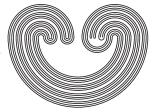
TOPOLOGY PROCEEDINGS

Volume 15, 1990

Pages 11-28



http://topology.auburn.edu/tp/

$\begin{array}{l} \text{SOME REMARKS ON INITIAL} \\ \alpha\text{-COMPACTNESS}, < \alpha\text{-BOUNDEDNESS} \\ \text{AND p-COMPACTNESS} \end{array}$

by

SALVADOR GARCIA-FERREIRA

Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
TOON.	0146 4194

ISSN: 0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

SOME REMARKS ON INITIAL α -COMPACTNESS, $< \alpha$ -BOUNDEDNESS AND p-COMPACTNESS

SALVADOR GARCIA-FERREIRA

ABSTRACT. The basic relationships among initial α compactness, $< \alpha$ -boundedness and p-compactness are established. Our principal results are the following: it follows from GCH that every initially α -compact space is $< \alpha$ -bounded, we prove that there is a model M of ZFC in which $M \models$ there exist an initially ω_1 -compact (initially \aleph_{ω} -compact) topological group which is not $< \omega_1$ bounded ($\langle \aleph_{\omega}$ -bounded); if $\beta_{\alpha}(\alpha)$ is the α -boundification of α and α is a strong limit singular cardinal, then there is $p \in \bigcup(\alpha) \cap \beta_{\alpha}(\alpha)$ such that p-compactness coincides with $< \alpha$ -boundedness; a result of Saks is improved by proving that X^{γ} is initially α -compact for all cardinal $\gamma \Leftrightarrow \exists p \in \cup(\alpha)$ (p is decomposable $\land X$ is p-compact); we know that GCH implies that $|\beta(\alpha) \setminus \cup (\alpha)| = |\beta_{\alpha}(\alpha)|$ for each cardinal α , and if α is a strong limit singular cardinal then $|\beta(\alpha) \setminus \cup(\alpha)| = |\beta_{\alpha}(\alpha)| = 2^{\alpha}$, we show in ZFC, that if α is singular then $|\beta_{\alpha}(\alpha)| = |\beta(\alpha) \setminus \cup (\alpha)|^{\alpha}$, and a model M of ZFC is defined so that $M \models |\beta(\aleph_{\omega}) \setminus \cup (\aleph_{\omega})| <$ $|\beta_{\aleph_{\omega}}(\aleph_{\omega})|.$

0. INTRODUCTION

The authors of [18] introduced the concept of α -boundedness in their study of linearly ordered spaces: A space X is α bounded if $Cl_X(A)$ is compact for every $A \subseteq X$ with $|A| \leq \alpha$. W. W. Comfort [28] and J. E. Vaughan [37] slightly modified this concept as follows: A space X is $< \alpha$ -bounded if $Cl_X(A)$ is compact for each $A \subseteq X$ with $|A| < \alpha$. Observe that $< \alpha^+$ boundedness coincides with the original definition given in [18]. In this paper, we study the relations among $< \alpha$ -boundedness, initial α -compactness and p-compactness. We present (in section 2) the basic results. It is shown that, assuming GCH, every initially α -compact space is $< \alpha$ -bounded, and two examples are given to see that this conclusion can not be established in ZFC. Nevertheless, we prove that if α is singular then every $< \alpha$ -bounded space is initially α -compact; if α ia a strong limit cardinal then initial α -compactness implies $< \alpha$ -boundedness; and if α is a strong limit singular cardinal then there is $p \in \cup(\alpha)$ such that p-compactness = $< \alpha$ boundedness = initial α -compactness. The author of [35] asked whether α is a strong limit singular cardinal whenever initial α -compactness is productive. In this direction, we show that if initial α -compactness is productive, then there is $p \in U(\alpha)$ such that initial α -compactness coincides with p-compactness. O'Callaghan [28] pointed out that a cardinal α is regular iff $\beta_{\alpha}(\alpha) = N(\alpha)$. In our joint paper [16], we observed that if α is a strong limit singular then $|\beta(\alpha) \setminus \cup (\alpha)| = |\beta(\alpha)| = 2^{\alpha}$, and GCH implies that $|\beta(\alpha) \setminus \cup (\alpha)| = |\beta(\alpha)| = 2^{\alpha}$ for each cardinal α : these two results are direct consequences from Theorem 1.4 below. This makes it natural to ask whether the equality $|\beta_{\alpha}(\alpha)| = |N(\alpha)|$ can be established by using only the axioms of ZFC. In section 3. we show that there is a model M of ZFC in which $M \models |\beta(\aleph_{\omega}) \setminus \cup (\aleph_{\omega})| < |\beta_{\aleph_{\omega}}(\aleph_{\omega})|$ answering this question in the negative.

