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EVEN HOMOGENEITY AND EFFROS' THEOREM 

Kathryn F. Porter· 

Introduction 

In 1965, E. G. Effros [2] published an important 

result in the theory of. transformation groups which has 

been used extensively in the study of homogeneity, func­

tion spaces, and continua theory. For example, G. Ungar 

[7J used Effros' Theorem to prove, among other things, 

that: Eve~y 2-homogeneous metric continuum is locally 

connected. In this paper, the concept of even homogeneity 

will be introduced and used to extend a form of Effros' 

Theorem to allow its application to a larger collection of 

spaces. We first look at some definitions we shall be 

using. 

If (X,T) is a topological space, then H{X) is the 

collection of all self-homeomorphisms on X. A subgroup, 

G, of H{X), is tr~nsitive provided that for each x E X, 

the set G{x) = X, where G{x) = {y E X: there exists g E G 

such that g{x) = y}. A space, X, is homogeneous if for 

any x, y E X there is a homeomorphism, h, such that 

h{x) = y. A topology T' for G is called RMC [4] for G 

provided that, for all g E G, the map, m : G ~ G, defined 
9 

by m (f) = fog, is continuous. 
g 

*This paper contains part of a doctoral dissertation 
written under the direction of Professor David P. Bellamy 
at the University of Delaware. 
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1. ULH Spaces 

In 1967, G. Ungar introduced the concept of uniform 

local homogeneity (ULH) [7] in order to generalize 

L. Ford, Jr. 's idea of strong local homogeneity (SLH) [3]. 

A completely regular space, (x,T), is called uniformly 

locally homogeneous, (ULH) , provided there exists a uni­

formity, U, for X such that (1) T = T and (2) for all 
u 

x E X and U E U, there exists an open neighborhood, 0, of 

x such that if yEO there is some g E H(X) with g(x) = y 

and graph(g) ~ U. 

Note that graph (g) ~ U if and only if g (x) E u[x] for 

each x E X. Also, when we want to be more specific, we 

shall say "(X,T) is ULH w.r.t. U" which means that U 

satisfies the properties (1) and (2) above. 

One of the nice properties of ULH spaces is that
 

finite products of ULH spaces are ULH [7]. We extend
 

this result to arbitrary products.
 

Theorem 1.1. Let A be an index set of arbitrary
 

cardinality, and for all a. E A, let X be a homogeneous
a
 
ULH space. Let X = IT X Then X is ULH.
 

o.EA a
 

Proof· Assume for all a E A, X is ULH w.r.t. U . a a
 

Let P be the product uniformity on X. P has as a base
 

the set B = { n P -1(0 ): F is some finite subset of A 
o.EF a a
 

and, for all a E F, 00. E U } where the function,
a
 

Po.: X x X + Xa x Xo.' is defined by Pa(x,y) =
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there exists a basis element, B* n P -1(0 ) such that 
aEF a a 

(p,p) E B* C M and F is some finite subset of A. Now, 

for each a E A, X is ULH w.r.t. therefore, for each 
a 

Ua' 

a E F, there exists a ULH neighborhood, suchVa' in Xa' 
-1

that E V . Set V = n 7T (V), then V is open in X.Po. a aEF a a 

If Z E V, then for each a E F, za E V • So, for each 
a 

a E F, there is some h E H(X ) such that ha(Pa) Z and a a a 

graph (h ) C 0 . For every a E (A\ F) , since X is homo-a - a	 a ...., 

geneous, there exists h E H(X ) such that h (p ) Z . 
a a	 a a a 

A 

Define H: X -+ X by H(s) =<Ha(Sa) > aEA where: 

ha(sa) if a E F 
....,Ha(Sa) = 
ha(sa) if a E (A\ F) 

