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INFINITE PRODUCTS OF COOK CONTINUA 

Judy Kennedy 

The relationship between products of continua and 

homogeneity properties is fascinating and complex. In 

some cases, products of continua have much nicer homo­

geneity properties than the factor continua themselves 

have. Consider, for example, rr~=l Xi where for each i, 

Xi is the unit interval, the triod, or in fact, any AR. 

Even though the factor continua themselves fail to be' even 

homogeneous, the product continuum is the Hilbert cube Q, 

which has just about the strongest homogeneity properties 

possible. (See [A3], [A4], [W].) Stranger still are 

examples due to J. van Mill, [VM], F. D. Ancel and S. Singh 

[AS] '. and F. D. Ancel, P. F. Duvall, and S. Singh [ADS].
 

A continuum is pigid if its only self-homeomorphism is the
 

identity. Van Mill has an example of an infinite­


dimensional rigid continuum X such that x2 is the Hilbert
 

cube; Ancel and Singh, and Ancel, Duvall, and Singh have,
 

for n ~ 3, examples of rigid finite-dimensional continua
 

whose squares are Sn x sn. 

On the other hand, in some cases the product operation 

destroys many homogeneity properties. Consider the situa­

tion where M is the Menger universal curve. Except for the 

fact that M admits no isotopies, M has homogeneity pro­

perties as strong as those of the Hilbert cube. (This 
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follows from the work of R. D. Anderson [AI], [A2], and, 

more recently, Mladen Bestvina [B].) A space is 

n-homogeneous means that for each pair A,B of n-element 

subsets of the space, there is a self-homeomorphism h 

that takes A to B. One of MiS nice homogeneity properties 

is the fact that it is n-homogeneous for all n. However, 

it follows from results of K. Kuperberg, W. Kuperberg, 

and W. R. R. Trans~e [KKT], and J. K. Phelps [Plj, [P2] 

that not only does M2 fail to be even 2-homogeneous, but 

also if X is any continuum, then M x X is not 2-homogeneous. 

Further, if n is a positive integer greater than 1, or 

n = ~, Mn is factorwise rigid, i.e., the only homeomor­

phisms it admits are product homeomorphisms composed with 

coordinate switching homeomorphisms. Another product con­

tinuum with this factorwise rigidity property is pn , 

where P denotes the pseudoarc and n is a positive integer 

greater than 1 or +~. (See D. Bellamy and J. Lysko [BL], 

and D. Bellamy and J. Kennedy [BK].) Here again, if one 

takes into account composant considerations, this con­

tinuum has very strong homogeneity properties. (There 

has been much work done on the homogeneity properties of 

this continuum. For some of the most recent and for 

references to the other, see [Kl], [K2] and [L].) 

A topological space is homogeneous if it is 

I-homogeneous. The homogeneity properties of a given space 

include properties both weaker and stronger than homo­

geneity itself. By homogeneity properties, we mean those 
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properties of a space that have to do with how subgroups 

of the full homeomorphism group of the space act on the 

space. Howard Cook [C] has constructed an example of a 

continuum whose only self maps are trivial ones. Let us 

say then that the continuum X is a Cook continuum if when­

ever f: X + X is continuous, then f is the identity or f 

is a constant map. Cook continua are rigi~ continua, and 

they belong at the very end of our spectrum of homogeneity 

properties. It is the purpose of this paper to investi­

gate the homogeneity properties of X
OO 

where X is a Cook 

continuum, although along the way some more general in­

formation is obtained, as well as some additional examples. 

Herein, lZ will denote the integers and ::N will denote 

the positive integers. 

If X is a space, H(X) will denote the group of all 

self homeomorphisms of X. A homeomorphism T E H(X) is 

said to be transitive if there is some x E X such that the 

orbit of x under T, 0T(x) = {Tn(X) In E E}, is dense in X. 

If T E H(X), then the point p in X is a periodic point of 

T if there is n E :N such that Tn (p) = p. 

The proofs that follow will make heavy use of the 

following fact: If X is a zero-dimensional, completely 

metrizable, separable space that is dense in itself and 

X contains no nonempty compact open sets, then X is homeo­

morphic to the irrationals. 
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Theorem 1. Suppose X is a separabLe metrizabLe 
00 

space. Then X admits a transitive homeomorphism T. 

Further, T admits a dense set of periodic points. 

