell_A(g,L) \mid g \in G, L \in u\}$$

FB = $\{\ell_B(g,L) \mid g \in G, L \in u\}$.

Then by Lemma 1.3 Ls(FA) and Ls(FB) are continua in βX which contain u.

Claim 5. Ls(FA) \subseteq K and Ls(FB) \subseteq K.

Proof. If $z \notin K$ then there is an element $g \in G$ so that $z \notin Cl_{g_X}(g)$. Let $L \in u$. But $Ls(FA) \subseteq Cl_{g_X}(\bigcup \ell_A(g,L))$ $\subset Cl_{g_{\mathbf{X}}}(g)$ which is a contradiction. Similarly Ls(FB) \subseteq K.

Let $a = a(W) = \bigcup \{a(I) | I \in W\}$, and $b = b(W) = \bigcup\{b(I) | I \in W\}.$

Claim 6. Ls(FA) \cap Cl_{RY}(a) \neq Ø and Ls(FB) \cap Cl_{RY}(b) \neq Ø. Proof. If Ls(FA) \cap Cl_{RX}(a) = \emptyset then there is a covering 0_1 , 0_2 , ..., 0_n of $\text{Cl}_{\beta X}$ a and a set of elements of FA, $\{\ell_{\Delta}(g_i,L_i)\}_{i=1}^n$ so that

 $\{0_i\}_{i=1}^n$ covers Cl_{gx}^a and

 $0_i \cap (\cup \ell_{\Lambda}(g_i, L_i)) = \emptyset.$ Let $\hat{g} = \bigcap_{i=1}^{n} g_{i}$ and let $\hat{L} = \bigcap_{i=1}^{n} L_{i}$. Then $\ell_{\mathbf{a}}(\hat{\mathbf{g}},\hat{\mathbf{L}}) \cap (\bigcup_{i=1}^{n} \theta_{i}) = \emptyset$ but this is a contradiction since by the definition $\ell_{\lambda}(\hat{g},\hat{L})$ contains an element which intersects \hat{a} . Similarly Ls(FQ) \cap Cl_{RX}(b) $\neq \emptyset$.

Claim 7. Ls(FA) \cap Cl_{BX} $\overset{\circ}{b}$ = \emptyset and Ls(FB) \cap Cl_{BX} $\overset{\circ}{a}$ = \emptyset .

Proof. If $\ell_{\lambda}(g,L) \in FA$ then $\cup \ell_{\lambda}(g,L) =$ $\bigcup \{A(I) \mid I \in Wg\} \subseteq \{A(I) \mid I \in W\}$ and by condition 3 in the definition of uniformly subdecomposable we have $\tilde{b} \cap (\cup \{A(I) \mid I \in W\}) = \emptyset$. So Ls(FA) $\cap Cl_{\beta X}\tilde{b} = \emptyset$. Similarly Ls(B) \cap Cl_{gy}a = \emptyset .

So Claims 5, 6, and 7 show that Ls(FP) and Ls(FQ) are two intersecting continua neither one of which is a subset

of the other. Therefore Ls(FA) \cup Ls(FB) is a nondegenerate decomposable subcontinuum of K.

It is not difficult to verify that locally compact subspaces of some nice spaces such as the sin $\frac{1}{x}$ continuum, the Knaster U continuum, or a solenoid satisfy the hypothesis of Theorem 1. For example if Y is a solenoid and X is a proper subspace of Y which is locally compact and Z is a compact subset of C(X) then let W = Z and define A, B, a, and b as follows. Let Y be embedded in \mathbb{R}^3 with the standard embedding with a "clockwise" orientation assigned to it. Then for each I \in W, I is a rectifiable arc in \mathbb{R}^3 , let C_I denote the midpoint of I and let P_I and Q_I be the end points of I with $[P_I,Q_I]$ having a clockwise orientation. Then let A(I) be the arc $[P_I,C_I]$, B(I) be the arc $[C_j,Q_I]$, a(I) = $\{P_I\}$, and b(I) = $\{Q_I\}$. Then it can be seen that X is uniformly subdecomposable.

Also included among locally compact spaces which are uniformly subdecomposable are those which have finite rim type.

A theorem due to H. Cook [C] is needed for Theorem 2. Although the theorem was first proven in the metric case it is also true in the non-metric setting.