=H E H(X) and H(p) = (za)aEA z. Show graph (H) C M: Let 
A 

t (s,H(s) ) «Sa)aEA' (Ha (So,) ~ aEA) • For all a E F, 

(sa' Ha(Sa) (sa,ha(sa» E graph (ha ) ~ 00.. Hence, 

tEn p~l(Oa) C M. Therefore.X is ULH w.r.t. P. 
aEF 

2.	 Even Homogeneity 

Let (X,T) be a topological space and let G be a tran­

sitive subgroup of H(X), with a topology TI. We say that 

X is evenly homogeneous w.r.t. (G,T I ), provided that for 

all open sets 0 E T I such that e, the identity map on X, 

is in 0, then there exists an open cover V of X such that 

if x,y EVE V then there exists h E 0 with h(x) = y. We 

shall abbreviate this by E.H. w.r.t. (G,T I ). The relation­

ship between even homogeneity and ULH is as follows. 
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Theorem 2.1. Let (X,U) be a uniform space. Then, 

X is ULH w.r.t. U if and onZy if X is E.H. w.r.t. 

(H(X), T~) where T~ is the topoZogy induced on H(X) by U. 

Proof. Let (X,U) be a uniform space. 

AAssume X is ULH w.r.t. U. Let ° E T such that
U 

e E 0. Then there exists U E ~ with u[e] CO, where 

U {(f,g): (f{x), g{x)) E U for all x E X}. Now, there 

exists V E U such that V v-I and V 0 V C U. So, for 

all x E X, there exists an open neighborhood, Ox' of x 

such that if y E Ox' there exists g E H(X) with g(x) y 

and graph(g) C V. {o } is an open cover of X, so if 
x xEX 

p,q E Ox for some x E X, there exist hI' h E H(X) with2 

hl(x) = p, h (x) = q and for each z E X, (z, hl(z)),2 

(z, h (z)) E V. Hence, 0 hI
-1 

(p) = q and (hl(z), h 2 {z))2	 h 2 
-1

E V 0	 V C U, for all z E X. Therefore, (z, h 0 hI (z))2 

E U, for all z E X. Thus, h2 0 h~l E D[e] C O. So, X is 

E.H.	 w.r.t. (H{X), TU). 

(~) Assume X is E.H. w.r.t. (H{X), Let x E XTu). 
A 

and U E U. Then e E U[e], so there exists an open cover, 

{Oa}aEA' of X such that if p, q E 0a for some a E A, there 
A 

exists h E U[e] with h(p) = q. x E X, hence, there is 

some 8 E A such that x E OS. If Y E 08' then there 
A	 A 

exists h E U[e] such that hex) = y. Recall that h E U[e] 

if and only if graph(h) C U. Therefore X is ULH w.r.t. U. 

As with ULH spaces, we have a result involving arbi­

trary products of evenly homogeneous spaces. 
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Theorem 2.2. Let A be an index of arbitrary cardi­

nality. For all a. E A, let (X,Ta.) be a topological space 

and let G be a transitive subgroup ofH(Xa.). For each a 
a E A, let T' a be a topology for G a such that X a is E.H. 

w. r. t. (Ga.,T~). Set X = IT 
aEA 

X a and G = IT 
aEA 

Ga.. Let T 

and Tp be the product topologies on X and G respectively. 

Then X is E.H. w.r.t. (G,T p ). 

Proof. Let 0 E Tp with e E 0, where e =<ea>aEA and 

e is the identity map on X • Then there exists a basic a a 
n -1 open set, B = a.EFTIa (Ua.) where F is a finite subset of A, 

Ua. is open in Ga. for all a. E F, and e E B C O. Now, for 

all a. E A, Xa. is E.H. w.r.t. (Ga.' T~). So, for all a. E F, 

a.there is some open cover, Wa. = {WS}SEra. such that if 

p,q E w~ for some a. E F and some SEra.' there exists some 

h Q E U with h Q(p) = q. Then, definea.,1-J a a,1-J 

W = { n TI-l(W~): S E r}. Note that W is an open cover 
a.EF a. I-J a 

of X. If s, tEn TI-l(W~) then for all a. E F, 
a.EF a. I-J 

asa' ta. E WS. SO, for each a. E F, there exists some 

h Q E U such that h a(s) t. Also, since G isa.,1-J a a.,1-J a. a ~N 

transitive for each a E A, we have that for each a E (A\F), 

there is an ha E Ga. such that ha.(sa) = ta.. Define the 
"'­

function H: X + X by H(x) = <ga(xa»aEA where 

E F 
go. I:a,s if a. 

