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NECESSARY AND SUFFICIENT CONDITIONS
FOR PRODUCTS OF k-SPACES

Yoshio Tanaka

Introduction

As is well-known, the product of a k-space with a
separable metric space need not be a k-space ([8, 15]).
In [27, 30, and 31] etc., the author obtained some neces-
sary and sufficient conditions for products of various
kinds of k-spaces to be k-spaces.

In this paper, we give some characterizations for the
product X x Y or x* to be a k-space, if X and Y are more
general types of k-spaces, as well as X and Y are domina-
ted by these types of k-spaces. Also, we shall pose some
questions concerning products of k-spaces.

We assume that all spaces are regular Tl' and all

maps are continuous and surjections.

1. Definitions

Definition 1l.1l. Let X be a space and C be a cover
of X. Then X <¢s determined by C [11] (or X has the weak
topology with respect to C), if F C X is closed in X
whenever F N C is relatively closed in C for every C € C.
Here we can replace "closed" by "open." Obviously, every

space is determined by an open .cover.

We recall that a space is a k-space; sequential

space; c-space (= space of countable tightness), if it is
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determined by the cover of all compact subsets; compact
metric subsets; countable subsets, respectively. First
countable spaces are sequential, and seguential spaces are
k~spaces. We note that a space is a c-space if an only if
whenever x € A, then x € C for some countable C € A, and
sequential spaces and hereditarily separable spaces are
c-spaces; see [17; p. 123], for example.

For an infinite cardinal number o, a space is a
ka-space [36], if it is determined by a cover C of compact
subsets with the cardinality of C < a. kw-spaces (=
spaces belonging to class &' in the sense of K. Morita
[21]) are defined by E. Michael [16]. A space X is
locally < ka [36], if each point x € X has a neighborhood
whose closure is a k -space, where B(x) < a. We shall

B (x)-
say that a space is locally kw if it is locally < kw

Let X be a space, and C be a closed cover of X.1 Then
X is dominated by C [13], if the union of any subcollec-
tion C' of C is closed in X, and the union is determined
by C'. Every space is dominated by a hereditarily
closure-preserving closed cover. If X is dominated by C,
then it is determined by C. But the converse does not
hold. We note that if X is determined by an increasing
countable, closed cover (, then X is dominated by C. As
is well~-known, every CW-complex, more generally, chunk-
complex in the sense of J. G. Ceder [3] is dominated by

a cover of compact metric subsets.
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Definition 1.2. We recall that a space X is Frécret
(= Fréchet-Urysohn), if whenever x € A, then there exists
a sequence in A converging to the point x.

A space X is strongly Fréchet [25] (= countably bi-
sequential in the sense of E. Michael [17]), if whenever
(An) is a decreasing sequence accumulating at x in X
(i.e., X;_:_T§T 3 x for any n € N), then there exist
X € An such that {xn; n € N} converges to the point x.
First countable spaces are strongly Fréchet, strongly

Fréchet spaces are Fréchet, and Fréchet spaces are se-

quential.

Definition 1.3. E. Michael [17] introduced the notion
of bi-k-spaces (resp. countably bi-k-space), and he
showed that every bi-k-space (resp. countably bi-k-space)
is characterized as the bi-quotient (resp. countably bi-
quotient) image of a paracompact M-space. Here, a space
is a paracompact M-space if it admits a perfect map onto
a metric space. A space X is a bi-k-space if, whenever
a filter base F accumulating at x in X (i.e., F 3 x for
any F € F), then there exists a k-sequence (An) in X such
that x € F_TTX; and x € A for all n €N and all F € F.
Here (An) is a k-sequence if K = ﬁ{An; n € N} is compact,
and each nbd of K contains some An. Paracompact M-spaces
and first countable spaces, more generally spaces of
pointwise countable type [1] are bi-k-spaces. A space

X is a countably bi-k-space [17] if, whenever (a) is a
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decreasing sequence accumulating at x in X, then there
exists a k-sequence (Bn) in X such that x € An N Bn for
any n € N. Strongly Fréchet spaces and bi-k~spaces are

countably bi-k-spaces.

Definition 1.4. According to E. Michael [18], a
space X 1is an inner-one A-space, if whenever (An) is a
decreasing sequence accumulating at x in X, then there
exists a non-closed subset {xn; n € N} of X with X, € A .
Some properties of inner-one A-spaces and related spaces
are investigated in [19]. Countably bi-k-spaces are inner-

one A-spaces, but the converse does not hold.

We conclude this section by recording some elementary
facts which will be often used later on. These are well-

known, or easily proved. (4)(ii) is due to [13] or [20].

Proposition 1.5. (1) Let X be determined by
{Xa; a € A}. For each o € A, let X, v, C X. Then X is
determined by {Ya; a € A},

(2) Let X be determined by {xq; a € A}. If each X,
is determined by {xaB’ B € B}, then X is determined by
{xaB; o € A, B € B}.

’ (3) Let f: X + Y be a quotient map. If X be deter-
mined by C, then Y is determined by {£(C); C € (C}.

(4) (i) If X 2s determined by k-spaces; sequential
spaces; c-spaces, then so is X respectively.

(ii) If X is dominated by paracompact spaces,

then so i1s X.
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2. k-nessof X xY

The following theorem is essentially proved in [29],

but let us give a direct proof.