Definition. If X and Y are topological spaces and F: $X \to Y$ is a function then f is said to be confluent provided that if C is a continuum in Y then every component of $f^{-1}(C)$ is mapped onto C by f.

Theorem C [C]. Suppose that X and Y are continua, f: $X \rightarrow Y$ is a mapping of X onto Y and Y is hereditarily indecomposable. Then f is confluent.

Definition. The space X satisfies condition C means that for each nondegenerate subcontinuum E of X we have: $L = H \cup K$ is a subcontinuum of E where H and K are proper subcontinua of L, points $P \in H - K$ and $Q \in K - H$, open sets U, R, S, and V in X, a hereditarily indecomposable continuum M, an open set D in M, and mappings h: X \rightarrow M and g: X \rightarrow M such that:

- 1) $H \subset U$ and $K \subset V$,
- 2) $P \in R$ and $Cl_X R \subset U V$,
- 3) $Q \in S$ and $Cl_X S \subset V U$,
- 4) $h(P) \in D \text{ and } g(Q) \in D$,
- 5) $h^{-1}(D) \subset R$ and $g^{-1}(D) \subset S$,
- 6) $h(U) \cap h(S) = \emptyset$ and $g(V) \cap g(R) = \emptyset$.

Observe that if X is a nondegenerate continuum which satisfies condition C then X does not contain a nondegenerate hereditarily indecomposable continuum.

Theorem 2. Suppose that X is a compact Hausdorff space which satisfies condition C. The if κ is a cardinal, no nondegenerate subcontinuum of $\prod_{\alpha \in \kappa} X$ is hereditarily indecomposable.

Proof. Suppose that the theorem is not true and that X is a compact Hausdorff space which satisfies the hypothesis of the theorem, that $Y = \prod_{j \in J} X$ and that I is a nondegenerate

hereditarily indecomposable subcontinuum of Y. Let $n\in J \text{ be chosen so that } \pi_n(I) \text{ is nondegenerate. Let}$ $E=\pi_n(I). \text{ Then there exists } L=H\cup K \text{ as described in}$ they hypothesis and there exists points $P\in H-K$ and $Q\in K-H, \text{ open sets } U,\ V,\ R, \text{ and } S \text{ in } X, \text{ a hereditarily}$ indecomposable continuum M, an open set D in M and mappings h and g satisfying conditions 1-6.

Let $a \in I$ be a point such that $a_n = \pi_n(a) \in H \cap K$. By Theorem $C, h|_{\pi_n(I)} \circ \pi|_{I} \colon I \to M$ and $g|_{\pi_n(I)} \circ \pi|_{I} \colon I \to M$ are confluent. Let $\hat{h} = h|_{\pi_n(I)}$, $\hat{g} = g|_{\pi_n(I)}$, and $\hat{\pi} = \pi_n|_{I}$. Let C_H denote the component of $(\hat{h} \circ \hat{\pi})^{-1}(h(H))$ that contains a and let C_K be the component of $(\hat{g} \circ \hat{\pi})^{-1}(g(K))$ that contains a.

Claim. $\hat{\pi}(C_u) \cap R \neq \emptyset$.

Proof. By condition 5, $h^{-1}(D) \subseteq R$ and by confluence $\hat{h} \circ \hat{\pi}(C_H) = \hat{h}(H)$. Since $h(P) \in D$ we have $h(H) \cap D \neq \emptyset$, so there is an element $x \in C_H$ so that $\hat{h} \circ \hat{\pi}(x) \in D$. But $h^{-1}(D) \subseteq R$ so $\hat{\pi}(x) \in R$.

Similarly we have $\hat{\pi}(C_K) \cap S \neq \emptyset$. Let $x_H \in C_H$ be a point so that $\hat{\pi}(x_H) \in R$ and let $x_K \in C_K$ be such that $\hat{\pi}(x_K) \in S$. Suppose $x_H \in C_K$ then $\hat{\pi}(x_H) \in \hat{\pi}(C_K)$ and since $\hat{g}(\hat{\pi}(C_K)) = g(K)$ we have $\hat{g}(\hat{\pi}(x_H)) \in g(K)$. By condition 6, $g(V) \cap g(R) = \emptyset$ and $K \subset V$. So $g(K) \cap g(R) = \emptyset$ which contradicts $\hat{\pi}(x_H) \in R$. Therefore $x_H \not\in C_K$. Similarly $x_K \not\in C_H$. Therefore $C_K \not\subset C_H$, $C_H \not\subset C_K$, and $C_K \cap C_H \neq \emptyset$; so $C_H \cup C_K$ is a decomposable subcontinuum of I. This establishes the theorem.