if a ~ F a 

Thus, H E G, H(s) t, and H E B C o. Therefore X is 

E.H. w.r.t. (G, Tp) • 
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3. Evaluation Maps 

Let (X,T) be a topological space and let G be a
 

subgroup of H(X) with a topology, TI. For each x E X we
 

define the evaluation map, Ex: (G,TI) ~ (X,T) by
 

Ex(g) = g(x). Ungar has shown the following about the
 

evaluation map.
 

Theorem 3.1. [7J Let (X, U) be a homogeneous uniform 

space and let H(X) be given the induced uniform topology~ 

TU. Then~ for each x E X~ the evaluation map, Ex~ is 

open if an only if X is ULH w.r.t. U. 

For even homogeneity we have the following results
 

fo"r the evaluation map.
 

Theorem 3.2. Let (X,T) be a topological space and 

let G be a transitive subgroup of H(X). Let TI be an RMC 

topology for G. If X is E.H. w.r.t. (G,TI) then for each 

x E X, the evaluation map~ Ex: (G,TI) ~ X, is open. 

Proof. Assume X is E.H. w.r.t. (G,TI). Let x E X 

and let 0 E T' • Suppose y E Ex(O), then there is some 

h E Osuch that h(x) = y. Then h E o implies that 

e E Oh- l E T I, since T I is RMC. By even homogeneity there 

exists some open cover, of X such that if{Oa}aEA'
 

p,q E 00.' for some a E A, then there is some g E Oh- l
 

with g(p) q. But Y E X, so there exists a SEA such
 

1
that y E 0e and if r E 0e' there is an f E Oh- such that 

f(y) r. Whence, Os C Ex(O) since f 0 h E ° and 
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f hex) = fey) = r. Therefore, for all x E X, the map0 

EX: (G, T') -+ X, is open. 

Corollary 3.1. Let X be a topological space and let 

G be a transitive subgroup of H(X). Let T be an RMC 

topology' for G such that X is E.H. w.r.t. (G,T). Then 

for all topologies~ T*, for G with T* C T, we have that 

for each x E X, the evaluation map, E : (G,T*) -+ X, is 
x 

open. 

Corollary 3.2. Let (X,T) be a topological space and 

let G be a transitive subgroup of H(X). Let T' be a 

topology for G such that (G,T') is a topological group. 

Then, X is E.H. w.r. t. (G , T') if and only if for each 

x E X~ the evaluation map, Ex: (G,T') -+ X, is open. 

The following is an example of a topology for a 

function space for which the evaluation map is only open 

under extreme circumstances. 

Example 3.1. Let (X, T) and (Y, T) be topological 

spaces. For o C X and U C Y, define the set (O/U) 

{f E yX: f(O) C u}. Let Sao = { (0, U) : 0 E T and U E T}. 

Then Soo is a subbasis for a topology, on yX, calledToo' 

the open-open topology [5]. 

We shall show that when X is a T space, the evalua-I 
tion map, E : (H(X),T ) -+ X, is open for each x E X, x oo 

if and only if X is discrete: Assume that X is TI • Let 

x E X. Then {x} is closed so that (X\ {x}) is open. Note 
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that the set V = «X\{x}), (X\{x}» = ({x}, {x}) E Too. 

Thus, Ex(V) = {x}. Since x was an arbitrary point in X, 

hence Ex(V) is open if and only if X is discrete. 

The reason that the evaluation map, in the case when 

X is not discrete, fails to be open, is that X is not 

E.H. w.r.t. (H(X),T ): Fix an x in X. We have oo 

({x},{x}) E Too and e E ({x},{x}). Suppose that V* is 

an open cover of X. Therefore, there exists V E V* such 

that x E V. If Y E V, Y ~ x, there is no h E ({x},{x}) 

with hex) = y, since if h E ({x},{x}) then hex) = x. 

We now give an example of a space which is E.H. w.r.t. 