Proof· For each integer i, let X. = X and consider 
00 

~ 

n. x.. Let D denote a countable dense subset of X and 
~=-oo .~ 

for i E :IN, let D. = {(dl ' d2 ' ••• , d. ) Id. E D for 1 < j ~ i}. 
~ ~ J ­

A 00 
Since Di is countable, so is ° = Ui=l Die Further, there 

is a countable set E = {..• e_ l ,eO,el ,e2 , ••• } such that if 
A 

(d ,d2, ••• ,di ) E 0, then there is some m E IZ such thatl 

(em,em+l, ••• ,em+i-l) = (dl, ••• ,di ). Also, e = 

( ••• ,e 2,e 1,eO,el ,e2 , ••• ) E n~ X.• Suppose that s de­- - 1=-00 1 
00 

notes the shift homeomorphism on ni=_oo" Xi' i.e., sex) = Y 

where x = ( ••• ,x_l,xO,xl ,···), Y = (••• 'Y-l'YO'Yl ' ••• ) and 

Yi = xi +l for i E lZ • 

Suppose that 0 is a basic open set in n~=_oo Xi' i.e., 

there is a finite subset B of ~ and a collection 

{o(i) Ii E B} of open sets of X such that 0 = 

{( ••• ,Y-2 ,Y- l ,YO'Y' ••• ) E rr~=_oo xii for i E B, Yi E o(i)}. 

Suppose that m1 is the smallest integer in Band m is the2 

largest. There is (d1 ,d2 , ••• ,d -m ) E 0 such 
m2 1+1 m2-ml +1 

that di +l - E oei) for i E B. Thus, for some k E ~ ,
ml 

di for i E {1, ••• ,m2 - ml + l}, and ek+i+l-ml 

di +l - E oei) for i E B. Further, sk+l-ml ee ) E 0, for 
ml 

Sk+l-ml(e) = e' where e' ( , , " ) d••• ,e _2,e _l,eO,el , ••• an 

e! = e. = d. 1 E o(i) for i E B. It follows1 1+k+l-m1 ~+ -m1 
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that osee) is dense in x~, and that s is transitive on 

n. ~ x.. 
~=-~ ~ 

Suppose {aO, ••• ,a - l } is a finite subset of X. Let n 
A A A 

a E n~ Xi be defined as follows: a = ( ••• ,a_l,aO,al , •.. ) 
~=-~ 

n A A 

and a i = a i mod n Then s (a) = a, and each finite subset 

of X gives rise to a periodic point (actually, to exactly 

n! periodic points) of n~=_~ Xi. Since the collection of 

all such periodic points is dense in n~ X., s admits a 
~=-~ ~ 

dense set of periodic points. Finally, n~=_~ Xi is homeo­

morphic to x~, and H(X~) contains a homeomorphism T that 

is transitive and admits a dense set of periodic points. 

Thus, no matter what separable metrizable space X is, 

X~ admits at least a dense orbit under the action of the 

full homeomorphism group H(X~), and in fact, under the 

action of the subgroup G = {Tnln E E}. The productT 

operation all by itself induces a sort of weak homogeneity. 

Let us make the following definition: A space X is weakZy 

homogeneous if there is some x in X such that 

{g(x) Ig E H(X)} is dense in X. Also, for x E X denote by 

O(x) the orbit of x under H(X), i.e., O(x) = 
{g(x) Ig E H(X)}. 

It follows then that if X is a Cook continuum, X~ 

admits a transitive homeomorphism, and X~ is weakly 

homogeneous. It is not terribly surprising that for X a 

Cook continuum, X~ admits only the minimum as far as self 

maps go, but this does require some proof. 

Suppose r is an indexing set, and A C r. Let 

nA: xr 
+ xA denote the projection map, i.e., if x E xr 



94 Kennedy 

with yth coordinate x for y E r, then ~A(x) E xA wherey 

for n E A, the nth coordinate of ~A(x) = x ' If A = {n},n 

we will write TIa rather than TI{a}. 

