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CONFLUENT MAPPINGS ON [0,1] AND
 
INVERSE LIMITS
 

JAMES F. DAVIS 

ABSTRACT. Let I = [0,1]. In this paper, confluent 
mappings f : I ----+ I are characterized. The degree, deg(f) 
of such a mapping is defined as (number of components of 
f- 1(0)) + (number of components of f-1(1)) - 1. This 
definition agrees with the usual definition of deg(f) in 
the case where f is open. It is shown that, if fi : I ----+ I 
is confluent, gi : I ----+ I is open and deg(li) = deg(gi) 
for i = 1,2, ... , then lim{I, Ii} is homeomorphic with 

+

lim{I, gil. 
+

The simplest indecomposable continua are those which can 
be constructed as inverse limits of I = [0,1], with open bond
ing maps. In this paper we show that inverse limits on I with 
confluent bonding maps are homeomorphic to inverse limits 
on I with open bonding maps, and we identify the particular 
inverse limit of the latter type that a given inverse limit with 
confluent bonding maps is homeomorphic to. This weakening 
of the condition on the bonding map is useful: it makes it much 
easier to construct mappings onto these continua (see [2] for 
example). To prove this result, we first obtain a characteriza
tion of confluent mappings from I onto I which is similar to the 
characterization of open mappings in [8]. From this character
ization it follows tllat such confluent mappings are uniformly 
approximated by open mappings. Given an inverse limit, X, 
on I with confluent bonding maps we may apply a theorem of 
Morton Brown [1] to obtain a homeomorphism form X onto 
an inverse limit on I with open bonding maps. The degrees of 
the corresponding confluent mappings and open mappings are 
the same, and thus the inverse limit with open bonding maps 
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is identified. 
A classification of inverse limits on I with a fixed open bond

ing map was obtained independently by W. Debski [3] and 
W.T. Watkins [8]. A classification in the more general case, 
allowing different bonding maps, was obtained by Debski. It 
follows as a corollary to the result discussed above that the 
inverse limits on I with confluent bonding maps are classified 
in the same way. 

All spaces considered in this paper are metric. A continu
um is a compact connected metric space and a mapping is a 
continuous function. A mapping f from the X onto the space 
Y is confluent provided that, for each subcontinuum !( of Y, 
each component of f- I (!{) is mapped by f onto !(. We will 
adopt the following notational conveniences: if a = b, we define 
[a, b] = {a}; if HI and H 2 are mutually exclusive sets of real 
numbers then we say that H 2 is to the right of HI and write 
HI < H 2 if it is true that s < t for all s E HI and t E H 2 ; if 
HI, H 2 and H 3 are mutually exclusive sets of real numbers then 
we say that H2 is between HI and H3 if either HI < H2 < H3 

or H3 < H 2 < HI. 
Our first lemma follows easily from the Intermediate Value 

Theorem and the definition of confluent mappings. 

Lemma 1. Suppose that f : I --+ I is confluent, a and bare 
in I, a < band f(a) = f(b). 

(1) If there is a number x between a and b such that f(x) > 
f(a) then there is a number c between a and b such that f(c) = 
1. 

(2) If there is a number x between a and b such that f(x) < 
f(a) then there is a number c between a and b such that f(c) = 
o. 
Lemma 2. Suppose that f : I --+ I is confluent, a and bare 
in I, a < band f(a) = f(b). 

(1) If f(x) > f(a) for all x in (a,b) then there is just one 
component of f-l(l) which is between a and b. 

(2) If f(x) < f(b) for all x in (a, b) then there is just one 
component of f- 1(0) which is between a and b. 

Proof. This is a straight forward application of Lemma 1.,: 
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From Lemma 2 and the uniform continuity of continuous 
functions on I we obtain the following lemma. 

Lemma 3. Suppose that f : / --+ / is confluent. Then there 
exists f > 0 such that if a and b are in I and f(a) == f(b) == 0 or 
f(a) == f(b) == 1 and f is not constant on [a, b] then Ib- al > f. 

Corollary Suppose that f : I --+ I is confluent. Then f- 1 (0) 
and f- 1 (1) each have only finitely many components. 

Lemma 4. If f : I --+ I is confluent then either f(O) == 0 or 
f(O) == 1 and either f(l) == 0 or f(l) == 1. 