(G,T), but which is not ULH. This example appeared in 

Ford's paper [3] as an example of a space which possesses 

a transitive homeomorphism group with no reasonable 

topology. 

Example 3.2. Let X R2 and let basic open neighbor­

hoods of a point (xo'yo) E X be of the form: NE(XO'YO) 

{ (x,y): x < x < x + E and YO - E < Y < YO + E} u 
o o 

A 

{(xo'YO)} where E: > o. Define N£(XO'YO) = NE(XO'YO)\ 

{ (x ,yO) }.
O

X is T but not regular since the point (0,0) cannot2 

be separated from the set C = {(O,y): y ~ O} which is 

closed in X. Hence X is not uniformizable and thus not 

ULH. 

Let G be the set of all translations, i.e., G = 

{h: X * X: there exists a, b E R such that for all 

(x,y) E X, h(x,y) = (x + a, y + b)}. 
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Give G the topology, T, whose subbasic open sets are 
A A 

of the form ({(p,q)}, N (s,t»
E 

= {f E G: f(p,q) E N (s,t)},
E 

where (p,q) E R2 • 

Claim. X is E.H. w.r.t. (G,T): Let 0 be open in G 

such that e E o. Then there exists a basic open set, 
n A 

say B n ({(x.,y.)}, N (p.,q.» witheEBCO. Note 
i=l 1 1 Ei 1 1 

that,	 without loss of generality, (x. ,y.) ~ (x.,y.) if 
1 1 ] ] 

i ~ j. Also we can choose the E small enough so thati 
A 

the sets N (p.,q.) do not intersect since X is T • Now 
E i 1 1	 2 

e E B, so we know that for all i = 1,2,3, ••• ,n, (xi'Yi) E 
A 

N (p.,q.). For each i = 1,2,3, ••. ,n, let 0i 
E i 1 1 

p.	 - x., E. - Iy. - q. /} and let E = min 0 .• 
1 1 1 1 1 iE{1,2,3, .•• ,n} 1 

A 

Let U = {N (x,y): (x,y) EX}. U is an open cover of X 
E 

A A A 

and let (p,q), (s,t) E NE(X,y). Then define the function, 

h E G by h(x,y) = (x - s + p, Y - t + q). h(s,t) = (p,q). 

So for each i 1,2,3, ... ,n, h(xi'Yi) (xi - s + p, 

y. - t + q) . Thus, Ip· - (xi - s + p) I < /p. - x. I +
1 1 - 1 1 

Ip - s/ < (x. - Pi) + E < E. also Iqi - (Yi - t + q) I < 
1	 1 

Iqi -	 y. I + E < £i· Hence, h E B C o. Therefore X is 
1 

E.H. w.r.t. (G, T) • 

4.	 Effros' Theorem 

The following theorem is the form of Effros' Theorem 

[2] which is most often used. Recall that the aompaat­

open topology, Teo' on H(X), has subbasis elements of 
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the form (C,U) = {g E H(X): g(C) C U}, where C is a 

compact subset of X and U is an open set in X. When X is 

a compact metric space, Teo' is the topology on H(X) in­

duced by the sup metric. 

Theorem 4.1. (Effros' Theorem) [1] Let (X,T) be a 

non-degenerate~ compact, homogeneous~ metric space. Then 

for aZl x E X, the evaluation map~ Ex: '(H(X), Teo) + (X,T) 

is open. 

We now extend Effros' result to uncountable products 

of compact, homogeneous, metric spaces, by using the con­

cept of even homogeneity. Note that an uncountable pro­

duct of metrizab1e spaces is not metrizab1e, so that our 

new result is not covered by Effros' Theorem. First, 

though, we need the following theorem. 

Theorem 4.2. Let X be a topological space and let G 

be a transitive subgroup of H(X) such that X is E.H. w.r.t. 