Theorem 2. Suppose r is an indexing set, X is a 

r rCook continuum, and f: x ~ x is continuous. There are 

a coZZection B = {B(a) la E r} of mutuaZZy disjoint subsets 

of r and a subset C = {cy 1y ~ UaEr B(a)} of X such that 

f(x) = w where for a E r, 

TI (x) if a E B(a)a 
TIa(w) =
 

C if S ~ B(a) •
s UaEr 

Proof· First, we need to establish some notational 

conventions which will be used throughout this proof. Let 

C(X) = {g: X ~ Xig is continuous} and let C(X) = {g E C(X) Ig 

is a constant map}. If Ix denotes the identity on X, 
A 

then C(X) = C(X) U {Ix}. There is a natural continuous 
A 

map from C(X) onto X, which we will call~. (That is, 
A 

~(g) c where 9 E C(X) and c is that point of X such that 

g(x) = c for x EX.) 

rFor A ~ r, x E x , define Z(A,x) = {y E Xrl~8(Y) = 
TI S (x) for S ~ A}, and Z(A, x) {TIA(y) 1y E Z(A, x) } • Thus', 

Z(A,x) ~ xr and Z(A,x) = xA. Again, for A = {a} we will 

write Z(a,x) for Z({a},x) and Z(a,x) for Z({a},x). For 

x E xr , y E X, and S E r, define x(S,y) = w E xr where 

TIp(w) = TIp(x) for p ~ S, and nS(w) = y~ Also, let ~(A,x) 

denote the natural homeomorphism from Z(A,x) to Z(A,x). 
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Suppose that n E r, x E x r • Consider Z{n,x) and let 

B(a,x) {S E rlrrSflz(a,x) is a homeomorphism}. If for 

some x ~ y E x r and S' E r, S' E B(a,x) - B(a,y), then if 

H = {z E xflns,flz(a,z) is a homeomorphism} and K 

{z E xflns,flz(a,z) is a constant map}, Hand K are dis­

joint nonempty closed sets whose union is x r , which is not 

possible. Then for x,y E x r , B(n,x) B(a,y) and we can 

define B(a) = B(a,x). (Note that it is possible that 

B(a) = 9.) Also, for n,S E r and a ~ S, B{n) n B{S) = ~, 

for otherwise we have a contradiction to the fact that if 

x EX,r rr fIZ{{n,S},x): Z({n,S},x) + X'is a function. y 
fSuppose y ¢ U B(a). Then for each a E f, x E x ,aEf 

there is a point c (n,x) E X such that (rr fIZ{a,x» (z)y y 

c (n,x) for each z E X. Fix X EX.r For each S' ~ a de-o y - A 

fine Sa': z(a' ,xo) x + C(X) by Sa' (y) = rr (f IZ (a,xO(6' ,y)joy 

$(a,xO(S',y» for y E X. Now OS' is a continuous function, 
A. 

as is $: C(X) + X. It follows that $0 ': X + X is a
S

constant map for each Sf. (Otherwise $0 = lx' $0 ' rr o 
S' S y 

(flz(S',xO» $(S',XO)' and y E UnEr B(a).) Since0 

x 0 E Z ( S ' , x0)' rr S ' (x0 ) E Z(S ' , x0 ) and $°S' {rr S I (x0) ) 
A 

cy(a,xO) = ~eS' (y) for each y E X. Further, if S,S' are 
A 

2 elements of r - {a}, then x E z(a',xO) n Z(S,xO) so o 

that for z E xr which has the same coordinates as x o 

except for perhaps the a th , S, th and ath-coordinates, 

rry 0 (fIZ(a,z» 0 $(a,z) (y) cy(a,xo) for y E X. By 

induction, if B is any finite subset of r - {a}, z E xr 

with rrp(z) = rrp(x ) for p ~ B n {a}, rry 0 (fIZ(a,z» 0o
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rw(a,z) (y) = cy(a,xO) for y E X. Then e: x ~ C(X) defined 

by 8(z) = n 
y 
flz(a,z) is a continuous map and for a dense 

f fsubset of x (namely all points of x whose coordinates 

are the same as those of Xo except for a finite subset of 

f), 8(z) is the constant map from X to itself that takes 

each point of X to cy(a,xO). Thus, for any z E xr , e(z) 

is that same constant map. Likewise, cy(a,xO) = cy(a',xO) 

for any a' E r, and it makes sense then to speak of 

c y cy(a,xo) = cy(a',xO) for a' E r. 
Thus, we can classify completely the continuous self 

maps of xf • For f: xf ~ xf continuous, z E xr , fez) = w 

where for y E f, 

na(z) if y E B(a)
 
n (w)


y { ;f ~ U B()
c y • Y ~ aEr a. 

Corollary 3. Suppose r is an indexing set, X is a 

Cook continuum, and f E H(X f ). There is a one-to-one 

suPjective mapping of: r ~ r such that fop x E xr • f(x) w. 

where for y E r, ny(w) na(x) and Gf(a) = y. In other 

words, H(Xr ) consists of preciseZy the coordinate switch­

ing homeomorphisms (plus the identity). 

