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CONFLUENT MAPPINGS ON [0,1] AND
INVERSE LIMITS

JAMES F. DAVIS

ABSTRACT. Let I = [0,1]. In this paper, confluent
mappings f : I — I are characterized. The degree, deg(f)
of such a mapping is defined as (number of components of
f71(0)) + (number of components of f~1(1)) — 1. This
definition agrees with the usual definition of deg(f) in
the case where f is open. It is shown that, if f; : I — I
is confluent, g; : I — I is open and deg(f;) = deg(g:)
for i = 1,2,..., then liln{I, fi} is homeomorphic with

lim{I, g;}.

The simplest indecomposable continua are those which can
be constructed as inverse limits of I = [0, 1], with open bond-
ing maps. In this paper we show that inverse limits on I with
confluent bonding maps are homeomorphic to inverse limits
on I with open bonding maps, and we identify the particular
inverse limit of the latter type that a given inverse limit with
confluent bonding maps is homeomorphic to. This weakening
of the condition on the bonding map is useful: it makes it much
easier to construct mappings onto these continua (see [2] for
example). To prove this result, we first obtain a characteriza-
tion of confluent mappings from I onto I which is similar to the
characterization of open mappings in [8]. From this character-
ization it follows that such confluent mappings are uniformly
approximated by open mappings. Given an inverse limit, X,
on I with confluent bonding maps we may apply a theorem of
Morton Brown [1] to obtain a homeomorphism form X onto
an inverse limit on I with open bonding maps. The degrees of
the corresponding confluent mappings and open mappings are
the same, and thus the inverse limit with open bonding maps
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is identified.

A classification of inverse limits on I with a fixed open bond-
ing map was obtained independently by W. Debski [3] and
W.T. Watkins [8]. A classification in the more general case,
allowing different bonding maps, was obtained by Debski. It
follows as a corollary to the result discussed above that the
inverse limits on I with confluent bonding maps are classified
in the same way.

All spaces considered in this paper are metric. A continu-
um is a compact connected metric space and a mapping is a
continuous function. A mapping f from the X onto the space
Y is confluent provided that, for each subcontinuum K of Y,
each component of f~!(K) is mapped by f onto K. We will
adopt the following notational conveniences: if a = b, we define
[a,b] = {a}; if H; and H, are mutually exclusive sets of real
numbers then we say that H; is to the right of H; and write
H, < H, if it is true that s < ¢ for all s € H; and t € H,; if
H,, H; and H3 are mutually exclusive sets of real numbers then
we say that H, is between H, and Hj if either H, < H, < Hj3
or H3 < H, < H;.

Our first lemma follows easily from the Intermediate Value
Theorem and the definition of confluent mappings.

Lemma 1. Suppose that f : I — I is confluent, a and b are
in I,a < b and f(a) = f(b).

(1) If there is a number = between a and b such that f(z) >
f(a) then there is a number ¢ between a and b such that f(c) =
1.

(2) If there is a number = between a and b such that f(z) <
f(a) then there is a number ¢ between a and b such that f(c) =
0.

Lemma 2. Suppose that f : I — I is confluent, a and b are
in I,a < b and f(a) = f(b).

(1) If f(z) > f(a) for all z in (a,b) then there is just one
component of f~(1) which is between a and b.

(2) If f(z) < f(b) for all z in (a,b) then there is just one
component of f~1(0) which is between a and b.

Proof. This is a straight forward application of Lemma 1.
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From Lemma 2 and the uniform continuity of continuous
functions on I we obtain the following lemma.

Lemma 3. Suppose that f : I — I is confluent. Then there
exists € > 0 such that if a and b are in I and f(a) = f(b) =0 or
f(a) = f(b) =1 and f is not constant on [a, b] then |b—a| > e.

Corollary Suppose that f : I — I is confluent. Then f~1(0)
and f~1(1) each have only finitely many components.

Lemma 4. If f : I — I is confluent then either f(0) = 0 or
f(0) =1 and either f(1) =0 or f(1) =1.

Proof. We will prove the first conclusion only.