We need the following lemma which was proven in [S2]. We include the proof of the lemma for completeness.

Lemma 3.1. Suppose $X = [0,\infty)$, M is a pseudo-arc in the plane and A is a piecewise linear ray disjoint from M that limits down to M, H is a nondegenerate subcontinuum of X^* , $P \in H$ and $Q \in X^* - H$. Suppose that U, R, and S are open sets in βX so that $H \subset U$, $P \in R$, $Q \in S$, $Cl_{\beta X}R \subset U$, $Cl_{\beta X}U \cap Cl_{\beta X}S = \emptyset$. Suppose further that $P \in M$, $P \in M$,

- 1. $h(P) \in D_{p}$
- 2. $h(s \cap X^*) \subseteq D_q$
- 3. $h^{-1}(D_p \cap M) \subseteq R$, and
- 4. $h(U \cap X^*) \cap h(S \cap X^*) = \emptyset$.

Proof. Suppose that X, H. P, etc. are as in the hypothesis. We will construct a mapping h: X \rightarrow A so that the extension to βX when restricted to X* will have the desired properties. Let Y denote M \cup A. Since A is piecewise linear, no vertex of A intersects $Bd(D_p \cup D_q)$ and D_p and D_q are discs then no component of A \cap $(D_p \cup D_q)$ is degenerate and these components can be listed in order along A. Let B_1 , B_2 , \cdots be the components of A \cap D_p listed in order along the ray A. Let C_1 , C_2 , \cdots be the components of A \cap D_q listed in order along A. Since $Cl_{\beta X}U \cap Cl_{\beta X}S = \emptyset$, there exist countable sequences $\{V_i\}_{i=1}^\infty$ and $\{S_i\}_{i=1}^\infty$ of open intervals in X so that

 $\begin{array}{l} \operatorname{Cl}_X(\mathbf{X} \, \cap \, \mathbf{U}) \, \subset \, \cup_{i=1}^\infty \, \mathbf{V}_i, \, \, \operatorname{Cl}_X(\mathbf{X} \, \cap \, \mathbf{S}) \, \subset \, \cup_{i=1}^\infty \, \mathbf{S}_i, \\ \operatorname{Cl}_X(\cup_{i=1}^\infty \, \mathbf{V}_i) \, \cap \, \operatorname{Cl}_X(\cup_{i=1}^\infty \, \mathbf{S}_i) \, = \, \emptyset, \, \, \text{and} \, \, \mathbf{V}_1 \, < \, \mathbf{S}_1 \, < \, \mathbf{V}_2 \, < \, \mathbf{S}_2 \, < \, \\ \operatorname{along} \, \mathbf{X}. \quad \operatorname{Let} \, \left\{ \mathbf{V}_n \right\}_{i=1}^\infty \, \, \operatorname{denote} \, \operatorname{the} \, \operatorname{subsequence} \, \operatorname{of} \, \left\{ \mathbf{V}_i \right\}_{i=1}^\infty \, \\ \end{array}$

each element of which contains a component of R \cap X. Without loss of generality we can assume $V_{n_1} = V_1$, and $B_1 < C_1$ along A.

Let $\{B_i\}_{i=1}^{\infty} \cup \{C_i\}_{i=1}^{\infty}$ be listed in order along A: $^B1'$, $^B2'$, ..., $^Ba_1'$, $^C1'$, $^C2'$, ..., $^Cb_1'$, $^Ba_1+1'$, $^Ba_1+2'$, ..., $^Ba_2'$, $^Cb_1+1'$, $^Cb_1+2'$, ..., $^Cb_2'$, Thus $\{a_i\}_{i=1}^{\infty}$ and $\{b_i\}_{i=1}^{\infty}$ are increasing sequences of integers so that every element of $\{B_n\}_{n=a_1+1}^{a_1+1}$ follows C_{b_1} and precedes $^Cb_1+1$ along A and every element of $\{C_n\}_{n=b_1-1}^{b_1}$ follows Ba_i and precedes $^Ba_i+1$ along A. Let Ba_i and Ba_i be elements of the ultrafilters P and Q respectively so that Ba_i and Ca_i and C