1. PRELIMINARIES.

All spaces are assumed to be completely regular Hausdorff (Tychonoff). The Greek letters α and γ stand for infinite cardinal numbers and the Greek letters ξ and δ stand for ordinals. If α is a cardinal, then α denotes the space whose underlying set is α with the discrete topology. If $f: X \to Y$ is a continuous function, the Stone extension of f is denoted by $\overline{f}: \beta(X) \to \beta(Y)$. The remainder of $\beta(X)$ is the space $X^* = \beta(X) \setminus X$. For a cardinal α , the set of uniform ultrafilters on α is $\cup(\alpha) = \{p \in \omega^* : \forall A \in p \ (|A| = \alpha)\}$ and its complement is denoted by $N(a) = \beta(\alpha) \setminus \cup (\alpha)$. If $A \subseteq \alpha$ then the closure of A in $\beta(\alpha)$ is $\hat{A} = \{p \in \beta(\alpha) : A \in p\}$. A function $f : \gamma \to \beta(\alpha)$ is a strong embedding if there is a partition $\{A_{\xi} : \xi < \gamma\}$ of α such that $f(\xi) \in \hat{A}_{\xi}$ for each $\xi < \gamma$. The Rudin-Keisler order on α^* is defined by $p \leq_{RK} q$ if there is $f : \alpha \to \alpha$ such that $\overline{f}(q) = p$ for $p,q \in \alpha^*$ (see [5]). For $p,q \in \alpha^*$, we say that $p \approx q$ if there is a permutation σ of α with $\overline{\sigma}(p) = q$. Clearly, \approx is an equivalence relation on α^* . If $p \in \alpha^*$, then $T(p) = \{q \in \alpha^* : p \approx q\}$ is called the type of p: the types of ultrafilters were introduced by W. Rudin [29]. An ultrafilter p on α is decomposable if $\forall \omega \leq \gamma \leq \alpha \exists q \in \cup(\gamma) \ (q \leq_{RK} p)$. For $p,q \in \alpha^*$, their tensor product is defined by

$$p \otimes q = \{A \subset \alpha \times \alpha : \{\xi < \alpha : \{\zeta < \alpha : (\xi, \zeta) \in A\} \in q\} \in p\}.$$

Notice that $p \otimes q$ is an ultrafilter on $\alpha \times \alpha$ and can be considered as an ultrafilter on α via a fixed bijection between α and $\alpha \times \alpha$ (for background and historical notes see [5]).

Clearly, compact spaces are trivial examples of $< \alpha$ -bounded spaces for any cardinal α . Another important compact-like property is given in the next definition given by Saks [31] and Woods [38]: this is a generalization of Bernstein's concept of p-compactness introduced in [1], for $p \in \omega^*$.

Definition 1.1. (Saks-Woods) Let $\emptyset \neq M \subseteq \alpha^*$. A space X is <u>M-compact</u> if $\forall f \in {}^{\alpha}X \forall p \in M(\overline{f}(p) \in X)$.

If $M = \{p\}$ for $p \in \alpha^*$, we simply write p-compact instead of $\{p\}$ -compact. In Bernstein's terminology [1], we have that a space X is p-compact if every sequence has a p-limit. It should be mentioned that the p-limit concept of Bernstein was also introduced, in a different form, by Frolik [10], [11], Katětov [22], [23], and Saks [30], independently.

The basic property of M-compactness is stated in the following Theorem.

Theorem 1.2. Let $\emptyset \neq M \subseteq \alpha^*$ and let X be a space. Then the space

 $\beta_M(X) = \cap \{Y : X \subseteq Y \subseteq \beta(X) \text{ and } Y \text{ is } M\text{-compact } \}$ satisfies

- (1) X is a dense subspace of $\beta_M(X)$;
- (2) $\beta_M(X)$ is M-compact;

- (3) If $f: X \to Z$ is continuous and Z is M-compact, then $\overline{f}(\beta_M(X)) \subseteq Z;$
- (4) Up to a homeomorphism fixing X pointwise the space $\beta_M(X)$ is the only space satisfying (1), (2) and (3).

