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EMBEDDINGS OF SIMPLE INDECOMPOSABLE 

CONTINUA IN THE PLANE 

William S. Mahavier 

1.	 Introduction 

There has been renewed interest in mappings on various 

types of indecomposable continua which arise in dynamical 

systems. In particular a continuum described by Kuratowski 

in [4] has been of interest because it is the attracting 

set for a horseshoe map of Smale which is described in [5]. 

See also Smale [6] and Barge [1]. Watkins [7] has studied 

similar continua as inverse limits. The continuum described 

in [4], which we call M, is often called the Knaster con­

tinuum, or the bucket handle. According to Kuratowski, 

in [4], M was described by Janiszewski in his dissertation 

in 1911. Kuratowski also acknowledges Knaster's aid in the 

study of these continua. M is known to be indecomposable 

and chainable. At the spring topology conference in April 

of 1988, at The University of Florida, M. Barge asked the 

following question. For which composants K of M is it true 

that M can be embedded in the plane in such a way that the 

points of the image of K are accessible? (For a definition 

of composant see section 2 below.) Several of the partici ­

pants at the conference, including Tom Ingram, John Mayer 

and this author, indicated that they thought this could be 

done for any composant of M. It is the purpose of this 
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paper' to give a particularly simple construction to show
 

that if K is a composant of M, then there is a homeomor­

phism h of M into E2 such that each point of h (K) is
 

accessible.
 

2.	 Notation 

By a continuum is meant a compact, connected metric 

space. A composant of a continuum H is a subset K of H 

such that for some point p of H, K is the union of all 

proper subcontinua of H containing p. In the continua 

considered here, a composant is a maximal arcwise connected 

subset. A point p of a continuum H in a Euclidean plane 

E2 is said to be accessible if an only if there is an arc 

(), C E2 such that (), ri H = {pJ • Janiszewski's example of 

an indecomposable continuum is simply and elegantly des­

cribed by Kuratowski in [4'] • We include his description 

here for completeness. Let E denote the Cantor set on the 

interval [0,1]. Let 5 denote the set of all semicircles 

having center (1/2,0), lying, except for their endpoints, 

above the x-axis and having endpoints in E x {Ole The 

continuum described by Kuratowski, denoted by M, is the 

union of 5 and a countable sequence 50 ,51 , ••• of collec­

tions of semicircles described as follows. For each non­

negative integer n, Sn is the set of all semicircles having 

center (S·3-n/6,0), lying, except for their endpoints, 

below the x-axis, and having endpoints in E x {OJ. For 

our purposes it will be convenient to represent the points 

of E using their base 3 representation and to introduce 
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some notation to represent certain subsets of E x {Ole 

We also abuse the notation by identifying E and E x {a} 

and the reader is warned that he must determine from the 

context whether a point p in E denotes a number in the 

Cantor set or a point in E x {OJ. For each positive inte­

ger n, let En denote the set of all n-term sequences each 

term of which is either ° or 2. We associate with each 

member e = PI' ••• , Pn of En the corresponding (left) end­

point e of the Cantor set who'se base 3 representation is 

~Pl ••• Pn· For each element e E En let Ie denote the 
A -n

interval on the x-axis in E2 from (e,D) to (e + 3 ,0). 

For each positive integer n, let G denote the set of all n 

intervals I for all e E E. Note that So is a collection e n
 

of semicircles which connect each point of I 2 ,0 n E to
 

a unique point of I 2 ,2 n E, and Sl is a collection of
 

semicircles which connect each point of I n E to a
0,2,0
 

unique point of I O,2,2 n E. In general if n > 0, Sn is
 

a collection of semicircles which connect each point of
 

I O, a °, 2 ° nE to a unique point of I O,° °,2 2 n
, ... , , , ... , , E 

where each subscript has n leading a's. 