We wish to indroduce some notation. Let M_1 and M_2 be two closed intervals in X. Then let $[M_1,M_2]$ denote the set $\{x \mid y < x < z \text{ for all } y \in M_1 \text{ and } z \in M_2\} \cup M_1 \cup M_2 \text{ and let } (M_1,M_2) \text{ denote the set } \{x \mid y < x < z \text{ for all } y \in M_1 \text{ and } z \in M_2\}$. Note that with this notation $[M_1,M_2]$ is a closed interval and (M_1,M_2) is an open interval in X. The sets $[M_1,M_2]$ and (M_1,M_2) are similarly defined for open intervals M_1 and M_2 in X, but in this case $[M_1,M_2]$ is

open and (M_1, M_2) is closed in X. We use the same notation if M_1 and M_2 are intervals in A.

We will construct h: X \rightarrow A inductively. Suppose that h has been defined for all points of V_n_1 $^{\cup}$ (V_n_1, V_n_k)

so that:

1.
$$h(S_n) \subset \bigcup_{i=1}^{b_{k-1}} C_i$$
 for $n < n_k$

2.
$$h(V_n) \cap \bigcup_{i=1}^{\infty} C_i = \emptyset \text{ for } n < n_k$$

3.
$$h^{-1}(\bigcup_{i=1}^{a_{k-1}}B_i) \subset R \cap (V_{n_1} \cup (V_{n_1}, V_{n_k}))$$
, and

4.
$$h(L_p \cap (V_{n_1} \cup (V_{n_1}, V_{n_k}))) \subset \bigcup_{i=1}^{a_{k-1}} B_i$$
.

Now we will construct h for $[v_{n_k}, v_{n_{k+1}}]$. Notice by con-

struction that

$$(B_{a_i+1}, B_{a_{i+1}}) \cap D_q = \emptyset$$
 and $(C_{b_i+1}, C_{b_{i+1}}) \cap D_p = \emptyset$ for all $i \in z^+$.

Map V_{n_k} into $(C_{b_{k-1}}, C_{b_{k-1}+1})$ so that each B_i for

 a_{k-1} + 1 \leq i \leq a_k is the image of a subset of R \cap X \cap V n_k ,

$$[\mathbf{B_{a_{k-1}+1}}, \mathbf{B_{a_k}}]$$
 is in the image of $\mathbf{V_{n_k}}$, and if

$$L_p \cap V_{n_k} \neq \emptyset$$
 then $h(L_p \cap V_{n_k}) \subset \bigcup_{i=a_{k-1}+1}^{a_k} B_i$. Map

$$(V_{n_k}, V_{n_k+1})$$
 onto (B_{a_k}, B_{a_k+1}) so that $h(S_{n_k}) \subset \bigcup_{i=b_{k-1}+1}^{b_k} C_i$.

Map
$$V_{n_k+1}$$
 into $(C_{b_k}, B_{a_{k+1}})$,

 S_{n_k+1} into C_{b_k} ,

 \vdots V_{n_k+k} into $(C_{b_k}, B_{a_{k+1}})$,

 S_{n_k+k} into C_{b_k} ,

 \vdots $S_{n_{k+1}-1}$ into C_{b_k} .

Map $V_{n_{k+1}}$ into (C_{b_k}, C_{b_k+1}) so that each B_i for

 $a_k + 1 \le i \le a_{k+1}$ is the image of a subset of $R \cap X \cap V_{n_{k+1}}$, $[B_{a_k+1}, B_{a_{k+1}}]$ lies in the image of $V_{n_{k+1}}$, and if $L_P \cap V_{n_{k+1}} \ne \emptyset$ then $L_P \cap V_{n_{k+1}}$ is mapped into $\bigcup_{i=a_k+1}^{a_{k+1}} B_i$. Furthermore require that: $Cl_A(h(V_i)) \cap Cl_A(h(S_j)) = \emptyset$, $Cl_A(h(V_i)) \cap C_j = \emptyset$, and $B_i \cap Cl_A(h(S_j)) = \emptyset$ for all positive integers i and j . Then extend the map linearly over $[V_{n_k}, V_{n_k+1}] - \bigcup_{i=n_k}^{n_{k+1}} S_i \cup V_i$. It is not difficult to verify that h as defined above on $[V_{n_1}, V_{n_{k+1}}]$ satisfies conditions $1 - 4$ with k replaced by $k + 1$.