Proof. We will prove the first conclusion only. 
Suppose f(O) =f 0 and f(O) =f 1. Let 

x == g.l.b.(f- 1(0) U f-l(I)) 

Then either f(x) == 0 or f(x) == 1. In either case x > O. Suppose 
that f(x) == O. Let /< == [f(0)/2, 1]. Let L be the component of 
f-l(/<) which contains O. Since f is confluent, there is a point 
c in L such that f(c) == 1. Since f(0)/2 > 0 == f(x) we have 
that L C [0, x], and thus c < x. This is inconsistent with the 
definition of x. 

Lemma 5. Suppose that f : / --+ I is confluent, f- 1 (0) has 
n components, L 1 < L 2 < L3 < ... < Ln, and f-l(l) has m 
components, HI < H2 < H3 < ... < H m . Then the components 
of f- 1(0) and f-l(l) alternate, and 

(1) ifOEL1 and1EHm thenm==n, 
(2) if 0 E HI and 1 E Ln then m == n, 
(3) ifOEL1 andlELn thenn==m+l, and 
(4) if 0 E HI and 1 E H m then m == n +1. 

Proof: That the components of f- 1 (0) and f-l(l) alternate 
follows from Lemma 2. Suppose 0 is in L1 • Thus no Hi is to 
the left of L1 • Since H1 ,H2 , ••• ,Hm alternates with L1 ,L2 , 

L3 , ••• , Ln, there are n -1 Hi'S to the left of Ln. There can be 
no more than one Hi to the right of Ln. If 1 is in Ln, there are 
no Hi'S to the right of Ln. Thus if 1 is in Ln, then m == n - 1 
and we have (3). If 1 is not in L n , then 1 is in H m by Lemma 
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4. Therefore m == n and we have (1). Similar reasoning yields 
(2) and (4). 

Definition. Suppose that f : 1 ---+ 1 is confluent, m is the
 
number of components of f-I(O), and n is the number of com

ponents of f-I(I). The degree of f, denoted deg(f), is the 
integer m + n - 1. Note that if f is an open mapping, then
 
deg(f) as defined in [3, p. 204] agrees with this definition.
 

Theorem 1. A mapping f : I ---+ I is confluent if and only if 
there is a positive integer n and sequences ao, aI, ... ,an and 
bo, bI , ... ,bn with 

o== ao ::; bo < aI ::; bI < · · · < an-I::; bn- I < an ::; bn == 1, 

such that, for i == 1,2, ... ,n, f restricted to [bI - I , ail is a 
monotone mapping of [bi-I, ail onto I, and, for i == 0,1, 
2, ... ,n,f restricted to [ai,bi ] is constant and equal to 0 or 1. 

Proof To prove the sufficiency of the stated condition sup
pose that n is a positive integer, 0 == ao ::; bo < aI ::; bI ... < 
an-I::; bn- I < an ::; bn == 1, and f : 1 ---+ 1 is a mapping sat
isfying the condition above with respect to ao, aI, ... ,an and 
bo,bI , ... ,bn • Suppose that !( == [c, d] is a subinterval of I, and 
that L is a component of f-I(I<). Suppose L n [bi-I, ail =1= 0 
for some i. Since j is monotone on [bi-I, ail, there is a subin
terval, J, of [bi-I, ail such that j(J) == !(. Also by the mono
tonicity of f on [bi - I , ail, ,J n L # 0. Since L is a component 
of f-I(!{),J c L. Hence f(L) == !(. If Ln [bi-I,ai] == 0 for all 
i, then L c [ai, bi] for some i. But, since L is a component of 
f- I (!{), L == [ai, bi] and thus L n [bi-I, ail ¥ 0, a contradiction. 
Therefore f is confluent. 

Now suppose that f : 1 ---+ 1 is confluent. Suppose that 
f-I(O) has n components, LI < L2... < Ln, and f-I(I) has 
m components, HI < H2 < ... < Hm . Let k == deg(f) == 
m + n - 1. Either 0 E LI or 0 E HI by Lemma 4. Suppose the 
former. Define ao and bo to be the right and left endpoints of 
LI respectively; LI == [ao, bole For i > 0 define ai and bi to be 
the right and left endpoints, respective~r, of H(i+I)/2 if i is odd, 
or to be the right and left endpoints, respectively, of L(i/2+I) if 
i is even. We need only show that f is monotone on [bi-I, ail 
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for 0 < i < k. Suppose that i > 0 and that i is odd. Let 
j == (i+l)/2. Then [ai-l,bi- 1] == L j and [ai,bi ] == H j . Suppose 
that t is in I and that f- 1 (t) has two components, C1 and C2 , 

lying in [bi- 1 , ail. By Lemma 2, there is a component of either 
f- 1(0) or f-l(l) lying between C1 and C2 • But Lj and Hj are 
consecutive components of f- 1(0) Uf-l(I), so we have reached 
a contradiction. A similar contradiction arises if i is even. 