Proof. Since f is one-to-one and onto) B(a) (defined 

in the proof of Theorem 2) must not be empty, but must be 

degenerate for each a. Define then af(a) = y where 

{y} = B(a). Further, UaEr B(a) = r, for otherwise f is 

not onto. The rest follows. 
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Theorem 4. Suppose X is a nondegenerate continuum. 

If S = {f E H (X 
OO 

) I for some a E H (:IN ), 1T (.) f (x) = 1T. (x)a J. J. 

for i E E and x E X
oo

}, then S is a closed subgroup of 

H(X)oo and S is homeomorphic to the irrationals. 

Proof. It is clear that S is a subgroup of H(X
oo

). 

Since the irrationals are homeomorphic to moo , we can 

think of an irrational as being simply a function from :IN 

into IN. Further, if 8 denotes the collection of all sub­

sets of m containing two integers, then 8 is countable. 
oo

For B E 8, i E IN, let FBi = {(xl ,x2 ' ••• ) E :N I for each 

j E B, = i}. Since each FBi is closed in IN 
00 ,x j UBiFBi 

00 00
is an Fa-su~set of IN , and D = IN - UBiFBi is a Go-subset 

of IN
00 . Note that D ~ 9 and each point of D is a limit 

point of D. By a classical result of Alexandroff, D is a 

completely metrizable space. Since D also has the property 

that it has no isolated points and it is zero-dimensional, 

D is homeomorphic to the irrationals. 
oo

For each n, i E IN, let Gni = {(xl ,x2 ' ••• ) E :N Ixi = 
n}. Then each G . is open in lN

OO 
, and G = ·U. G . is open

nJ. n ~ nJ. 

in IN 00 • Further, G = nnEJN G is a nonempty Go-set in n 
mOO. It has no isolated points, and is also homeomorphic 

to the irrationals; and this is'also the case with 

o n G = E, which is the set we really want to discuss, for 

any member of E represents a one-to-one functions from IN 

onto ]N, and E is therefore in one-to-one correspondence 

with H(IN ) • 

Now H(m) is in one-to-one correspondence with S, but 

more than this E is homeomorphic to S. Then S is 
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homeomorphic to the irFationals. Further, S is completely 

metrizable, so by a classical result of Mazurkiewicz, S is 

a Go-subset of H(X~). Since S is also a subgroup of 

a(x~), and.Go-subgroups of completely metrizable groups 

are always closed subgroups, it follows that S is closed 

in H(X~). 

Corollary 5. If X is a Cook continuum, H(X
oo 

) S 

{f E H(X
oo

) I fop some a E H(lN), if x E xoo
, i E IN, 

~a(i)f(x) = ~ix}. Thus, S is homeomorphic to the ipra­

tionals. 

Proof. This follows from Corollary 3 and Theorem 4. 

Remark 6. It follows from Theorem 1 and Corollary 5 

that if X is a Cook continuum, then X~ is weakly homo­

geneous and H(X~) is zero-dimensional and homeomorphic to 

the irrationals. A space X is nearly homogeneous if for 

each x, Gx = {hex) Ih E H(X)} is dense in X. Thus, a nearly 

homogeneous space is weakly homogeneous, but not every 

weakly homogeneous space is nearly homogeneous, for X
OO 

with X a Cook continuum is weakly homogeneous without 

being nearly homogeneous. (Consider X E X and ~ E X~ 
A A 

defined by ~ix = x for i E m. Then Gx = {x}.) 

There are also nearly homogeneous continua with full 

homeomorphism groups topologically equivalent to the irra­

tionals. One such example is Example 2 of [Kl] which 

essentially is a simple closed curve which has been 

"pinched" at a countable dense collection of places to 
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yield a regular curve which admits exactly 2 orbits under 

its full homeomorphism group: One is a countable dense 

set and the other is a dense Go-set. Beverly Brechner [B] 

has proven that any regular curve which contains no free 

arc (i.e., each arc in the space is nowhere dense in the 

space) has a zero dimensional homeomorphism group. 

Suppose Y is a compact metric space, H(Y) is a completely 

metrizable separable topological group, which is, in 

addition, zero-dimensional. Now H(Y) must also be dense 

in itself, and can't contain any compact open sets. (If 

it did, the dense Go orbit would contain compact open 

sets in its relative topology.) Thus, H(Y) is homeomorphic 

to the irrationals. 