Therefore by induction there exists a mapping $h\colon\thinspace X\,\to\,A \text{ so that}$

I1:
$$h(\bigcup_{i=1}^{\infty} s_i) \subset \bigcup_{i=1}^{\infty} c_i$$

I2: $h(\bigcup_{i=1}^{\infty} V_i) \cap (\bigcup_{i=1}^{\infty} c_i) = \emptyset$

I3: $h^{-1}(\bigcup_{i=1}^{\infty} B_i) \subset (R \cap X)$

I4:
$$h(L_p) \subset \bigcup_{i=1}^{\infty} B_i$$

Thus h extends to a mapping $\hat{h}\colon \beta X \to Y$ so that $\hat{h}\big|_{X}^{\star}\colon X^{\star} \to M$ and from the above conditions we have:

$$\mathtt{J1:} \ \hat{h}(\mathtt{S} \cap \mathtt{X}^{\star}) \subset \mathtt{Cl}_{\mathtt{Y}}(\cup_{\mathtt{i}=\mathtt{1}}^{\mathtt{w}} \mathtt{c}_{\mathtt{i}}) \cap \mathtt{M} \subset \mathtt{D}_{\mathtt{q}} \cap \mathtt{M},$$

J2:
$$\hat{h}(U \cap X^*) \subset Y - D_a$$

J3:
$$\hat{h}^{-1}(D_D) \subseteq R$$
, and

J4:
$$\hat{h}(L_p) \subset Cl_v(\bigcup_{i=1}^{\infty} B_i) = D_p \cap Y$$
.

Conditions J1, J2, and J4 follow easily from conditions I1, I2, and I4 respectively. Suppose that condition J3 is not satisfied. Then there exists a point $z \in \beta X - R$ so that $\hat{h}(z) \in D_D$. By condition I3, $z \notin X$.

So $z \in X^*$ and then there is a closed set L in z so that $L \cap (R \cap X) = \emptyset$. But then $h(L) \cap (\bigcup_{i=1}^{\infty} B_i) = \emptyset$ so $h(L) \cap (\operatorname{Cl}_Y(\bigcup_{i=1}^{\infty} B_i)) = \emptyset$ and hence $\hat{h}(z) \not\in D_p$ which is a contradiction. Let $g = \hat{h}|_{X^*}$. By condition J4, $g(P) \in D_p$. By condition J1, $g(S \cap X^*) \subset D_p$. By condition J3, $g^{-1}(D_p \cap M) \subset R$. And $g(U \cap X^*) \cap g(S \cap X^*) = \emptyset$ follows from conditions J2 and J1. Then g is the required mapping and the lemma is established.

Theorem 3. Let X be a locally compact σ -compact metric space so that X^* does not contain a non-degenerate hereditarily indecomposable continuum. Then X^* satisfies condition C.

Proof. We wish to show that X* satisfies condition C. Let $z \in X*$ be a point which lies in a subcontinuum E of X*. Let B_1 , B_2 , ... be a sequence of open sets so that if $n \in N$,

- 1. $Cl_{\chi}(B_n)$ is compact,
- 2. $Cl_X(B_n) \subseteq B_{n+1}$, and
- 3. $\bigcup_{n=1}^{\infty} B_n = X.$

Let $C_n = \operatorname{Cl}_X(B_n) - B_{n-1}$ for all $n \in \mathbb{N}$. Either $\bigcup_{n=1}^\infty C_{2n} \in \mathbb{Z}$ or $\bigcup_{n=1}^\infty C_{2n-1} \in \mathbb{Z}$. Without loss of generality let us assume that $\bigcup_{n=1}^\infty C_{2n} \in \mathbb{Z}$. For each $n \in \mathbb{N}$ let $L_n \subseteq C_{2n-1}$ be a closed separator so that $X - L_n$ is the union of two disjoint open sets X_n^1 and X_n^2 containing $\bigcup_{i=1}^{2n-2} C_i$ and $\bigcup_{i=2n}^\infty C_i$ respectively. Let $D_n = X_{n+1}^1 \cap X_n^2$, thus $C_{2n} \subseteq D_n$. Let O_n be an open set in X containing C_{2n} such that