For mappings between Peano continua, light confluent map
pings are open (see [6, Theorem 13.23]). The special case of 
this result where the continuum is [0,1] follows as an easy corol
lary of Theorem 1. 

Corollary If f : I ---+ I is a light confluent mapping then f is 
open. 

Proof Suppose that f : I ---+ I is confluent. Let n == deg(f) and 
let ao ~ bo < al ~ b1 < ... < an ~ bn be the sequences given 
by Theorem 1. Since f- 1 (0) and f- 1 (1) are discrete, ai == bi 

for i == 1,2, ... ,n. Since f is monotone and light on [ai-I, ail, f 
is a homeomorphism from [ai-I, ail onto I for i == 1,2, ... ,n. 
Thus, by [7, Lemma 1, p.453], f is open. 

Theorem 2. The uniform closure of the space of all open map
pings from I onto I is the space of all confluent mappings from 
I onto I. 

Proof Let C (respectively, 0) denote the space of all confluent 
(resp., open) mappings from I onto I. Denote the supremum 
norm of a mapping f : I ---+ I by Ilfll. We first note that C is 
uniformly closed. This can be seen from either [ 4, Theorem 
5.48, p. 41] or [5, 3.1]. Thus, cl(O) c C. Suppose that f : 
I ---+ I is confluent. Let n == deg(f) and let ao ::; bo < al ::; 
b1 < ... < an ~ bn be the sequences given by Theorem 1. Let 
9 : I ---+ I be the open mapping such that g(ao) == f(ao), and 
g(bi ) == f(bi ) for 1 < i < n, and such that 9 is linear on [ao, b1] 

and on [bi ,bi+1 ] for 1 < i < n -1. For k == 1,2,3, ... define 
gk : I ---+ I by 

1
gk(X) = k((k - l)f(x) +g(x)). 
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Now 9 is increasing on each of the intervals [ao, b1], [b1 , b2 ], • •• , 

[bn - 1 , bn ] on which f is nondecreasing and 9 is decreasing on 
each of those intervals on which f is nonincreasing. Conse
quently gk is either increasing or decreasing on those same 
intervals. Thus gk is an open mapping for all k. Clearly 

1
119k - fll = "k119 - fll, 

so lim gk == f uniformly. Therefore cl(O) == C. 
n-+oo 

A mapping which is the uniform limit of onto homeomor
phisms is called a near-homeomorphism (see [1]). Likewise we 
define a mapping f : X ---+ Y of continua to be near-open pro
vided that it is the uniform limit of open mappings. With this 
terminology Theorem 2 may be restated as follows: 

Theorem 2a. Every confluent mapping from I onto I is near
open. 

Lemma 6. Suppose that f : I ---+ I and 9 : I ---+ I are confluent 
and Ilf - gil < ~. 

(1) If f(a) == f(b) == 0 then either f is constant on [a, b] or 
there is a number c ~tween a and b such that g(c) == 1. 

(2) If f(a) == f(b) == 1 then either f is constant on [a, b] or 
there is a number c between a and b such that g(c) == o. 

Proof To prove (1), suppose that f is not constant on [a,b]. 
Then by Lemma 1 there is a number c', such that a < c' < b, 
and f(c') == 1. Since Ilf - gil < !' it follows that g(c') > 
!' g(a) < !' and g(b) < !. By the Intermediate Value The
orem, there are numbers a' and b' such that a < a' < c' < 
b' < b,g(a') == !. and g(b') == !. Then, by Lemma 1, there is a 
number c , with a' < c < b', such that g(c) == 1. 

Lemma 7. Suppose that f : I ---+ I and 9 : I ---+ I are confluent 
and Ilf - gil < !. 

(1) Between consecutive components of f- 1 (0) there is just 
one component ofg-1(1). 