Theorem 2.1. Let X be a c-space, and let Y be a
bi-k-space. If X x Y is determined by {C x Y; C is counta-
bly compact in X} (in particular, X x Y is a k-space), then
X Zs an inner-one A-space, or Y is locally countably com-
pact.

Proof. Suppose that X is not inner-one A. Then there
exist a point p € X and a decreasing sequence (An) with
p € Z;_:_TET satisfying (*) below.

(*) For any X, € A, {xn; n € N} is closed in X.

Let An' =A - {p}, and let A = ﬁ{An'; n € N}.

Suppose A is not closed in X. Since X is a c-space,

there exists a counﬁable, non—élosed subsets of A, Then
the sequence (An) does not satisfy (*). This is a contra-
diction. Hence A is closed in X. Let Bn = An' - A. Then
the sequence (B ) satisfies (*) with p € 5; and

n{Bn; n € N} g. Since X is a c-space, there exists a

countable Cn c Bn with p € E; for each n € N. Moreover,
suppose that Y is not locally countably compact. Then
for some '‘point y in Y, F = {Y - K; K is countably compact
in Y} is a filter base accumulating at y. Since Y is
bi-k, there exists a k-segquence (En) such that y € E;—Tr?

for any n € N and F € F. Thus En is not countably compact.

Then there exists a sequence {Dn; n € N} of pairwise
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disjoint, closed discrete, and infinite countable subsets
in Y such that D, - E ., D, NL =g, where L = ﬁ{En; n € N}.
Let Z = (U{Dn; n €N} UL), and let Z* = Z/L. Since 2 is
closed in ¥, X x 2 is determined by {C x Z; C is countably
compact in X}. But Z* is the perfect image of 2, so

X x 2% is the perfect image of X x Z. Thus X x 2* is
determined by {C x 2Z*; C is countably compact in X} by
Proposition 1.5(3).

Now, let p = [L] in 2%*. Then any point except p is
isolated in 2z*, and any nbd of p contains all D, except
finitely many Dp. Since the Cn are infinite countable
sets, we can assume that for each n € N, Dn =C, (as a
set) in 2*. Let s = {(x,x); x € c, for some n € N}. Then
(p,p) €5 - 5 in X x 2*, Thus S is not closed in X x 2*.
But S is closed in X x 2*. 1Indeed, let C be a countably
compact subset of X. Then, by (*) it follows that there
exists n € N such that U{Cm; m 2 n} NC is finite. Also,
{Cn; n € N} is point-finite. Thus we see that S N(C x z¥%)
is closed in C x 2*. This implies that S is closed in
X x 2*. This is a contradiction. Thus X is inner-one A,
or Y is locally countably compact. (In particular, if
X x Y is a k-space, then the cover of compact subsets of
X x Y is a refinement of C = {C x Y; C is countably com-
pact in X}. Thus, by proposition 1.5(1), X x Y is deter-
mined by C. Hence X is inner-one A, or Y is locally

countably compact.)
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In the previous theorem, the property "X is a c-space"
is essential under (CH); see Remark 2.16(1).

Concerning necessary and sufficient conditions for
the product X x Y to be a k-space, the following gquestion

is posed in view of Theorem 2.1.

Question 2.2. Let X be a k-space and c-space (in
particular, let X be a sequential space). Let Y be a
paracompact, bi-k-space.

(1) If X is an inner-one A-space, then X x Y is a
k-space?

(2) If X x Y is a k-space, then X is a countably
bi-k-space, or Y is locally compact?

If (1); or (2) is affirmative, then a characterization
for the product X x Y to be a k-space is respectively
"X is inner one A, or Y is locally compact;" or "X is
countably bi-k, or Y is locally compact" by Theorem 2.1

or [28: Proposition 4.6].

We will give some affirmative answers to Question 2.2
for fairly general types of k-spaces. We recall that every
k-space is precisely the quotient image of a paracompact,
locally compact space ([6]). Here we can replace "locally
compact space" by "bi-k-space" in view of [17]. 1In terms
of this, first, let us consider the following contions (C)

and (Q).

(C) Closed image of a paracompact bi-k-space.
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As modifications of (C), we shall also consider (Co)
stronger than (C), and (Cl) weaker than (C).
(CO) Closed image of a locally compact paracompact
space.
(Cl) Closed image of a countably bi-k-space.
" (Q) Quotient Lindeldf image of a paracompact bi-k-
space. Here a Lindeldf image denotes the image under a

map with the pre-image of each point Lindeldf.

Every paracompact M-space X, as well as every closed
image of X satisfies (C). In particular, every LaSnev
space (= closed image of a metric space) satisfies (C).

A characterization of closed images of paracompact M-
spaces (resp. metric spaces) is given in [22] (resp. [7]).
Every Fréchet space dominated by paracompact bi-k-spaces
(resp. paracompact locally compact spaces) satisfies (C)
(resp. (Cy)); see [35].

Because k—and-&o—spaces are precisely the quotient
images of separable metric spaces [l4], they satisfy (Q).
Because kw-spaces (resp. spaces determined by a point-
countable cover of compact subsets) are precisely the
quotient (resp. quotient Lindel8f) images of locally com-
pact Lindeldf (resp. locally compact paracompact) spaces

[21], they satisfy. (Q).