 $\begin{array}{c} & \text{$C_{2n} \subset 0_n \subset \text{$Cl}_X0_n \subset D_n$.} \\ \text{Let $0 = \bigcup_{i=1}^\infty 0_n$ and let $\hat{0} = \text{$Rgn}_{\beta X}(0)$. Note that } \\ & \text{$Cl}_X0_n \cap \text{$Cl}_X0_m = \emptyset$ for $n \neq m$, and $L_n \cap \bigcup_{i=1}^\infty \text{$CL}_X0_i = \emptyset$ for all n. Then $z \in \hat{0}$. Let L be a decomposable subcontinuum of $\hat{0}$ which is a subset of E. Let H and K be proper subcontinua of L so that $L = H \cup K$. Let $P \in H - K$ and let $Q \in K - H$. Let U, V, R, and S be open sets in S so that } \end{array}$

$$\begin{split} \mathbf{H} &\subset \mathbf{U} \subset \mathbf{Cl}_{\beta X} \mathbf{u} \subset \hat{\mathbf{0}}, \\ \mathbf{K} &\subset \mathbf{V} \subset \mathbf{Cl}_{\beta X} \mathbf{V} \subset \hat{\mathbf{0}}, \\ \mathbf{P} &\in \mathbf{R} \subset \mathbf{Cl}_{\beta X} \mathbf{R} \subset \mathbf{U} - \mathbf{Cl}_{\beta X} \mathbf{V}, \text{ and} \\ \mathbf{Q} &\in \mathbf{S} \subset \mathbf{Cl}_{\beta X} \mathbf{S} \subset \mathbf{V} - \mathbf{Cl}_{\beta X} \mathbf{U}. \end{split}$$

1988

For each $n \in N$ let

$$U_{n} = U \cap O_{n},$$

$$V_{n} = V \cap O_{n},$$

$$R_{n} = R \cap O_{n}, \text{ and }$$

$$S_{n} = S \cap O_{n}.$$

For each n ϵ N, let h_n be a mapping h_n : $L_n \cup D_n \cup L_{n+1} \rightarrow$ [n,n+1] so that

1.
$$h_n^{-1}(n) = L_n$$
,
 $h_n^{-1}(n+1) = L_{n+1}$, and

2.
$$h_n(CL_X(U_n) \cup Cl_X(V_n)) = n + \frac{1}{2}$$
.

Let J^P ϵ P be such that $J^P \subseteq R \subseteq X$ and let J^Q ϵ Q be such that $J^Q \subseteq S \cap X$. Let $J_n^P = J^P \cap O_n$ and $J_n^Q = J^Q \cap O_n$ for all n ϵ N. If n ϵ N let $g_n: Cl_x V_n \rightarrow [0,1]$ be a map such that

$$g_n^{-1}(0) = Bd_X V_n \cup Cl_X (V_n \cap U_n),$$
 $g_n^{-1}(\frac{1}{2}) = Bd_X S_n,$
 $g_n^{-1}((\frac{1}{2}, 1]) = S_n, \text{ and}$
 $g_n^{-1}(1) = J_n^Q$

(where g is not onto whenever $S_n = \emptyset$ or $J_n^Q = \emptyset$). If $n \in N$ let $f_n: Cl_XU_n \rightarrow [0,1]$ be a map such that:

$$f_n^{-1}(0) = Bd(U_n) \cup Cl_X(V_n \cap U_n),$$

$$f_n^{-1}(\frac{1}{2}) = Bd(R_n),$$

$$f_n^{-1}((\frac{1}{2},1]) = R_n, \text{ and}$$

$$f_n^{-1}(1) = J_n^P.$$

Let $Z \subseteq E^2$ be defined as follows: $Z = \{(x,y) | y = 0 \}$ and $x \ge 0$ or $x = n + \frac{1}{2}$ for some $n \in \mathbb{N}$ and $-1 \le y \le 1\}$. Let h: $X \to Z$ be defined as follows:

$$\begin{split} h(t) &= (h_n(t), 0) \text{ if } t \in L_n \cup D_n \cup L_{n+1} \text{ and } t \not\in U_n \cup V_n \\ &= (h_n(t), f_n(t)) \text{ if } t \in U_n \\ &= (h_n(t), -g_n(t)) \text{ if } t \in V_n. \end{split}$$

Since $f_n(Cl_X(U_n \cap V_n)) = g_n(Cl_X(U_n \cap V_n)) = 0$ then $h: X \to Z$ is continuous. Note that $R \cap X = h^{-1}(\{(x,y) \in z | \frac{1}{2} < y\})$ and $S \cap X = h^{-1}(\{(x,y) \in z | y < -\frac{1}{2}\})$. Let $A = [0,\infty)$.