It has been conjectured that if Z is a homogeneous 

continuum then H(Z) is not zero-dimensional. In fact, 

many topologists suspect that H(Z) must be infinite­

dimensional, although it may well be totally disconnected 

(as is 'the case with Menger universal curve). (Recall 

that Z is homogeneous if Gz = Z for z E Z.) 

Howard Cook also has an example of a continuum N with 

H(N) homeomorphic to the Cantor set [C]. No such con­

tinuum can be weakly homogeneous, as we now prove. 

Theopem 7. If Z is a weakly homogeneous nondegenerate 

continuum, then H(Z) is not compact. Further, if H(Z) is 

locaZZy compact, then if z E Z with Gz a nondegenepate con­

nected subset of Z, Gz is a fipst categopy, Fa-set in Z~ 
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Proof. If Z is weakly homogeneous, there is some 

Zo E Z such that Gz O is dense in Z. If H(Z) is compact, 

so is GZ O' since E : H(Z) + GZ O defined by E (g) = g(zO)Zo Zo 

is a continuous surjective map. Then GZ O = Z and Z is a 

homogeneous continuum. This is impossible for if Z is 

homogeneous, H(Z) cannot even be locally compact. (See P3.) 

Suppose H(Z) is locally compact and Z is weakly homo­

geneous and nondegenerate. Suppose z E Z and Gz is second 

category in Z, with Gz connected and nondegenerate. From 

a theorem of James Keesling [K], it follows that H(Z) is 

zero-dimensional. It follows from Effros' Theorem that 

if Gz is second category in Z, Gz is a Go-set in Z and is, 

considered as space, completely metrizable. Then there is 

some open and compact set u in H(Z) such that leu and z 
uz ~ Gz. Further, since Gz is not countable, every point 

of Gz is a limit point of Gz and uz is open in the relative 

topology on Gz and compact in the whole space. But this 

can't be, for then Gz is the union of two closed disjoint 

nonempty sets, and is not connected. 

Hence, Gz is not second category in Z, so it must be 

first category in Z. Since H(Z) has a basis of compact 

Open sets, Gz must also be an Fa-set in Z. 

Theorem 8. If X is a Cook continuum and h E H(X~), 

then h admits a dense set of periodic points. 

Proof. If h E H(X~), there is some s E H(m) such 

that for x E x«J, h (x) = w where for i E IN, 1T. (w) = 1T. (x)
1 J 
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co 
and s(j) = i. Suppose 0 is a basic open set in X. Then 

there are some nEE and a collection {ol, ••• on} of open 

sets in X such that 0 = {y E xcoln.y E o. for each i < n}.
J. J. 

Consider s. If i E E , Or(i) = {k EEl for some 

integer j, sj (i) = k} ~:IN and {Or(i) Ii E :IN} partitions 

:IN. Denote Or (i ) by { ••••• p (i , - 2), p (i , -1), p (i , 0), 

p(i, I), ••• }, where s(p(i,m» = p(i,m + 1) for m E ~. 

Suppose {Or(i ), ••• or(i )} denotes {Or(i) IOr(i) n {l, ••• n}l a 

~ ~}, where i. is the first representative of Or(i.) con-
J J 

tained in {l, ••• n}. There is M E IN such that 

{l, ••• n} C U~-l {p(i.,O), ••••• p(i.,M - l)}, and if 
- J- J J 

IOr(i.) I < co, then IOr(i.) I divides M. Choose y E X and,
J J 

for p(i.,k) E U~ l{p(i.,O,p(i.,l), ••• (p(i.,M - l)},
J J= J J J 

choose y (. k) E n (. k)o. Then define z E X 
CO 

as p J. P J.j , j , 

follows: 

(1) For 1 ¢ uj=l Or(i j ), n
1 

(z) = y 

(2) For 1 E Or(i.), there is k such that 1 = P (i . , k) , 
J J 

and there is an integer l' such that ·k E 

{1'M,1'M + 1, ••• , (1' + l)M-l}. Let n (z)1 

n (. k) (z) y where k = 1'M + t andP J. j , p(i.,t)
J 

t E {O, ••• M - l}. 