Lemma 2.3. The following are equivalent.
(1) X satisfies (CO).
(2) X has a hereditarily closure-preserving cover

of compact subsets.
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(3) X satisfies (C) and the condition (*): Any
closed subset of X, which is a paracompact M-space, s
locally compact.

Proof. The equivalence (1) ® (2) is known, or easy.
Indeed, (1) = (2) is easy. For (2) = (1), let L be the
topological sum of the compact subsets. Then X is the
closed image of a paracompact locally compact space L,
hence X satisfies (Co). The equivalence (1) ® (3) is due

to [33; Theorem 1.1].

We recall two canonical quotient spaces sw and Sz.
For a 2 w, let Sa be the quotient space obtained from the
topological sum of o convergent sequences by identifying
all the limit points with a single point {«} (in particu-
lar, sw is called the sequential fan). Let 52 = (N x N)
UN U {0} with each point of N x N isolated. A local base
of n € N consists of all sets of the form {n} U {(m,n);
m 2 mo}, and U is a neighborhood of 0 if an only if 0 € U
and U is a neighborhood of all but finitely many n € N

(s2 is called the Arens' space).

Lemma 2.4. Let X be an inner-one A-space. Then each
of the following conditions implies that X is a countably
bi-k-space. Indeed, X is a metric space for (a); strongly
Fréchet space for (b), (c), and (d); countably bi-k-space
for (e); and bi-k-space (resp. locally compact space) for

(£) and (g).
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(a) La%nev space.

(b) Fréchet space.

(c) k-space in which every point is a Gé-set.

(d) Hereditarily normal, sequential space.

(e) Space satisfying (Cl).

(f) Space satisfying (C) (resp. (CO)).

(g) c-space satisfying (Q).

Proof. For (a), X is a metric space by [17; Corollary
9.10]. For (b), X is a strongly Fréchet space by [24;
Theorem 5.1]. For (c), X is sequential by [17; Theorem
7.3]. While, any inner-one A-space contains no closed

2
tial space X is strongly Fréchet by [34; Theorem 3.1].

copy of sw and no S,. Then, for (c) and (d), a sequen-

For (e), X is a countably bi-k-space by Theorem 6.3 and
Proposition 2.4 in [19], and [17; p. 114]. For (f) and
(g), X is a bi-k-space (resp. locally compact space) by

Theorems 9.5 and 9.9, and Proposition 3.E.4 in [17].

Let {xa; a < y} be a cover of X. For each a < y, let
= = - . * = i
L0 XO' La xa U{XS' B < al}, and Xa cl La’ We will
use these notations.

Lemma 2.5. Let X be dominated by {Xa; a < yv}. Then
the following hold.

(1) X is determined by {Xa*; a < vl.

(2) Let A be a subset of X. For each o < vy, let Ba
be a subset of La such that A U Ba 18 closed in X, and let

B = U{Ba; @ < y}. Them S = A UB is closed in X.
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(3) If Fy c La is finite for each a < Yy, then
D = U{Fa; a < v} 7s closed and discrete in X.

Proof. (1) For F C X, let F N Xa* be closed in Xa*
for each o < y. Then F N X

0 is closed in Xy+ Suppose

that F N xa is closed in xa for each a < §. Let F

§

(F N Xé) N U{Xa; a < 6}. Then Fyg C U{Xa; a < &8}, and

F.NX = (FNZX ) NX. is closed in X for each a < §.
8 a o § o

Then F<S is closed in X. While F N x<S = F6

* is closed in XG’ FNX

U (F N Xé*).

Thus, since F N X is closed in

§ $

X Hence, by induction, F N Xa is closed in Xa for each

é‘u
& < Y. Then F is closed in X.

(2) s n X0 = (AN XO) U (B N Xo) = ((A UV BO) n Xo).

Then S N X0 is closed in XO‘ Suppose that s N Xa is

closed in Xa for each o0 < §. Let E, = (S N XG) N

§
U{Xa; o < 8}. Then as is seen, E6 is closed in X. While

SNX.= (AN XG) U (B N LG) UE,. = ((A U BG) N Xﬁ) UE

8
Thus S N X

8 §°
5 is closed in XG' Hence, by induction, S N Xu
is closed in Xa for each o < y. Then S is closed in X.
(3) In (2), putting A = g and Ba = Fa' we see that
any subset of D is closed in X. Hence D is closed and

discrete in X.

Lemma 2.6. Let X be a c-space dominated by a cover
(or determined by a point-countable cover). If X is an
inner-one A-space, then each point of X has a neighborhood
which is contained in a finite union of elements of the
cover.

Proof. First, we show the parenthetic part. Sup-

pose that the assertion does not hold. Let X be
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determined by a point-countable cover (. For each
countable subset A of X, let {Pn(A); n € N} = {C € C;
CNA # @}. Then, since X is a c-space, for some x € X
there exists a sequence {Bn; n € N} of countable subsets

of X such that {x} = B,, x € B—;, and B, N Pi(Bj) =g if

ll
i,j < n. We note that any element of C meets only
finitely many B . Let D = U{Bi; i 2 n} for each n € N.
Then (Dn) is a decreasing sequence accumulating at x.
Since X is inner-one A, there exists a non-closed subset
D= {x_; n €N} with x_ € D.. Thus there exists C, € C
n n n 0
such that C, N D is not closed in C. Hence C, meets

0 0
infinitely many Bn' This is a contradiction. The
parenthetic part holds.