(2) Between consecutive components of f-l(l) there is just 
one component ofg-1(0). 
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Proof Suppose that L 1 and L 2 are consecutive components .. 
of f-1(0). By Lemma 6 there is at least one component of 
g-1(1) between L1 and L2 • Suppose that [a,b] and [c,d] are 
components of g-1(1) which lie between L1 and L 2 and that 
b < c. Then, by Lemma 6, there is a component of f- 1(0) 
between band c, and consequently between L 1 and L 2 • This 
is a contradiction. 

Theorem 3. Suppose that f : I ---+ I and 9 : I ---+ I are 
confluent and that IIf - gil < !. Then deg(f) == deg(g). 

Proof Suppose that f- 1(0) has nf components, f-1(1) has mf 
components, g-1(0) has ng components and that g-1(1) has mg 

components. Suppose that f(O) = o. Since IIf - gil < ! and 
9 is confluent, g(O) == o. All components of g-1(1) lie in the 
complement of j-l(O), again since IIf - gil < !. If f(l) == 
0, then g(l) == 0 and all components of g-l(l) lie between 
components of f-1(0). Thus, in this case, mf == m g by Lemmas 
2 and 7. Now suppose that f(l) == 1. Let [a, b] denote the right 
most component of f-l(O). There is at least one component 
of g-I(I) to the right of b since g(l) == 1. If there were two 
components of g-l(l) to the right of b, by Lemma 7 there 
would be a component of f- 1(0) to the right of b. Hence there 
is just one component of g-1(1) to the right of b. By similar 
reasoning, there is just one component of f- 1 (1) to the right 
b. All components of g-1 (1) to the left of a lie between two 
components of f-1(0). Hence, by Lemmas 2 and 7, g-1(1) and 
f-1(1) have the same number of components to the left of a. 
Therefore mf = mg. Similar reasoning yields that nf == ng. 
Therefore deg(f) = deg(g). 

An inverse sequence is a pair {Xi, fi} whose first term is a 
sequence of spaces and whose second term is a sequence of 
mappings fi : Xi+1 ---+ Xi, called the bonding maps of the 
sequence. The inverse limit of the sequence {Xi, Ii} is the set 
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with the topology induced by the metric 

""' di(Xi' Yi)d(~,'H.-) 
= 

L...J 2i 
i>O 

where ~ == (Xt,X2,X3, ... ), and y == (Yt,Y2,Y3, ... ) are In 
lim{Xi , Ii} and di is the metric for-Xi. 
+

Theorem 4. Suppose that Ii : I ~ I is confluent for i == 
1,2, .... Then there is a sequence gi of open mappings from 
I onto I such that deg(gi) == deg(fi) and lim{I, fi} is homeo

+

morphic to lim{I, gil.
+

Proof. For each i there exists a sequence {hij}~t of open 
mappings of I onto I wh.ich converges uniformly to fi and 
which has the property that Illi - hij II < ! for all j. By 
Theorem 3, deg(fi) == deg( hij ) for all i and j. Let 

!{i == {hijlj == 1,2, ... }. 

By [1, Theorem 3, p.481], there is a sequence {gi}~t such that 
gi is in I{i and lim{gi, I} is homeomorphic to lim{fi, I}.

+- +

If n is a positive integer, we define the standard open map
ping of degree n, W n : I ~ I, to be the mapping such that, for 
i==l, ... n, 

OJ ) if i is even_ {O
W n ( 'l n - 1 of ° ° ddI 'l IS 0 , 

and which is linear on the intervals [(i - l)jn,ijn] (see [3,p. 
203]). 

Corollary 1. Suppose that Ii; I ~ I is confluent for i == 
1,2, ... and that ni == deg(fi). Then lim{fi' I} is homeomor

+

phic·to l~{ I, wni }. 

Proof This follows from Theorem 4 and [3, Lemma 4, p. 
204]. 

Corollary 2. If I : I ~ I and 9 : I ~ I are confluent then 
lim{I, f} and lim{I, g} are homeomorphic if and only ifdeg (f) 

+- +

and deg(g) have the same prime factors. 
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Proof. This follows from Corollary 1 and [8, Thm. 5, p. 
599]. 

Acknowledgments. The author thanks Sam Nadler for sug
gesting the inclusion of Theorem 2a and the corollary following 
Theorem 1. 
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