3. Examples 

We shall modify slightly the construction given in 

section 2 to describe for each point p of E a continuum 

M p containing (p,O) which is homeomorphic to M under a 

homeomorphism which takes (0,0) onto (p,O). In case 

p = 0, then ,M = M and the homeomorphism will be thep
 
identity homeomorphism. Let p denote a point of E. Let
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M 

l\1, for p =.202020 ••• 
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M denote the continuum which is the union of S (described
p 

in section 2) and the countable collection of semicircles
 

S ° S l' described as follows. S ° is the same as
p, , p, p, 

So if p E I O• If P E 12 , then let Sp,o be a similar set of 

semicircles below to. That is, Sp,O is the set of all 

semicircles having center the midpoint of la, lying, 

except for their endpoints, below the x-axis and containing 

exactly two points of I n E. We next define for eachO
 

positive integer n, a similar collection of semicircles
 

having endpoints in a member of G +l which does not con­n
 
tain p. Let n denote a positive integer. There are
 

exactly two members of G +l which lie in the member of G n n
 
which contains p. Let I denote the one of these two
 e 

members of G +1 which does not contain p. Let S denote n p,n 

the collection of all semicircles having center the mid­

point of Ie' lying, except for their endpoints, below the 

x-axis, and containing exactly two points of Ie n E. This 

completes the description of M. Note that if p = (0,0),
p 

then M is Janiszewski's example.p 

4.	 Homeomorphisms 

To see that for each point p in E, Mp is homeomorphic 

to M one may use methods entirely analogous to those of 

Bing in [2]. Thus we give only an outline of a proof here. 

It is well known that M is chainable. For definitions 

and an introduction to chainable (or snakelike) continua,
 

see Bing [3]. It is easy to see that there is a sequence
 
co 

{C(i)}~=1 of chains such that	 .n C(i)* = M with the
 
J.=1
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following properties. For each positive integer n, 

(1) C(n) has mesh less than 2-n , (2) each member of
 

C(n+l) has a closure which lies in a member of C(n),
 

(3) each member of C(n) contains the closure of a member 

of C(n+l), (4) each member of G intersects only one member n 

of C(n), and is a subset of that member, and (5) the first 

link of C(n) contains the origin. From Bing [2] we say 

that the chain {dl ,d2, .' - - ,d } follows the patternn
(1,al ),(2,a2), ••• ,(n,a ) in the chain F if for 1 < i ~ n,n

dilies in the ai-th link of F. It is also easy to see 

that, for each point p in E, there is a similar sequence 

of chains {Cp(i)}~=l covering M having the same propertiesp
 
except that p is in the first link of each of the chains.
 

Moreover, these chains can be chosen such that for each
 

positive i~teger n, Cp(n) has the same number of links as
 

C(n), and C (n+l) follows the same pattern in C (n) that
 p p 

C +l follows in C - It follows from Theorem 11 of [2] thatn n 
there is a homeomorphism h from M onto Mp _ We shall use 

the fact that if x is a point of M and y is a point of M p ' 

and m1 ,m2, ••• is a sequence of positive integers such that 

for each positive integer n, x is in the mnth link of C(n) 

and y is in the m n th link of C 
p 

(n), then hex) = y. This 

gives, for example, that h(O,O) = p, since for each posi­

tive integer n, (0,0) is in the first link of C(n) and p 

is in the first link of Cp(n). 

s. Main Results 

Our principal observation is that if K p is the compos­

ant of M which contains p, then, under the homeomorphism h 
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described above, the image of K is a composant of M 
p P 

each point of which is accessible. To see this we first 

note that each point of the composant of M which contains 
p 

the origin, 0, is accessible. To show that the composant 

of M containing p maps onto the composant of M containing
p 

0, it suffices to show that h(p) = O. To see this we shall 

show that for each positive integer n, if the k-th link of 

C(n) contains p, then the k-th link of C (n) contains O. p 

Let n denote a positive integer. The chain C(n) contains 

exactly 2n links which intersect E and each of them con­

tains exactly one member of G . We shall denote the in­n 

dices of these links by ml ,m2 , ••• m2n , where we have 

ml = I < m2 < m3 < ••• The composant KO of M< m2n • 

which contains ° contains an arc a from ° to the point 

(3-n+1 ,0) and a contains exactly one point of each member 

of G • We shall enumerate the points of E on this arc in n 

the order in which they occur starting with 0. For 

1 < j < 2n , m. is the index of the link of C(n) which - ] 