Now, let X be dominated by {Xa; a < y}. Suppose

that {Xa*7 @ < Y} is not point-finite. Then, for some

x € X, there exists an infinite sequence {Xa*; n € N} with
n

X

35 = U H € - U s i
oF 3 x. Let B, {L, : n €N} {L, ¢+ i < n}. Then

*

n n i

(Bn) is a decreasing sequence accumulating at x. Since X
is inner-one A, there exists a non-closed subset B =

{xn; n € N} with x €B . But B NL, is finite for each
o < Y. Then B is closed discrete in X by Lemma 2.5(3).
This is a contradiction. Thus {xa*; @ < vyl is point-
finite. But, by Lemma 2.5(1) X is determined by

{Xa*; a < y}. Thus the lemma holds by the parenthetic

part.
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Lemma 2.7. Each of the following conditions implies
that X x Y is a k-space.

(a) X is a k-space, and Y is locally compact ([6]).

(b) X 2s a sequential space, and Y s a locally
countably compact, sequential space ([2]).

(c) X s a countably bi-k-space, and Y is a bi-k-
space ([28]).

(d) X and Y are locally k -spaces (cf. [16]).

(e) (MA). X Zs locally < kc, where c = 2w, and Y 18
a locally kw-space each of whose compact set is metric

(cf. [35]).
Now we give some partial answers to Question 2.2.

Theorem 2.8. Let X be dominated by spaces satisfying
one of the following conditions (in particular, let X be
a Lasnev space, CW-complex, or the quotient s-image of a
metric space). Let Y be a paracompact bi-k-space (resp.
let Y be a sequential, bi-k-space).

(a) Fréchet space.

(b) k-space in which every point is a Gs-set.

(c) Hereditarily normal, sequential space.

(d) c-space (resp. sequential space) satisfying
(Cq{) or (Q).

Then the following are equivalent.
(1) X x Y 28 a k-space.
(2) X 28 a countably bi-k-space, or Y is locally

compact (resp. locally countably compact).
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(3) X is an inner-one A-space, or Y is locally com-
pact (resp. locally countably compact).

Proof. We note that each of (a) v (d) (resp. paren-
thetic part of (d)) implies that X is a c-space (resp.
sequential space) by Proposition 1.5(4) (i). (1) = (3)
follows from Theorem 2.1. (3) = (2) follows from Lemmas
2.4 & 2.6, and the fact every locally countably bi-k-space

is countably bi-k. (2) = (1) follows from Lemma 2.7.

Lemma 2.9. (1) Let X be determined by {Xa; a € Al.
Let y be a regular cardinal with y > wy - For any o € A,
suppose that {B € A; Xu N XB # @} has cardinality < y.
Then X is the topological sum of {Td; d € D} such that
each T

d
cardinality < ¥y.

is determined by {Xa; a € Ad}, where A; €A has

(2) A space X is a paracompact locally kw-space if
and only if it is determined by countably many locally
compact paracompact, closed subsets (equivalently, X is
the topological sum of kw-spaces).

Proof. (1) This can be proved by the same method as
in the proof of (a) = (¢) and (d) in [32; Theorem 1].

(2) For the "if" part, let X be determined by
locally compact paracompact, closed subsets Xn (n € N).
Since each Xn is paracompact, it is determined by a locally

finite cover {Xn ; o € A} of compact subsets. Then by

o
Proposition 1.5(2), X is determined by a cover C =
{xna; n €N, a € A} of compact subsets. But any elements

of C meets only countably many members. Thus X is the
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topological sum of kw-spaces by (1). Then X is a para-
compact locally kw-space. For the "only if" part, X has

a locally finite closed cover {Ka7 a € A} of k -spaces.
Each Ka can be dominated by an increasing countable cover
{Kan; n € N} of compact subsets. Let L = U{Kai7 a €A,

i < n} for each n € N. Then each compact subset of X is
contained in some Ln by means of Lemma 2.5(3). But X is

a k-space, for it is a locally k-space. Thus, by Proposi-
tion 1.5(1), X is determined by a closed cover {Ln; n € N}

of locally compact paracompact, closed subsets.

We obtained a characterization for X x Y to be a k-
space if X is various kinds of k-spaces and Y is a bi-k-
space (Theorem 2.8). Next, let us consider the k-ness
of X x Y if Y is not necessarily a bi-k-space.

First, when X and Y are dominated by countably many

certain bi-k spaces, we have the following theorem.

Theorem 2.10. Let X and Y be dominated by countably
many paracompact bi-k, and c-spaces (in particular, let X
and Y be dominated by countably many metric spaces). Then
X x Y 2s a k-space if and only if one of the following
properties holds.

(a) X or Y is loecally compact.

(b) X and Y are bi-k-spaces.

(c) X and Y are locally kw—spaces.

Proof. The "if" part holds by Lemma 2.7. We prove

the "only if" part. Note that X and Y are c-spaces by
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Proposition 1.5(4), and that every locally bi-k-space is
bi~k. Thus, if X x Y is a k-space, by Theorem 2.1 and
Lemma 2.6, (a) and (b) hold, otherwise X and Y are domi-
nated by countably many locally compact paracompact
spaces. The last property implies (c) holds by Lemma

2.9(2).