Let j: Z → A be defined by

$$j(x,y) = x \text{ if } y = 0$$

= $n + \frac{1}{4} + (1-y)\frac{1}{4} \text{ if } x = n + \frac{1}{2} \text{ and } y \neq 0.$

Then j is continuous. Therefore j ° h: $X \rightarrow A$ extends to a function F: $\beta X \rightarrow \beta A$ and since $(j \circ h)^{-1}([0,n])$ is compact, F maps X^* into A^* .

For each $n \in N$ let

$$\begin{aligned} & U_n^A = \{x \in A \mid n + \frac{1}{16} < x < n + \frac{1}{2} + \frac{1}{16} \}, \\ & R_n^A = \{x \in A \mid n + \frac{1}{8} < x < n + \frac{3}{8} \}, \\ & V_n^A = \{x \in A \mid n - \frac{1}{16} < x < n + 1 - \frac{1}{16} \}, \\ & S_n^A = \{x \in A \mid n + \frac{5}{8} < x < n + \frac{7}{8} \}. \end{aligned}$$

Let $U^{A} = \bigcup_{n=1}^{\infty} U_{n}^{A}$, $R^{A} = \bigcup_{n=1}^{\infty} R_{n}^{A}$, $V^{A} = \bigcup_{n=1}^{\infty} V_{n}^{A}$, $S^{A} = \bigcup_{n=1}^{\infty} S_{n}^{A}$, and $\hat{U} = F^{-1}(Rgn_{\beta A}U^{A})$, $\hat{R} = F^{-1}(Rgn_{\beta A}R^{A})$,

$$\hat{v} = F^{-1}(Rgn_{\beta A}v^{A})$$
 and $\hat{s} = F^{-1}(Rgn_{\beta A}s^{A})$.

Then \hat{U} , \hat{R} , \hat{V} , and \hat{S} satisfy properties 1 - 3 of condition C with respect to L, H, K, P, and Q.

Furthermore by Lemma 3.1 there exists a pseudo-arc M in the plane and functions α and γ with α , γ : A* \rightarrow M and a disc D in the plane so that:

- il. $\alpha(F(P)) \in D \cap M_{\lambda}$
- i2. $\alpha(\operatorname{Rgn}_{Ra}(S^{A}) \cap A^{*}) \subset D$
- i3. $\alpha^{-1}(D \cap M) \subset Rgn_{g_{\Lambda}}(R)$
- i4. $\alpha (\operatorname{Rgn}_{RA}(U^{A}) \cap A^{*}) \cap \alpha (\operatorname{Rgn}_{RA}(S^{A}) \cap A^{*}) = \emptyset$.
- jl. $\gamma(F(Q)) \in D \cap M$
- j2. $\gamma(Rgn_{g_A}(R^A) \cap A^*) \subseteq D$
- j3. $\gamma^{-1}(D \cap M) \subset Rgn_{g_{\overline{A}}}(S^{\overline{A}})$
- j4. $\gamma(Rgn_{QA}(V^{A}) \cap A^{*}) \cap \gamma(Rgn_{QA}(R^{A}) \cap A^{*}) = \emptyset$. Then by letting $h = \alpha \circ F$ and $g = \gamma \circ F$ conditions 4 - 6 of condition C are satisfied.

Corollary 3.1. If X is a locally compact o-compact metric space so that X* does not contain a nondegenerate hereditarily indecomposable continuum, then if κ is a cardinal \mathbf{X}^* does not contain a nondegenerate hereditarily indecomposable continuum.

Theorem 4. Suppose that X is a continuum which satisfies condition C and Y is a continuum which does not contain a nondegenerate hereditarily indecomposable continuum. Then X × Y does not contain a nondegenerate hereditarily indecomposable continuum.

Proof. Suppose that X and Y satisfy the hypothesis and that I is a nondegenerate hereditarily indecomposable continuum which lies in X × Y. Then since Y does not

contain a hereditarily indecomposable continuum $\pi_1(I)$ is nondegenerate. Let π denote the projection $\pi_1\colon X\times Y\to X$ and let $E=\pi(I)$. Then by condition C there exists $L\subset E$ so that L is decomposable $L=H\cup K$ and there exist points $P\in H-K$ and $Q\in K-H$, open sets U, V, R, and S in X, a hereditarily indecomposable continuum M, and open set D in M, and mappings h and g satisfying 1-6 of condition C.