(G,T). Let H be a subgroup of H(X) such that G C H. Let 
"" 
T be a topology on H and let T be the subspace topologys 
on G inherited from (H,T). If T C T then X is E.H. w.r.t.S 
(H, T) • 

Proof. Let 0 E T such that e E O. Then e Eon G E 

TS C T. Since X is E.H. w.r.t. (G,T), there exists an 
A 

open cover, V, of X such that if p,q E V for some V E V, 

then there is some h EOn G with h(p) q. 0 n G C 0, 
A 

hence X is E.H. w.r.t. (H, T) • 

Finally we are ready to prove the desired theorem. 
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Theorem 4.3. Let A be an uncountable index set. 

For all a E A, let X be a nondegenerate, homogeneous,
a 

compact, metric space. Let X = II X and give X the 
aEA a 

product topology, T. Then for each x E X, the evaluation 

map, Ex : (H(X) , Tco) -+ Xis 0 pen. 

Proof. From Effros' Theorem, we have that for each 

a E A and for all x E X , the evaluation map, E a N~ xa 

We know that (H(X ),T ) is a a co 

topological group, since X is compact Hausdorff. Hence,
a 

Corollary 3.2 gives us that for eadh a E A, X is E.H. a 

w. r. t. (H (X ), T ). Set H = II H(X). Then by Theorem a co aEA a 

2.2, we have that X is E.H. w.r.t. (H,T ) where is thep Tp 

product topology on H. Let Ts be the subspace topology 

on H as a subspace of (H(X),T ).co 

Claim. TS C Tp on H: (This Claim is a known result. 

However, the proof is given here for completeness.) Let 

B be a subbasic open set in T Without loss of generality, 

we can choose B = (C,V) n H where C is a compact subset of 

X and V is open in X. Let fEB. Then fCC) C V and 

f =< fa > aEA. So for all x E C, there exists a basic 

open set, Ox n rr~l(o~) where F is a finite subset of 
aEFx 

x 

s . 

A and, for all a E 0 is open in Xa' and such thatFx' a 
f(x) E v. By regularity, for each x E C and for° x C 

each a E there exists some > o withFx' Ex 
a 
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f (x ) E B(f (x },E ) C CI B(f (x },E ) CO. Thus,a a a a x Xa a a x aa a 

for all x E C and for all a E F ' there exists somex 

o > 0 such that x E B(xa,ox ) C Clx B(xa,ox ) Caxa a a a 

Hence, for all x E C and for all a E F ' fa E (Cl B(xa,ox ),x x a a 

B(fa(x ), €x }} E T on X · a co aa 

Now C c U [n rr-l(B(x,o })]. C is compact, so 
xEC aEF a a xx a 

there exists a finite subcover, say 

C C un [ n
 
i=l aEF
x. 

~ 

C u n n [
i=l aEFx. 

~ 

-1 -1 iC u n 'IT 0 f (B (f (x ),n [ a a a ai=l aEF 
xi 

-1C u n rrn [
i=l aEF a 

x. 
~ 

C 
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n
 
U
 

i=l 

Define L 

n 
where F U F , then f E L E T • If gEL then for p

i=l x.
1 

all a E F, ga(Cl B(x , Ox )) C B(fa(x ), EX ). If t E C,x a a 
a a a 

there exists some k such that t E n 7T
-1 (B(xk , °xk ) ) C 
a aaEF a 

xk 

Thus, for all a E F C F,xk 

kt E Cl (B(x , 0xk )) which implies that for all a xa a a 

-1 kn 7T (B (fa (x ) , C 0 C V. Thus, 9 E (C,V) n H. 
a a °xk )

aEF a xk xk 

Hence, TS C Tp • 

Therefore, by Theorem 4.2, X is E.H. w.r.t. (H(X),T )'co

and so, Theorem 3.2 implies that Ex: (H(X), Teo) ~ X, is 

open, for each x E x. 

Some spaces which are included in the above case, 

which were not covered by Effros' Theorem are uncountable 
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products of unit circles, sl, and uncountable products of 

[O,lJ's. Note that [O,lJ is not homogeneous, but the 

Hilbert Cube, 0, which is a countable product of [O,lJ's 

is homogeneous and an uncountable product of [0,lJ'5 can 

be written as an uncountable product of O's. 
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