Second, when X and Y are dominated by (not necessar-
ily countably many) certain Fréchet spaces, the assertion
of the previous theorem is equivalent to a certain set-

theoretic axiom weaker -than (CH). We will show this.

Lemma 2.11. Let X be dominated by Fréchet spaces
satisfying (C). If X contains no closed copy of Sw and

no S then X is a bi-k-space.

22
Proof. Let X be dominated by {Xa7 a € A}, where

each Xa is Fréchet. Since any xa contains no closed copy
of S,, X is Fréchet in view of the proof of [34; Theorem
2.1(a)]. But X contains no closed copy of Sw. Then, by
[26; p. 31] X is strongly Fréchet, and so is each Xa.

Then X is a bi-k-space by Lemmas 2.4 and 2.6, and the fact

that every locally bi-k-space is bi-k.

Lemma 2.12. Let X be dominated, by c-spaces satisfy-
ing (C). Let Y be a space satisfying (C). If X x Y is a
k-space, then X is a bi-k-space, or Y has a hereditarily
closure-preserving cover of compact subsets.

Proof. Suppose X is not a bi-k-space. Then X is

not an inner-one A-space by Lemmas 2.4 and 2.6. Then, by
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Theorem 2.1, Y satisfies (%) in Lemma 2.3(3). Then, by
Lemma 2.3, Y has a hereditarily closure-preserving cover

of compact subsets.

Let F be the set of all functions from N to N. For
f, g € F, we define £ > g if {n € N; £(n) < g(n)} is
finite. Let b = min {y; there exists an unbounded family
A C F with cardinality yv}. By BF(a), we mean "b > a".

It is well-known that (MA) implies "b = c".
The following lemma is due to G..Gruenhage [10].

Lemma 2.13. (1) S x 8 18 not a k-space.
“1 w1

(2) Sq ¥ S, is a k-space if and only if BF(a+) holds,

where a+ means the least cardinal greater than a.

Now, we show that the assertion of Theorem 2.10 is
equivalent to "BF(wz) is false" if X and Y are dominated

by certain Fréchet spaces.

Theorem 2.14. Let X and Y be dominated by Fréchet
spaces satisfying (C). Then the following (1) and (2) are
equivalent. When X = Y, the assertion (2) holds; that is,
X2 18 a k-space if and only i1f X is a bi-k-space, or a
locally kw-space.

(1) BF(wZ) 18 false.

(2) X x Y 2s a k-space i1f and only if one of the
properties (a), (b) and (c) in Theorem 2.10 holds.

Proof. (2) = (1). Any Su is dominated by compact

metric spaces. But Sw is neither bi~-k nor 1locally
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compact, and Swl is not locally k . Then Smlx Sw is

not a k-space by the "only if" part of (2). Thus BF(mz)
is false by Lemma 2.13(2).

(1) = (2). The "if" part holds by Lemma 2.7. We
prove the "only if" part. Let X be dominated by {Xa;
a < Y}, where each Xq is a Fréchet space satisfying (C).
First, suppose that one of X and Y is bi-k, but another is
not bi~-k. We can assume that X is bi-k, but Y is not bi-k.
Since each xa x Y is closed in a k-space X x Y, Xa x Y is
a k-space. Then, by Lemma 2.12, each Xa is dominated by
a cover of compact subsets. Since each Xa,is.bi—k, by
Lemma 2.6 Xa is locally compact. Then, a bi-k-space X is
locally compact by Lemma 2.6.

Next suppose that neither X nor Y is bi-k. Since
each Xa* x Y is closed in a k-space X x Y, Xa* x Y is a
k-space. But each Xa* is a space satisfying (C). Then,
by Lemma 2.12, Xa* has a hereditarily closure-preserving

cover {Ca B < da} of compact subsets. Hence Xa* is

8;
dominated by this cover. Let Cy = {Cae*; B < 6a} for each
a < v, and C = U{Ca; a < y}. Suppose that for some

cecC, A=f{a; CN X > # g} has cardinality g > Let

wy -
X, eEcn Xa* for each o € A. Note that if Py € L, for

o €A, {pa; a € A} is closed, discrete in X by Lemma
2.5(3). Then, since C is compact, we can assume that

La N C =g for any o« € A. For each o € A, since X, € Xa*

and Xa is Fréchet, there exists an infinite sequence Aa in

L, converging to X, € C with Aa NC=4g. Let
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S=cCcuV U{Aa; a € A}, and let T be the quotient space
obtained from S by identifying all the points of C. Then
S is closed in X, and T is a copy of SC by Lemma 2.5(2)

and (3). Now, since Y is not bi-k, Y contains a closed

copy S' of S or S, by Lemma 2.11. Since S x S' is a
)

2
closed subset of a k-space X x Y, it is a k-space. But
SC is the perfect image of S, and similarly Sw is the

perfect image of S Then S_ x Sw is the perfect (hence

2° z
quotient) image of a k-space S x S'. Thus SE X Sw is a
k-space, for every quotient image of a k-space is a k-

space. But BF(mZ) is false. Then ¢ < w, by Lemma 2.13(2).