Note that z will be well-defined, even if for a given 

1 E Or(i.) there are many k such that 1 = p(i.,k).
J J 

Further, z E 0 and for t E {O, •••M - I}, l' E 

1 1 M 
lZ, 7Tp (i . , t) (z) = 7Tp (i . , 1 'M+t) (z), and s (p (i · , t) 

J J J 

p (i. ,1 1 M + t). Suppose a E IN. There is i such that 
J 
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a E Or(i). If Or(i) ~ {Or(il),···or(i )}, ~S(z) Y and a 

wB,(z) = y for each S' E Or(i), so wsMCB) (hM(z» 

If Or(i) = Or(i.) for some j,S
J 

p(i.,k) for some k and there is some 1 such that k E 
..., J..., ..., 

{1M,1M + 1, ••• ,(1 + l)M - l}. Then there is t E {O, ••• M -l} 

such that k 1M + t, so that sM(S) = sM(p(i.,k» = 
..., J 

p(ij,k + M) = p(i j ,1M + t + M) = p(i j ,(1 + l)M + t) and 

wsM(B) (hM(z» = wp (i., (R:+!)M+t) (hM(z» = W (. t) (z) = 
J P ~j' 

1T P (i . , (i+ l) M+S) (z) 1T S (z) = 1T p (i. ,k) (z) = Yp(i. ,t)· 
J J J 

. M
Thus, h (z) = z. It follows that X~ admits a dense set 

of periodic points under the action of h. 

When James T. Rogers, Jr., and I were writing our 

paper "Orbits of the pseudocircle" [KR], we were able to 

determine that no orbit of the pseudocircle (under the 

action of the full homeomorphism group) was Go in the 

space, but other than knowing that any orbit must at least 

be a Borel set in the space, were not able to say anything 

further about the Borel class of any orbit. It occurred 

to us then that in all cases in which we knew the least 

Borel class to which a given orbit in a given space be­

longed, the orbits were either Go-sets in the space or 

Fa-sets in the space, and we wondered if there were 

further possibilities, i.e., orbits that were neither Go 

nor Fa in the space. The next result shows that there 

are1 specifically, for X a Cook continuum, X~ admits 
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under the action of H(X~} orbits which are neither Go nor 

Fa. (For a discussion of Borel sets and classes of Borel 

sets, see [Kvl], p. 344-35l.) 

Notation. If x EX~, let x* = {n.xli E :N}. If 
]. 

Y E x*, let B (Y) = I{iln.xx]. = Y}I. Note that B (Y)x E 

IN U {~}. 

~ 

Theorem 9. If x EX, then Gx = {h(x} Ih E H(X~)} is 
~ 

an Fao-set in X. Further, the foZZowing statements may 

be made about the orbits of X~ !under H(X~}: 

(1)	 There are aZosed orbits. Further, Gx is a alosed 

orbit if and only if for some Xo E X, nix = xo' for 

i E IN, and Gx = {x}. (Each closed orbit is degener­

ate and each finite orbit is degenerate.) 

(2)	 There are aountably infinite orbits. Eaah aountably 
.

infinite orbit is both a Go-set ~n X 
~ 

and an Fa-set 

in X~. Further, if Gx is aountabZe, x* is finite 

and there is unique YO E x* suah that Bx(Yo) = ~. 

(3)	 The orbit Gx is homeomorphia to the irrationals if 

and onZy if x* is disare"te in itself and either 

(a) x* is infinite, or (b) x* is finite, but there 

are at least two points Yl' Y2 E x* suah that 

BX(Yl ) = B (Y ) =~. Those orbits Gx homeomorphiax 2 

to the irrationaZs are preaiseZy the orbits of x~ 

that are Go but not Fa. 

(4)	 Every Fa-orbit is aountable, and the orbit Gx is Fa 

or Go iff it is disarete in itself. 
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Proof. (0) Suppose x E X 
00 

and x* = {ql,q2' ••• }. 

Now Gx C x*oo and sinc~ x* is an Fa-set, x*oo is F • ao 

Suppose N denotes the collection of all finite subsets of 

IN. -Then N x x* is a countable set, and for qi E x*, 

N E N such that INI < BX(qi), let AiN = {z E X 
OO I7T . (z)

J 

gi for j E N, 7T. (z) .,. qi for j re N}. Since AiN is Go in 
J 

00 00 00 00 

X , X - AiN is Fa in X . Further, Gx C X - AiN for each 

qi' allowable N. (Note that N = ~ EN.) Further, for 

each qi such that Bx(qi) < 00, INI > IB (q.) I, let E' Nx 1 l. 
oo

{z E X l7T. (z) = g. for j E N, 7TI (z) .,. q. for j re N}. Then
J 1 J l. 