This space $\beta_M(X)$ is precisely the (M-compact) reflection considered and studied, in a more general context, by Herrlich and Van der Slot [19],[33], Franklin [8], and Woods [38]: this space $\beta_M(X)$ can be also obtained by an application of the adjoint functor Theorem of Freyd [9] (see [25]).

If $M = \{p\}$ for $p \in \alpha^*$ then the space $\beta_M(X)$ is denoted by $\beta_p(X)$ and it is called the *p*-compactification of X.

It follows directly from the definition that if $\emptyset \neq M \subseteq \alpha^*$ then $M \subseteq \beta_M(\alpha)$ and $T(p) \subseteq \beta_M(\alpha)$, for $p \in \alpha^*$.

Bernstein [1] proved that a (Tychonoff) space X is ω -bounded if and only if X is p-compact for all $p \in \omega^*$. Saks [31] generalized Bernstein's result by establishing that X is $< \alpha^+$ -bounded iff X is p-compact for all $p \in \alpha^*$. For $< \alpha$ -boundedness, we have that:

Theorem 1.3. A space X is $< \alpha$ -bounded if and only if X is $(N(\alpha)\setminus\alpha)$ -compact.

Proof. \Rightarrow Assume that X is $\langle \alpha$ -bounded, let $p \in N(\alpha) \setminus \alpha$ and $f \in {}^{\alpha}X$. Without loss of generality, we may suppose that $p \in \cup(\gamma)$ for some $\gamma < \alpha$. Since X is $\langle \alpha$ -bounded then $\overline{f}(\beta(\gamma)) = Cl_X(f(\gamma)) \subseteq X$. In particular, we have that $\overline{f}(p) \in X$. This shows that X is $(N(\alpha) \setminus \alpha)$ -compact.

 \Leftarrow If $f \in {}^{\gamma}X$, for some $\omega \leq \gamma < \alpha$, then $Cl_X(Img(f)) \subseteq \overline{f}(\beta(\gamma)) \subseteq X$ (since X is $(N(\alpha)\backslash\alpha)$ -compact). Hence, X is $< \alpha$ -bounded.

Thus, we have that $< \alpha$ -boundedness and $(N(\alpha)\backslash\alpha)$ -compactness are the same topological property. For a space X, we write $\beta_{\alpha}(X)$ in place of $\beta_{(N(\alpha)\backslash\alpha)}(X)$ and $\beta_{\alpha}(X)$ is called the α -boundification of X. By using Theorem 1.3 and elementary cardinal arithmetic we have (see [12] or [16]):

Theorem 1.4. For every cardinal α , we have that

$$|N(\alpha)| = \alpha^{<\alpha} \cdot \sum_{\gamma < \alpha} 2^{2^{\gamma}} \le |\beta_{\alpha}(\alpha)| \le (\sum_{\gamma < \alpha} 2^{2^{\gamma}})^{\alpha}.$$

We remind the reader the definition of initially α -compact space ([35] offers a good survey on initially α -compact spaces):

1.5 Definition. (Smirnov [34]) A space X is initially α -compact if every open cover \mathcal{U} of X with $|\mathcal{U}| \leq \alpha$ has a finite subcover.

Saks [31] (see [35]) classified those spaces X whose product X^{γ} is initially α -compact for all cardinal γ as follows:

Theorem 1.6. (Saks) For a space X the following conditions are equivalent.

- (1) X^{γ} is initially α -compact for each cardinal γ :
- (2) for each $\gamma \leq \alpha$ there is $p_{\gamma} \in \cup(\gamma)$ such that X is $\{p_{\gamma} : \gamma \leq \alpha\}$ -compact.

The Comfort (pre-)order on α^* , introduced by W. W. Comfort in [12], [13], is defined by $p \leq_c q$ if every q-compact space is p-compact, for $p, q \in \alpha^*$. The basic properties of Comfort order are stated in the following Lemma (a proof is available in [12] and [13]).