1
This is a contradiction. Then any C € C meets only count-
ably many Xa*' Besides, for any C € C and.for any a < vy,
a compact subset C N Xa* of X meets only countably many
elements of Ca in view of the above arguments. Then any
C € C meets only countably many elements of C. While, by
Proposition 1.5(2) and Lemma 2.5(1), it follows that X is
determined by the cover C of compact subsets. Thus X is
locally kw by Lemma 2.9(2). Similarly, Y is also locally
kw. Therefore the "only if" part holds. When X =Y,
using Lemma 2.13(l), the assertion (2) holds by the same

way as in the above.

Remark 2.15. 1In the following, (2) is a generaliza-
tion of Theorem 1.6 in [35], where X = S and Y is domi-
nated by metric spaces.

(1) Let X and Y be dominated by Fréchet spaces

satisfying (C). If X x Y is a k-space, then X or Y is a
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locally kw-space (equivalently, X or Y is the topological
sum of kw-spaces), otherwise X and Y are bi-k-spaces.

(2) Let X be a Fréchet space satisfying (C), but is
not locally < kc. Let Y be dominated by Fréchet space
satisfying (C). Then X x Y is a k-space if and only if
Y is locally compact, otherwise X and Y are bi-k-spaces.

Indeed, note that neither S x S nor S_ x S 1is a
wy Wy c W

k-space by Lemma 2.13. Then (1) holds by the same way as
in the proof of (1) = (2) of Theorem 2.14. For (2),
suppose that Y is not bi-k. Then, in view of the proof of
(1) = (2) of Theorem 2.14, X has a hereditarily closure-
preserving cover C by compact subsets such that for each

x € X, {C € C; x € C} has cardinality < c. Then X is
locally < kc’ This is a contradiction. Thus Y is a bi-k-
space. Hence, (2) holds in view of the proof of Theorem

2.14.

Remark 2.16. (1) In Theorem 2.14, the property
"each piece is Fréchet" is essential. In Theorem 2.1
(resp. Theorems 2.8 and 2.10), the property "X is a c-
space" (resp. "each piece is a c-space") is essential
under (CH).

Indeed, quite recently Chen Huaipeng [5] showed that,
under (CH), there exists a kw—space X satisfying (CO) such
that x“ is a k-space, but X is not locally compact. Since
X is not countably compact, X contains a closed copy of N.

Let Y be N“, and let Z be the topological sum X + Y of X
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and Y. Then Z is dominated by countably many paracompact
M-spaces. Since X x Y is a closed subset of Xw, it is a
k-space. Then Z x Z is a k-space. X satisfies (C), but
it is not locally compact. Then X is not an inner-one
A-space by Lemma 2.4, hence not a bi-k-space. Y is a
metric space, but not locally compact. Then Y is not
locally kw by Lemma 2.6. Then Z is neither bi-k nor
locally kw' Then (1) (indeed, (CH)) = (2) in Theorem 2.14
does not hold if we omit the Fréchet-ness of each piece.
The space Z is also the desired space for the latter part.

(2) In Theorem 2.14, the condition (C) of each
Fréchet piece is essential.

Indeed, G. Gruenhage [9] showed that, under (MA),
there exists a countable, Fréchet space X such that any
finite product X" is Fréchet, but the countable product

® js not Fréchet. Thus X* is not even a k-space by

X
Theorem 3.1(2) in the next Section. Then X is not a bi-k-
space. Because any countable product of bi-k-spaces is a
bi-k-space by [17; Proposition 3.E.4], hence a k-space.
Now, x? is Fréchet. Then X is strongly Fréchet in view

of the proof of Proposition 4.E.4 in [17]. But X is not
locally compact. Then X is not locally kw by Lemma 2.6.
Hence, (1) (indeed, (CH)) = (2) in Theorem 2.14 does not

hold if we omit the condition (C).

In view of Theorem 2.14 and Remark 2.16, the author

has the following question.
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guestion 2.17. The equivalence (l) «# (2) in Theorem
2.14 holds under case (a) or (b) below?

(a) X and Y are dominated by compact (or compact
sequential) spaces.

(b) X and Y are determined by point-countable covers
of compact (or compact metric) spaces.

As for case (b), we note that if X and Y are k'-
spaces (in the sense of [1]) determined by point-
countable covers of compact spaces, then X x Y is a k-space
in view of [4]. But the property "X and Y are k'-spaces"
is essential even if X = Y and X is a paracompact space
determined by a point-finite cover of compact metric

spaces; see [32; Example 3].

In the following corollary, (A) is a generalization
for cases "X and Y are LaSnev spaces ([10])" and "X and Y
are CW-complexes ([31]), more generally they are closed
images of CW-complexes ([36])". Note that every closed
image of a CW-complex is dominated by compact metric
spaces, but not every Labnev space is dominated by metric
spaces [37]. The latter half of (A) is also a generaliza-
tion of Theorem 1.7 (1) in [35], where X = Y and X is a

Fréchet space dominated by metric spaces.

Corollary 2.18. Let X and Y be dominated by Lasnev
spaces.

(A) The following (1) and (2) are equivalent. When
X = Y, the assertion (2) holds; that is, X2 is a k-space

if and only i1f X is metric, or locally kw'
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(1) BF(wz) ts false.

(2) X x Y ig a k-space if and only if one of the
following holds.