• • Q) 00 oo
EiN 1S Go 1n X , and X - EiN is Fa in X • Thus, Gx 

x*oo n(n{xoo 
- A.Nlg. E x*, INI < B (g.)}) n (n{xoo 

- E.Nlq.1 1 x 1 1 1 
E x*, 00 ~ INI > B (g.)}), which means that Gx is a count­x 1 

able intersection of Fa-sets and Gx is an Fao-set. 

(1) Suppose X E X. Then if x E X
OO 

such that 7T i (x) = Xo o 
for each i E :IN, Gx = {x}. Suppose x* contains more 

than one point. Further suppose ql E x* and 

Bx(gl) < 00. There is some q2 .,. ql E x*. If A 

{N ~ IN I INI = Bx(ql)}' A is countable, and for each 

A E A, there is some x(A) E Gx such that for j E A, 

7T. (x(A» = ql· Since for A .,. AI E A, x(A) .,. x(A I ) , 
J 

Gx if infinite. Further, Gx is not closed, for there 

" " is some x E Gx such that for each j E :IN, 7T. (x) .,. ql·
J 

On the other hand, if ql E x*, Bx(ql) = 00, q2 .,. ql 

E x*, then for each n E IN, there is some yen) E Gx 

such that 7T i (y(n» = ql for each i < n. It follows 
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that the point q, each coordinate of which is ql' is 

in Gx but is not in Gx. Then Gx is neither closed 

nor	 finite. 

(2)	 Suppose x* = {ql,q2,~ •• qn} (i.e., x* is finite), and 

B (ql) = 00, but B (q.) < for i E {2, ••• n}. If A =00 x X 1 

{A C IN I IAI = L~_2B (q.)}, A is a countable set, and 
- 1- X 1 

for each A E A, there are only finitely many points 

of Gx such that ~j(Y) ~ ql for each j E A. It follows 

that Gx is countable, infinite, and an F -set. a 

Further, Gx is discrete in itself, and is therefore 

a completely metrizable space. Then Gx is a Go-set 

in Xoo 
• (See p. 430, [Kvl].) 

Suppose Gx is countable. If x* is not finite, then 

for	 y E Gx, there are infinitely many choices for 

~lY. Given ~lY there remain infinitely many choices 

for	 ~2Y etc. Continuing this reasoning, it is not 

difficult to see that there is a one-to-one function 

from	 Gx onto IN°O, and since IN°O is uncountable, so 

is Gx. Then x* is finite. 

Suppose Gx is countable and there are YO'Y1 E x* such 

that	 Yo ~ Yl' 'Bx(YO) = Bx(Yl) = 00. If~' denotes 

the	 odd integers, and we consider ~lN' (X 
oo
), then the 

collection of all points in ~lN' (X 
OO 

) each of whose 

coordinates is Yo or Yl is a Cantor set in ~m' (X 
OO 

) 

and	 is uncountable. However, each point in this 

Cantor set is the projection of many points in GX, 
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which means Gx is uncountable, too, a contradiction. 

Then there is unique YO in x* such that Bx(YO) = 00. 

(3)	 Suppose first that x* is discrete in itself and in­

finite, and x* = {ql,q2' ••• }. Then x*oo is homeo­
00

morphic to the irrationals and is Go in X. Further, 

suppose N denotes the collection of all finite sub­

sets of :IN, and for i E IN, N E N such that either 

(a)	 INI < Bx(qi)' or (b) Bx(qi) < INI < 00, define 

= {y E x*~lnjY = qi for j E N, and njy ~ qi forAiN 

j ~ N}. Since x* is discrete in itself, AiN is 

closed in x*oo and x*()O - A is open in x*oo. TheniN 

n{x*oo - AiNli E IN and N E N such that INI < Bx(qi) 

or INI > Bx(qi)} Gx is Go in x*oo. Since Gx is 

dense in itself, Gx is homeomorphic to the irration­

als. 

If	 x* is finite, but there are two different points 

qo	 and ql in x* such that Bx(qO) 00 = Bx(ql)' let 

x* =	 {qO,ql,···qk}· Then x*oo is a Cantor set, and 

if A iN is defined as it was in the previous para­

graph for the previous case, but with i E {O,l, ••• kl, 

Gx = n{x*oo - AiNli E Nand n E N such that 

INI	 < Bx(qi) or INI > Bx(qi) is a Go-set in x*oo. 