Lemma 1.7. Let $p, q \in \alpha^*$. Then,

- (1) if $p \leq_{RK} q$ then $p \leq_{c} q$;
- (2) $p \leq_c q$ if and only if $p \in \beta_q(\alpha)$;
- (3) if $\emptyset \neq M \subseteq \alpha^*$, then $\beta_M(\alpha)$ is p-compact if and only if there is $r \in \beta_M(\alpha) \setminus \alpha$ such that $p \leq_c r$.
- 2. On Initial α -Compactness and α -Boundedness.

In [18, Lemma 3], the authors noticed that an $< \alpha^+$ -bounded spaces is initially α -compact. Clearly, if α is regular then

$$G = \{ x \in \prod_{\xi < \alpha} G_{\xi} : |\{ \xi < \alpha : x_{\xi} \neq e_{\xi} \}| < \alpha \},\$$

where G_{ξ} is a non-trivial, compact topological Abelian group with identity e_{ξ} for $\xi < \alpha$, is an example of an $< \alpha$ -bounded topological Abelian group which is not initially α -compact. The next Theorem shows that for α singular there is no such example. This Theorem is a direct application of the following Lemma, due to Stephenson and Vaughan [36]. **Lemma 2.1.** (Stephenson-Vaughan) Let α be a singular cardinal. If X is initially α -compact for all $\omega \leq \gamma < \alpha$, then X is initially α -compact.

Theorem 2.2. If α is singular, then every $< \alpha$ -bounded space is initially α -compact.

Proof. Let α be singular and let X be an $< \alpha$ -bounded space. In virtue of Lemma 2.1, it is enough to verify that X is initially γ -compact for all $\omega \leq \gamma < \alpha$. Indeed, if $\omega \leq \gamma < \alpha$, then X is $< \gamma^+$ -bounded: hence, by Lemma 3 of [18] quoted above, X is initially γ -compact.

For α is regular, the space α with the order topology is an $< \alpha$ -bounded, non-compact space of cardinallity α . But for singular cardinals the situation is quite different. In fact, we have:

Corollary 2.3. Let α be singular. If X is an $< \alpha$ -bounded, non-compact space, then $\alpha < |X|$ and $\alpha < w(X)$.

Proof. Let X be a space satisfying our conditions. By Theorem 2.2, X is initially α -compact. It is then evident that $\alpha < |X|$ and $\alpha < w(X)$.

Gulden, Fleischman and Weston [18] asked whether there is an initially α -compact space, $\alpha > \omega$, which is not $< \alpha^+$ bounded. In [32], the authors showed that for every regular cardinal $\alpha \ge \omega$ there is an initially α -compact topological group which is not $< \alpha^+$ -bounded. It is then natural to ask whether every initially α -compact space is α -bounded. The answer is in the positive if α is a strong limit cardinal. In fact, Saks and Stephenson [32] showed:

Lemma 2.4. (Saks-Stephenson) If X is an initially α -compact space and $2^{\gamma} \leq \alpha$ for some cardinal $\omega \leq \gamma < \alpha$, then X is $< \gamma^+$ -bounded. In addition,

- (1) if α is a strong limit cardinal, then every initially α compact space is $< \alpha$ -bounded; and
- (2) if α is a strong limit singular cardinal, then initial α compactness and $< \alpha$ -boundedness are the same concept.

The next two Theorems prove that initial $< \alpha$ -compactness and α -boundedness agree and disagree depending on the model of ZFC.

Theorem 2.5. If GCH holds, every initially α -compact space is $< \alpha$ -bounded for each cardinal α .

Proof. Assume GCH. let X be an initially α -compact space. If α is a strong limit cardinal, then the conclusion follows from Lemma 2.4 (1). Suppose that α is not a strong limit cardinal. Then, by GCH, we have that $\alpha = 2^{\gamma} = \gamma^{+}$ for some cardinal $\gamma < \alpha$. Since $\alpha = \gamma^{+} = 2^{\gamma}$, for $\gamma < \alpha$, then X is $< \alpha$ -bounded by Lemma 2.4.

We need the next result discovered by Saks [32], [35, 3.5].

Lemma 2.6. (Saks) Let X be an initially α -compact space and $A \in [X]^{\leq 2^{\alpha}}$. Then there is an initially α -compact subspace G of X such that $A \subseteq G$ and $|G| \leq 2^{\alpha}$. In case X is a topological group, then G may be taken to be a subgroup of X.