(a) X or Y is locally compact metric.
(b) X and Y are metric.
(c} X and Y are locally k.

(B) (MA). X x Y is a k-space if and only if one of
the following holds. When X = ¥, we can omit (MA).

(a) X or Y ig locally compact metric.

(b) X and Y are metric.

(c) One of X and Y is locally kw’ and another is
locally < kc'

Proof. (A) Since X and Y are dominated by para-
compact spaces, they are paracompact by Proposition 1.5(4).
But, by Lemmas 2.4 and 2.6, every bi-k-space dominated by
La%nev spaces is locally metric. While every paracompact,
locally metric space is metric. Hence if X is a bi-k-
space, it is metric. Thus (1) «® (2) holds by Theorem 2.14.

(B) From the above, every compact subset of X and Y
is metric. Then the "if" part holds by Lemma 2.7. For
the "only if" part, suppose that neither (a) nor (b) holds.
Then neither X nor Y is a bi-k-space in view of the proof
of (1) = (2) of Theorem 2.14. We note that neither

S x 8 nor S x S 1is a k-space by Lemma 2.13, and the
wy wy c w

cardinal ¢ is regular under (MA). Then using Lemma 2.9(1),

X or Y is locally kw, and both X and Y are locally < kc
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by the same way as in the proof of (1) = (2) of Theorem

2.14. Then (c) holds.

We shall say that a space X is locally a-compact if
each point of X has a neighborhood whose closure is a-
compact. Here a space is a-compact if any subset of with

cardinality o has an accumulation point.

Lemma 2.19. Let X be dominated by a cover C of com-
pact subsets. Then for an infinite regular cardinal Yy, X
ts locally y-compact if and only if it is loeally < kY'

Proof. The "if" part is easily proved. For the
"only if" part, for x € X, let V(x) be a neighborhood of
x such that V(X) is y-compact. Then by Lemma 2.5(3),
V(x) CUC' for some C' C C with cardinality < y. Then
V(XY is determined by a cover {V(x) NC; C € C'} of com-
pact subsets, with cardinality < y. This implies that X

is locally < kY.

We have the following by Corollary 2.18(B) and

Lemma 2.19.

Corollary 2.20. (MA). Let X and Y be dominated by
compact metric spaces. Then the following are equivalent.
When X = Y, we can omit (MA).

(1) X x Y 28 a k-space.

(2) X or Y is locally compact metric, otherwise one

of X and Y is locally K, and another is locally < ke
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(3) X or Y s locally compact metric, otherwise one

of X and Y is locally w,-compact and another is locally

1

Cc-compact.

Lemma 2.21. Let X be dominated by a cover C of com-
pact c-spaces, and let Y have the same property. Then
X x Y 28 a k-space if and only <1f 1t is a c-space.

Proof. "If": Since X x Y is a c-space, it is deter-
mined by countable subsets of X x Y. Then, by Proposi-
tion 1.5(1), X x Y is determined by 6 = {D x E; D and E
are countable}. Let D be a countable subset of X. Since
X is dominated by ¢, D C U C' for some countable C' C C.
Then D is determined by a countable cover {D N¢C; C € C'}
of compact subsets. Hence D is a kw—space. Similarly,
any separable closed subset of Y is a kw-space. Then any
element of G is a k-space by Lemma 2.7. Thus X x Y is a
k-space by Proposition 1.5(4).

"Only if": Since X x Y is a k-space, it is deter-
mined by H = {K x L; K and L are compact}. But by
Proposition 1.5(4), X and Y are c-spaces, then so is any
compact subset of X and Y. Thus, by [12; Theorem 4],

any element of H is a c~space. Then X x Y is a c-space.

Lemma 2.22. Let X be dominated by C = {Xa; a € A},
and let Y be dominated by D = {Yn; n € N} with
Yn C Yn+l (n €EN). If X x Y is a k-space, then it is
dominated by F = {Xa x Yn; o €A, n €N}.

Proof. Since C and D are closure-preserving closed

covers, so is F in X x Y. Let F'be any subcollection of
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F, and let S = U F'., Since S is closed in a k-space

X x Y, S is also a k-space. Besides, any element of F'

is closed in X x Y. Then, to show S is determined by F',
it suffices to show that each compact subset of S is con-
tained in a finite union of elements of F'. For each

n €N, let A = U{Xa; X, x Y € F'} (if there are no

Xa X Yn € F', let An =g), B_ = U{Ai; i > n}, and let
Ly=Y =Y 1, Y, = #g. Then S = U{An x Y in € N} =

U{Bn x Lin € N}. Let C be a compact subset of S. Then
there exist compact subsets K in X and L in Y such that

C C K x L. Note that the compact set L meets only finitely
many L by Lemma 2.5(3). Let m = Max {n €EN; L N Ln # g},
Then C € (K x L) N s CU{B x Y ; n <m}. Now, each B

is dominated by Grl = {Xa7 X, x ¥, € F', 1 > n}. Then each
compact subset of Bn is contained in a finite union of
elements of Gn by Lemma 2.5(3). Then each compact subset
of B x Y, is contained in a finite union of elements of
Hn = {Xa X Yn; Xa € Gn}, in particular, so is a compact
subset (K x L) N (Bn X Yn) of B x Yn. Hence (K x L) N s
is contained in a finite union of elements of U{Hn; n < m},

hence so is C. But Yn C Yn for each n € N. Then C is

+1
contained in a finite union of elements of F'. Hence
each compact subset of S is contained in a finite union

of elements of F'.