Suppose f(0) # 0 and f(0) # 1. Let
e = gLb(f1(0)U f(1)

Then either f(z) = 0 or f(z) = 1. In either case z > 0. Suppose
that f(z) = 0. Let K = [f(0)/2,1]. Let L be the component of
f~Y(K) which contains 0. Since f is confluent, there is a point
cin L such that f(c¢) = 1. Since f(0)/2 > 0 = f(z) we have
that L C [0,z], and thus ¢ < z. This is inconsistent with the
definition of z.

Lemma 5. Suppose that f : [ — I is confluent, f~*(0) has
n components, L1 < Ly < L3y < ... < Ly, and f~(1) has m
components, Hy < Hy < H3 < ... < H,,. Then the components
of f71(0) and f~1(1) alternate, and

(1) if0€ Ly and 1 € H,, then m = n,

(2) if0€ Hy and 1 € L, then m =n,

(3) f0€ Ly and1 € L, thenn=m +1, and

(4) if0€ Hy and 1 € Hy, thenm =n + 1.

Proof: That the components of f~(0) and f~!(1) alternate
follows from Lemma 2. Suppose 0 is in L;. Thus no H; is to
the left of L,. Since H;, H,,... ,H,, alternates with L,, L,,
Li,...,L,, there are n —1 Hs to the left of L,. There can be
no more than one H; to the right of L,. If 1 is in L,,, there are
no H;s to the right of L,,. Thusif 1 isin L,,then m=n—1
and we have (3). If 1 is not in L, , then 1 is in H,, by Lemma
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4. Therefore m = n and we have (1). Similar reasoning yields
(2) and (4).

Definition. Suppose that f : I — I is confluent, m is the
number of components of f~1(0), and n is the number of com-
ponents of f~1(1). The degree of f, denoted deg(f), is the
integer m + n — 1. Note that if f is an open mapping, then
deg(f) as defined in [3, p. 204] agrees with this definition.

Theorem 1. A mapping f : I — I is confluent if and only if
there is a positive integer n and sequences ag,a1,... ,an, and

bo,bl,... ,bn with
0=a0§bo<a1§b1<...<an_1Sbn_1<an§bn:1,

such that, for i = 1,2,...,n, f restricted to [bj_1,a;] is a
monotone mapping of [bi_1,a;] onto I, and , for ¢ = 0,1,
2,...,n, f restricted to [a;,b;] is constant and equal to 0 or 1.

Proof. To prove the sufficiency of the stated condition sup-
pose that n is a positive integer, 0 = ag < bp < a; < b;... <
an_1 <b,_1<a, <b,=1,and f: I — I is a mapping sat-
isfying the condition above with respect to ao,a1,...,a, and
bo, b1, ... ,b,. Suppose that K = [c,d] is a subinterval of I, and
that L is a component of f~!(K). Suppose L N [b;—1,a;] # 0
for some ¢. Since f is monotone on [b;_1,a;], there is a subin-
terval, J, of [b;_1,a;] such that f(J) = K. Also by the mono-
tonicity of f on [b;—1,a;],J N L # 0. Since L is a component
of f~Y(K),J C L. Hence f(L) = K. If LN [b;_1,a;] = 0 for all
i, then L C [a;,b;] for some i. But, since L is a component of
f~YK),L = [a;,b;] and thus LN [b;_y,a;] # 0, a contradiction.
Therefore f is confluent.

Now suppose that f : I — [ is confluent. Suppose that
f~(0) has n components, Ly < Lz... < L, and f~!(1) has
m components, H; < Hy < ... < Hy. Let k = deg(f) =
m+n — 1. Either 0 € L; or 0 € H; by Lemma 4. Suppose the
former. Define ay and by to be the right and left endpoints of
L, respectively; L, = [ag, bo]. For ¢ > 0 define a; and b; to be
the right and left endpoints, respectively, of H;;1)/, if ¢ is odd,
or to be the right and left endpoints, respectively, of L;/241) if
¢ is even. We need only show that f is monotone on [b;_;, a;]
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for 0 < ¢ < k. Suppose that ¢+ > 0 and that ¢ is odd. Let
J = (¢+1)/2. Then [a;_1,b;_41] = L; and [a;,b;] = H;. Suppose
that ¢ is in I and that f~'(¢) has two components, Cy and Cj,
lying in [b;_;, a;]. By Lemma 2, there is a component of either
f71(0) or f~1(1) lying between C; and C,. But L; and H; are
consecutive components of f~}(0)U f~1(1), so we have reached
a contradiction. A similar contradiction arises if ¢ is even.