contains the jth point of E on a. In 9rder to describe 

our algorithm for determining these points we introduce 

some notation. If x = .x1x 2 •.• (base 3) is a point in E 

then define N(x) to be the point in E obtained by changing 

all the D's to 2's and 2's to D's in the base 3 representa­

tion of x. We refer to this a complementing the digits by 

analogy with base 2. Note that N(x) is the point in E 

symmetric to x about the point (1/2,0), and thus is the 

point of E joined to x in M by a semi-circle in the closed 
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upper half plane. If x ~ 0 define F(x) to be the point 

determined as follows. Let j denote the first integer 

such that x. is not 0, and complement each digit x of x
J u 

where u > j. Note that F(x) is the point of I x 
xl ,x2 ,··· j 

n E which is joined to x in M by a semi-circle in the 

closed lower half plane. Let PI = O. Let P2 = N(PI). 

As indicated above, K contains an arc in the closed upperO 

half plane whose endpoints are PI and P2' and which inter­

sects E only in PI and P2. Next define P3 = F(P2) and 

note that K
O 

contains an arc from P2 to P3 which inter­

sects E only in P2 and P3 • We continue by defining Pj+l 

to be N(p.) or F(p.) according as j is odd or even, for 
J J 

j < 2n • For each j, I ~ j < 2n , there is an arc in KO 

from Pj to Pj+l intersecting E only in Pj and Pj+l. One 

of these points, say Pk , lies in a member of G which con­n 

tains p. Thus P lies in the ~-th link of C(n). We next 

show that 0 lies in the ~-th link of Cp(n). To see this 

we describe an arc in the composant K of M having p as 
p P 

one endpoint, containing exactly one point from each member 

of G , and with these points ordered on the arc in the n 
order from P to the other endpoint. The algorithm is much 

the same as the one described for KO• If x = .xl x2 ••• is 

a point of E - p, then by G(x) is meant the point deter­

mined as follows. Let j denote the first integer such 

that x. is different from the j-th digit of p (base 3)
J 

and complement each digit Xu of x where u > j. Using G 

as F was used before, define PI p and Pj+l to be N(Pj) 
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2n or G(p.) for j < according as j is odd or even. Once 
J 

again Pj and Pj +l are the endpoints of an arc lying in "the 

closed upper or lower half plane according as n is odd or 

even and intersecting E only in Pj and Pj+l. To see that 

o is in the ~-th link of Cp(n) we make a different but 

equivalent definition of our algorithm. Note that if x is 

a point of E - 1, then F(N(x» is the point obtained by 

complementing each digit in x up to, and including, the 

first one that is O. But this is exactly the algorithm 

for counting in binary. Starting with 0, if we succes­

sively apply the composite map F(N), we obtain the points 

.200 ••• , .0200 ••• , .2200 ••• , .00200 ••• , If we re­

verse the digits in these sequences and change the 2's to 

lis, we obtain the integers 1,2,3 ••• in binary. Let t 

denote a positive integer. To find the sequence .x •••l x 2

obtained from .00 ••• by applying the composite map F(N) 

t-times, one may write down the integer t in binary as 

t i t i _ l ••• t 1 and for each integer j, let x j be 2 if and 

only if t. is 1. In the case of Nand G the result is 
J 

similar. After t applications of G(N) to the sequence 

.xl x 2 ••• , the resultant sequence .YIY2 ••• will have the 

property that y. is different from x. if and only if t. is 
J J J 

1. Assume now that the integer k (defined above) is even 

and recall that p lies in the ~-th link of C(n). Also 

the point Pkwhich results from the application of F(N) k/2 

times, lies in the member of G containing p. Thus Pk and n 
p agree in the first k digits of their base 3 representa­

tion. It should be clear that applying F(N) k/2 times to 



140	 Mahavier 

.00 ••• will result in changing some of the first k digits 

from	 O's to 2's. The application of G(N) k/2 times to 

the resulting sequence Pk' or to p since p and Pk agree 

in the first k digits, will change these 2's back to O's. 

This	 then completes the proof in the case where F and N, 

and thus also G and N, are applied the same number of 

times. The case where k is odd and there is an extra 

application of N should be clear. 
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