There is a point $a \in I$ such that $a = (a_1, a_2)$ and $a_1 = \pi(a) \in H \cap K$. From theorem C:

$$h \mid_{\pi(I)} \circ \pi \mid_{I} : I \rightarrow M \text{ and}$$

$$g \mid_{\pi(I)} \circ \pi \mid_{I} : I \rightarrow M$$

are confluent. Let \hat{h} , \hat{g} , and $\hat{\pi}$ denote $h\big|_{\pi(I)}$, $g\big|_{\pi(I)}$, and $\pi\big|_{I}$ respectively. Let C_H and C_K denote the components of $(\hat{h} \circ \hat{\pi})^{-1}(h(H))$ and $(\hat{g} \circ \hat{\pi})^{-1}(g(K))$ respectively that contain a.

By (5) of condition C, $h^{-1}(D) \subseteq R$ and by confluence we have $h \circ \pi(C_H) = \hat{h}(H)$. Since $h(P) \in D$ we have $h(H) \cap D \neq \emptyset$, so there is a point $x_H \in C_H$ so that $\hat{h} \circ \hat{\pi}(x_H) \in D$. Since $h^{-1}(D) \subseteq R$ we have $\hat{\pi}(x_H) \in R$. Similarly there is a point $x_K \in C_K$ so that $\hat{\pi}(x_K) \in S$. Suppose $x_H \in C_K$ the $\hat{\pi}(x_K) \in \hat{\pi}(C_K)$, so since $\hat{g}(\hat{\pi}(C_K)) = g(K)$ we have $\hat{g}(\hat{\pi}(x_K)) \in g(K)$. But by (6) of condition C, $g(V) \cap g(R) = \emptyset$ and $K \subseteq V$, so $g(K) \cap g(R) = \emptyset$ which contradicts the fact that

 $\hat{\pi}(x_H) \in R$. Therefore the assumption that $x_H \in C_K$ is false so $x_H \not\in C_K$. Similarly $x_K \not\in C_H$. Therefore $C_K \not\subset C_H$, $C_H \not\subset C_K$, and $C_H \cap C_K \neq \emptyset$. So $C_H \cup C_K$ is a decomposable subcontinuum of I. This establishes the theorem.

Corollary 4.1. If $A=[0,\infty)$ then $\beta A\times\beta A$ and $\beta (A\times A)$ are not homeomorphic.

Proof. The space $\beta(A \times A)$ contains a nondegenerate hereditarily indecomposable continuum by Theorem 7 of [S3] which is non-metric. However $\beta A \times \beta A = A \times A \cup A^* \times A \cup A^* \times A^*$ and by Theorem 4 none of these spaces contain a nondegenerate non-metric hereditarily indecomposable continuum.

Question. What conditions on the space X guarantee that X* does not contain nondegenerate hereditarily indecomposable continua for X locally compact metric.

Bibliography

- [Be] D. P. Bellamy, A non-metric indecomposable continuum, Duke Math. J. 38, (1971), 15-20.
- [Bi] R. H. Bing, Higher-dimensional hereditarily indecomposable continua, Trans. A.M.S. (1951), 267-273.
- [C] H. Cook, Continua which admit only the identify map onto nondegenerate subcontinua, Fund. Math. LX (1967), 241-249.
- [N] Nadler, Hyperspace of sets, Marcel Dekker, Inc., New York, NY 1978.
- [S1] M. Smith, $\beta([0,\infty))$ does not contain non-degenerate hereditarily indecomposable continua, Proc. A.M.S. 101, No. 2 (1987), 377-384.

[S2] M. Smith, No arbitrary product of $\beta([0,\infty))$ - $[0,\infty)$ contains a nondegenerate hereditarily indecomposable continuum, Topology and its Applications, 28, (1988), 23-28.

- [S3] M. Smith, $\beta(x \{x\})$ for X locally connected, Topology and its Applications, 26 (1987), 239-250.
- [W] R. C. Walker, The Stone-Cech compactification, Springer-Verlag, New York, Heidelberg, Berlin, 1974.

Auburn University
Auburn, Alabama 36849