For mappings between Peano continua, light confluent map-
pings are open (see [6, Theorem 13.23]). The special case of
this result where the continuum is [0,1] follows as an easy corol-
lary of Theorem 1.

Corollary If f: I — I is a light confluent mapping then f is
open.

Proof. Suppose that f : I — I is confluent. Let n = deg(f) and
let ap < bp < a3 < b <...<a, <b, be the sequences given
by Theorem 1. Since f~(0) and f~(1) are discrete, a; = b;
for:=1,2,... ,n. Since f is monotone and light on [a;_1, a;], f
is a homeomorphism from [a;_1,a;] onto [ for i = 1,2,... ,n.

Thus, by [7, Lemma 1, p.453], f is open.

Theorem 2. The uniform closure of the space of all open map-
pings from I onto I is the space of all confluent mappings from
I onto I.

Proof. Let C (respectively, O) denote the space of all confluent
(resp., open) mappings from I onto I. Denote the supremum
norm of a mapping f : I — I by ||f||. We first note that C is
uniformly closed. This can be seen from either | 4, Theorem
5.48, p. 41] or [5, 3.1]. Thus, cl(O) C C. Suppose that f :
I — I is confluent. Let n = deg(f) and let g < by < a3 <
by < ... < a, < b, be the sequences given by Theorem 1. Let
g : I — I be the open mapping such that g(ag) = f(ao), and
g(b;) = f(b) for 1 < i < n, and such that g is linear on [ao, b;]
and on [b;,b;41] for 1 <i < n—1. For k = 1,2,3,... define
gk : I — IDby

ou(z) = £((k = 1)f(2) + 9(z).
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Now g is increasing on each of the intervals [ag, b1], [61,8;],. .. ,
[bn—1,b,] on which f is nondecreasing and g is decreasing on
each of those intervals on which f is nonincreasing. Conse-
quently gj is either increasing or decreasing on those same
intervals. Thus g is an open mapping for all k. Clearly

1
lgw = £11 = £1lg = I,

SO nh_’rglo grx = f uniformly. Therefore cl(O) = C.

A mapping which is the uniform limit of onto homeomor-
phisms is called a near-homeomorphism (see [1]). Likewise we
define a mapping f : X — Y of continua to be near-open pro-
vided that it is the uniform limit of open mappings. With this
terminology Theorem 2 may be restated as follows:

Theorem 2a. FEvery confluent mapping from I onto I is near-
open.

Lemma 6. Suppose that f : I — I and g : I — I are confluent
and ||f — g| < 3.

(1) If f(a) = f(b) = 0 then either f is constant on [a,b] or
there is a number c between a and b such that g(c) = 1.

(2) If f(a) = f(b) =1 then either f is constant on [a,b] or

there is a number c between a and b such that g(c) = 0.

Proof. To prove (1), suppose that f is not constant on [a,b].
Then by Lemma 1 there is a number ¢/, such that a < ¢’ < b,
and f(¢') = 1. Since ||f — g|| < 3, it follows that g(c') >
3> 9(a) < 3, and g(b) < 1. By the Intermediate Value The-
orem, there are numbers a’ and b’ such that a < @' < ¢ <
¥ < b,g(a') = ;. and g(¥') = 1. Then, by Lemma 1, there is a
number ¢ , with a’ < ¢ < ¥, such that g(c) = 1.

Lemma 7. Suppose that f : I — I and g : I — I are confluent
and ||f gl < 3

(1) Between consecutive components of f~1(0) there is just
one component of g~*(1).