Theorem 2.7. There is a model of ZFC in which there exists an initially ω_1 -compact (initially \aleph_{ω} - compact) topological group which is not $< \omega_1$ -bounded ($< \aleph_{\omega}$ -bounded).

Proof. Let M be a model of ZFC in which Lusin's hypothesis holds, that is $M \models 2^{\omega} = 2^{\omega_1}$. Then, by Theorem 1.4 we have that $M \models |N(\omega_1)| = 2^{2^{\omega_1}}$. We know that $\beta(\omega_1)$ can be embedded as a subspace of the topological group $H = \mathbb{S}^{2^{\omega_1}}$ (see, for instance, [5, Corollary 2.11]), where \mathbb{S} is the unitary circle. Set $F = Cl_H(\langle \beta(\omega_1) \rangle)$, where $\langle \beta(\omega_1) \rangle$ denotes the subgroup of H generated by $\beta(\omega_1)$. By Lemma 2.6, we can find an initially ω_1 -compact topological subgroup G of F such that $\omega_1 \subseteq G$ and $|G| \leq 2^{\omega}$. Assume that G is $\langle \omega_1$ -bounded. Since $\omega_1 \subseteq \beta(\omega_1) \cap G$ then $\beta_{\omega_1}(\omega_1) = N(\omega_1) \subseteq G$ and so $M \models |N(\omega_1)| = 2^{2^{\omega}} = |G|$, which is a contradiction. Thus G is an initially ω_1 -compact, non- $\langle \omega_1$ -bounded topological group. To obtain the later example, we will use Easton Forcing (for a complete treatment of Easton Forcing see [20] and [26]).

Indeed, let N be a countable transitive model of ZFC + GCH. We define a function E by dom(E) = $\{\omega, \aleph_{\omega+1}\}, E(\omega) =$

 $\aleph_{\omega+2}$, and $E(\aleph_{\omega+1}) = \aleph_{\omega+2}$. Clearly, E is an Easton function. Then there is a generic extension M of N such that M and N have the same cardinals and $M \models \forall \kappa \in dom(E) \ (E(\kappa) = 2^{\kappa})$. Thus, we have that

$$M \models 2^{\aleph_{\omega}} \le 2^{\aleph_{\omega+1}} = E(\aleph_{\omega+1}) = \aleph_{\omega+2} < 2^{2^{\omega}} = 2^{E(\omega)} = 2^{\aleph_{\omega+2}}.$$

Hence, by Theorem 1.4, $M \models 2^{\aleph_{\omega}} < 2^{2^{\omega}} \leq |\beta_{\aleph_{\omega}}(\aleph_{\omega})|$. Now, to show that $Cl_{K}(<\beta(\aleph_{\omega})>)$, where $K = \mathbb{S}^{2^{\aleph_{\omega}}}$ and $<\beta(\aleph_{\omega})>$ is the subgroup of K generated by $\beta(\aleph_{\omega})$, contains a subgroup with the required properties, we proceed as in the previous example.

Theorem 1.3 shows that $\langle \alpha$ -boundedness implies *p*-compactness for each $p \in N(\alpha) \setminus \alpha$. Conversely, it is evident that if $2^{\alpha} \langle 2^{\gamma}$ for some $\omega \leq \gamma \langle \alpha$ then there is no $p \in U(\alpha)$ such that *p*-compactness implies $\langle \alpha$ -boundedness since $|N(\alpha)| > 2^{\alpha} \geq |\beta_p(\alpha)|$ for each $p \in U(\alpha)$. Nevertheless, we have:

Theorem 2.8. If $\emptyset \neq M \in [\alpha^*]^{\leq 2^{\alpha}}$, then there is $p \in \cup (\alpha)$ such that p-compactness implies M-compactness. In particular,

- (1) if α is a strong limit cardinal, then $\exists p \in \cup(\alpha)$ (pcompactness $\Rightarrow < \alpha$ -boundedness);
- (2) assuming GCH, for each cardinal α we have that $\exists p \in \bigcup(\alpha) (p\text{-compactness} \Rightarrow < \alpha\text{-boundedness}).$

The conclusion will be a direct consequence of the following Lemma due to Comfort and Negrepontis [4], [5, 10.9-10.13] and [3, Theorem 6.4].