Further, Gx is dense in itself and no open nonempty 

subset of Gx is compact. Since Gx considered as 

space is completely metrizable and zero-dimensional, 

Gx	 is homeomorphic to the irrationals. 
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Suppose x*~ is not discrete in itself, but Gx is 

homeomorphic to the irrationals. Then there is 

qo E x* such that qo E x* - {qOJ. For i E IN, let 

F. {z E x~ln. (z) qol. Each F. is closed and no­
~ ~	 ~ 

where dense in X~. Further, Gx = n Gx) andUiEm (Fi 

each F. n Gx is closed and nowhere dense in the 
~ 

relative	 topology on Gx. But then Gx - F. is dense 
~ 

and open	 in Gx, which is complete, as space, so 

- F i ) should be a dense Go subset of Gx.niElN (Gx 

But, of course, it is empty, so we have a contradic­

tion, and x* is discrete in itself. 

Suppose Gx is homeomorphic to the irrationals. If 

x* is finite and there is only one qo E x* such that 

Bx(qO) = ~, then Gx is only countably infinite. 

Hence, if x* is finite, there must be at least 2 

~ = 

Suppose that Gx is an orbit of X~ that is Go but not 

Fa. Then Gx is uncountable and either x* is infinite 

or there are 2 points qO,ql E x* such that Bx(ql) = 

~ = Bx(qO). If some open subset of Gx is compact, 

then each point of Gx is in a compact open set so 

Gx is a countable union of closed sets. Thus, no 

open subset of Gx is compact. Also, Gx is dense in 

itself and zero-dimensional. Then Gx is homeomorphic 

to the irrationals. 
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(4)	 Suppose Gx is not discrete in itself and Gx if Fa. 

Suppose that xi denotes the ith coordinate of 

x, qo E x* such that qo E x* - {qoJ, and Gx = U~=lAi 

where Ai is closed in X
oo 

• Denote x* by {qO,ql' ••• }. 

There is a least integer m such that B = {z E xooll l 

niz = qo for i ~ ml } does not intersect Al . Then Al and 

Bl are disjoint closed sets, and there is a basic open set 

ul such that Bl ~ ul and ul n Al =~. Since qo is a limit 

point of x* and all permutations of x are in GX, there is 

a point zl E ul n Gx. Now if k > ml , nk(ul ) = x. There 

is least kl ~ ml + 1 such that no permutation of the 

finite sequence (xl, ••• xk ) is contained as a subsequence 
1 

Gx n ul whose ith coordinate for i ~ ml is ni(zl) and 

whose ml + l-coordinate is a member of (xl, ••• xk ) chosen 
1 

so that some permutation of (xl, ••• xk ) is contained in 
1 

00 A 

m2 > ml + 1 such that B2 = {z E X Iniz = niz l for 

j ~ ml + 1, niz = qo for ml + 1 < i ~ m2} does not inter­

sect A2 • Then A2 and B2 are disjoint closed sets, and 

there is a basic open set u2 such that B 2 ~ u2 and 

u2 n A2 =~. Again there is a point z2 E u2 n Gx, and we 
A 

may actually choose z2 so that ni z 2 = niz l for i ~ ml + 1. 

Further, there is a least k 2 ~ m2 + 1, k2 > k l , such that 
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no permutation of the finite sequence (x1 , ••• xk ) is 
2 

Then 

choose z2 to be that point of Gx n u2 whose ith coordinate 

for j ~ m2 is ~i(z2) and whose m2 + I-coordinate is a 

member of (x1 ••• x ) chosen so that some permutation ofk 2 
A 

(X1, ••• X ) is contained in (nlz2, ••• nm2+1Z2). Continue 
k1

A A 

this process, obtaining a sequence zl,z2' ••• of points of 

Gx. Note that zl,z2' ••• converges to the point z such 
A 

that (i) ~iz for i ~ + 1 (ii) , ~.z = ~.z. for= ~izl ml ~~ J 
j > 1, m _ + 1 < i < m. + 1, and that z ~ uCX: lA., butj l - J ~= ~ 

z E Gx. Thus we have a contradiction. If Gx is not dis­

crete in itself then it is neither Fa nor Go (part 3). 

If Gx is F, then it is discrete in itself, and 
a 

part 3 tells us that Gx must be countable, for otherwise 

it is homeomorphic to the irrationals and can't be an F ­a 

set. Finally, what we have just proved c~rr~ined with 

part 3 gives us that every orbit that is either Go or Fa 

is discrete in itself. 

CoroZZary 10. If X is a Cook continuum, X
OO 

admits 

orbits under the action of its homeomorphism group that 

are neither Fa nor Go in the space. 

Proof. Choose x E X
OO 

so that x* 
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