(2) Between consecutive components of f~'(1) there is just
one component of g~1(0).
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Proof. Suppose that L, and L, are consecutive components
of f71(0). By Lemma 6 there is at least one component of
g7 !(1) between L; and L,. Suppose that [a,b] and [c,d] are
components of g~1(1) which lie between L; and L, and that
b < c. Then, by Lemma 6, there is a component of f~1(0)
between b and ¢, and consequently between L; and L,. This
is a contradiction.

Theorem 3. Suppose that f : I — I and g : I — I are
confluent and that ||f — g|| < 3. Then deg(f) = deg(g).

Proof. Suppose that f~!(0) has n; components, f~!(1) has m;
components, g~!(0) has n, components and that g~!(1) has m,
components. Suppose that f(0) = 0. Since ||f — g|| < ; and
g is confluent, g(0) = 0. All components of g~!(1) lie in the
complement of f~!(0), again since ||f — g|| < 3. If f(1) =
0, then ¢g(1) = 0 and all components of g~!(1) lie between
components of f~1(0). Thus, in this case, my = m, by Lemmas
2 and 7. Now suppose that f(1) = 1. Let [a, b] denote the right
most component of f~!(0). There is at least one component
of g7!(1) to the right of b since g(1) = 1. If there were two
components of ¢g~1(1) to the right of b, by Lemma 7 there
would be a component of f~!(0) to the right of b. Hence there
is just one component of g~!(1) to the right of . By similar
reasoning, there is just one component of f=1(1) to the right
b. All components of g~*(1) to the left of a lie between two
components of f~1(0). Hence, by Lemmas 2 and 7, g~*(1) and
f~1(1) have the same number of components to the left of a.
Therefore my = m,. Similar reasoning yields that ny = n,.

Therefore deg(f) = deg(g).

An inverse sequence is a pair {z;, f;} whose first term is a
sequence of spaces and whose second term is a sequence of
mappings f; : X;41 — X;, called the bonding maps of the
sequence. The inverse limit of the sequence {Xj, fi} is the set

h'I_n{anz} = {(m17$27 Z3,... )I T; € Xi and fi(xi'*'l) = .’L','},
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with the topology induced by the metric

d@w=2ﬂ@ﬁl

7
>0 2

where z = (z1,%2,23,...), and y = (y1,¥2,¥3,...) are in
lig_n{X;, fi} and d; is the metric for X;.

Theorem 4. Suppose that f; : I — I is confluent for 1 =
1,2,.... Then there is a sequence g; of open mappings from

I onto I such that deg(g;) = deg(f:) and lim{I, f;} is homeo-
morphic to li;_n{],g,-}.

Proof. For each ¢ there exists a sequence {h;;}32; of open
mappings of I onto I which converges uniformly to f; and
which has the property that ||fi — hy|| < 3 for all j. By
Theorem 3, deg(f;) = deg(h;;) for all ¢ and j. Let

Ki={hjli=1,2,...}.

By [1, Theorem 3, p.481], there is a sequence {g;}2, such that
g; is in K; and 1ig_n{g,-, I'} is homeomorphic to hin{ fi, I}.

If n is a positive integer, we define the standard open map-
ping of degree n, w, : I — I, to be the mapping such that, for
t=1,...n,

wn(ifn) = 0 ifzis even
" 11 ifz7is odd,

and which is linear on the intervals [(z — 1)/n,/n] (see [3,p.
203)).

Corollary 1. Suppose that f;;1 — I is confluent for 1 =
1,2,... and that n; = deg(f;). Then im{f;, I} is homeomor-
phic-to lim{1,w,,}.

Proof. This follows from Theorem 4 and [3, Lemma 4, p.
204].

Corollary 2. If f: I — I and g : I — I are confluent then
im{, f} andlim{I, g} are homeomorphic if and only if deg(f)

and deg(g) have the same prime factors.
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Proof. This follows from Corollary 1 and [8, Thm. 5, p.
599].

Acknowledgments. The author thanks Sam Nadler for sug-
gesting the inclusion of Theorem 2a and the corollary following
Theorem 1.
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