For spaces X and Y dominated by compact metric spaces,

let us give equivalent properties to the k-ness of X x Y.
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We note that Sw X Q, Q is the rationals, is a c-space,
but is not a k-space. Thus the compactness of the metric

piece is essential in (2) = (1) of the following theorem.

Theorem 2.23. Let X and Y be dominated by compact
metric spaces. Then the following are equivalent.

(1) X x Y 28 a k-space.

(2) X x Y is a c-space.

(3) X x Y is dominated by compact metric spaces.

Proof. (1) © (2) follows from Lemma 2.21. (3) = (1)
follows from Proposition 1.5(4). We prove (1) = (3). We
note that if X is bi-k, by Lemma 2.6, X is locally com-
pact, hence is locally kw' Then, in view of Remark 2.15(1),
X or Y is the topological sum of kw-spaces. Then, using
Lemma 2.22, we show that X x Y is dominated by compact
spaces. But any compact subset of X and Y is metric.

Then (3) holds.

3. k-ness of X*

Theorem 3.1. (1) Let X* be a k-space with X a
c-space. Then Xx¥ is an inner-one A-space.

(2) Let X be dominated by {xa; a € A}, where every
point of X, 18 a Gg-set in X, Then X* is a k-space if
and only if it is strongly Fréchet.

(3) Let X be dominated by c-spaces satisfying (C) or
(Q). Then X¥ is a k-space if and only if it is a bi-k-

space (quivalently, X is a bi-k-space).
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Proof. (1) Let Y = x¥. Since Y is a k-space with

X a c-space, using Remark 3 in [12], Y is a c-space by the
same way as in the proof of the "only if" part of Lemma
2.19. Every countably compact space is inner-one A. Then,
to show that Y is inner-one A, let Y be not countably
compact. Then Y contains a closed copy of N. Then v,
which is homeomorphic to Y x Y¥, contains a closed copy

of ¥ x NY. But ¥ x N is a k-space with Y a c-space.

Then Y is an inner-one A-space by Theorem 2.1.

(2) Since every strongly Fréchet space is a k-space,
it suffices to prove the "only if" part. Using Lemma
2.5(3), any compact or separable subset S of X is covered
by countably many Xa. Then every point of S is a Gé-set
in X. Hence every point of a compact or separable sub-
set of Y = XY is a Gd-set in Y. Then any compact subset
of Y is first countable. Thus a k-space Y is sequential
hence a c-space. Then, to show Y is strongly Fréchet, by
[17; Proposition 8.7] it suffices to show that any count-
able subset A of Y is strongly Fréchet. Let B = A.

Since B is a separable closed subset of Y, B is a sequen-
tial space in which every point is a Gs-set. But B is an
inner-one A-space by means of (l1). Thus B is strongly
Fréchet by Lemma 2.4. Hence A is strongly Fréchet.

(3) For the "if" part, we note that every product
of countably many bi-k-spaces is a bi-k-space [17], hence
a k-space. For the "only if" part, since X is a c-space,
X is an inner-one A-space by (1l). Thus the "only if" part

follows from Lemmas 2.4 and 2.6.
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Remark 3.2. (1) 1In Theorem 3.1(l) (resp. Theorem
3.1(3)), the property "X is a c-space" (resp. "each piece
is a c-space") is essential under (CH).

Indeed, let us consider the space Z = X + N in
Remark 2.16(1). X® x N¥ is closed in x“ x x“, and
¥ x x¥ is homeomorphic to a k-space X®. Then x® x N“ is
a k-space. Thus z% is a k-space. Then Z is the desired
space in view of Remark 2.16(1l).

(2) The condition (C) or (Q) in Theorem 3.1(3) is
essential under (CH).

Indeed, T. Nogura [23] showed that, under (CH), there
exists a countable Fréchet space X such that X% is Fréchet
(hence strongly Fréchet), but X is not a bi-sequential
space (in the sense of [17; 3D]). Then X is not a bi-k-
space, because any b-k-space in which every point is a

Gg-set is bi-sequential by [17; Theorem 7.3].

In view of Theorem 3.1 and Remark 3.2, the author

has the following gquestion.

Question 3.3. Let X“ be a k-space with X a c-space.
Then X is a countably bi-k-space (equivalently, x¥ is

countably bi-k)?

In the following corollary, (1) is a generalization
of Theorem 1.7 in [35], where X is a Fréchet space domi-

nated by metric spaces.

Corollary 3.4. Let X be dominated by LaSnev spaces.

Then the following hold.
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(1) For n > 2, X% is a k-space if and only 1f X is
metric or locally kw'

(2) XY is a k-space if and only if X is metric.

Proof. For (l), the "only if" part follows from
Corollary 2.17(A). For the "if" part, note that every
finite product of locally kw-spaces is locally kw by
means of [16; (7.5)]. Then each X% is a locally k-space,
hence is a k-space. For (2), note that if X is a bi-k-
space, then it is metric as in the proof of Corollary

2.17(A). Thus (2) follows from Theorem 3.1(2) or (3).
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