Lemma 2.9. (Comfort-Negrepontis) Let κ be a regular cardinal such that $\omega \leq \kappa \leq \alpha = \alpha^{<\kappa}$, and suppose that every κ complete filter on α extends to a κ -complete ultrafilter. Then $\forall A \in [\{p \in \beta(\alpha) : p \text{ is } \kappa\text{-complete}\}]^{\leq 2^{\alpha}} \exists q \in \cup(\alpha) \forall p \in A(p <_{RK} q).$

Proof. (This alternative proof is due to Alan Dow). It is a result of Hausdorff, and Engelking and Karlowicz (see [5, Theorem 3.16]) that for each α there is a $((2^{\alpha}, \alpha)$ -independent matrix) family $\{A_{\zeta}^{\xi} : \xi < \alpha \text{ and } \zeta < 2^{\alpha}\}$ of subsets of α such that

- (1) $A_{\zeta}^{\xi} \cap A_{\zeta}^{\eta} = \emptyset$ for $\xi < \eta < \alpha$ and $\zeta < 2^{\alpha}$;
- (2) if $I \in [2^{\alpha}]^{<\kappa}$ and $\psi \in {}^{I}\alpha$, then $\cap_{\zeta \in I} A_{\zeta}^{\psi(\zeta)} \neq \emptyset$.

We may assume that $\bigcup_{\xi < \alpha} A_{\zeta}^{\xi} = \alpha$ for each $\zeta < 2^{\alpha}$. Let $\{p_{\zeta} : \zeta < 2^{\alpha}\}$ be a set of κ - complete ultrafilters on α . Define $\mathcal{F} = \{\bigcup_{\xi \in B} A_{\zeta}^{\xi} : B \in p_{\zeta} \text{ and } \zeta < 2^{\alpha}\}^{+}$. It is evident that \mathcal{F} is κ -complete, and if $\mathcal{F} \subseteq p \in \beta(\alpha)$ (p can be taken to be κ -complete) then $\overline{f}_{\zeta}(p) = p_{\zeta}$, where $f_{\zeta} \in {}^{\alpha}\alpha$ is defined by $f_{\zeta}^{-1}(\{\xi\}) = A_{\zeta}^{\xi}$ for $\xi < \alpha$ and $\zeta < 2^{\alpha}$.

Proof of Theorem 2.8. Let $\emptyset \neq M \in [\alpha^*]^{\leq 2^{\alpha}}$. According to Lemma 2.9, there is $r \in \alpha^*$ such that $q \leq_{RK} r$ for all $q \in M$. Fix $s \in \cup(\alpha)$ and let $N = M \cup \{s\}$. Applying Lemma 2.9 again, there is $p \in \alpha^*$ for which $q \leq_{RK} p$ for all $q \in N$. It is not then hard to show that $p \in \cup(\alpha)$ and p-compactness implies *M*-compactness (by Lemma 1.7. (1)). If α is a strong limit cardinal, then the conclusion to (1) follows from Theorem 1.3, Theorem 1.4 and Lemma 2.9 since $|N(\alpha)| = 2^{\alpha}$.

Next, we will show that if α is a strong limit singular cardinal then $< \alpha$ -boundedness coincides with *p*-compactness for some $p \in \beta_{\alpha}(\alpha) \cap (\alpha)$ (Corollary 2.14). In fact, this will be a particular case of a more general result (Theorem 2.13). We need the following two Lemmas: A proof of clauses (1) and (3) of Lemma 2.10 is available in [5], clause (2) of the same Lemma is shown in [14], and lemma 2.11 is a slight generalization of a result proved by Blass [2].

Lemma 2.10. Let $p, q \in \alpha^*$. Then

- (1) ([5, Lemma 7.21. (b)]) $p <_{RK} p \otimes q$ and $q <_{RK} p \otimes q$;
- (2) ([14]) if $\emptyset \neq M \subseteq \alpha^*$ and $p, q \in \beta_M(\alpha)$, then $p \otimes q \in \beta_M(\alpha) \setminus \alpha$; and
- (3) (Blass [5, Lemma 16.5]) if $f : \alpha \to T(q) \subseteq \alpha^*$ is a strong embedding, then $\overline{f}(p) \approx p \otimes q$.

Lemma 2.11. Let $p \in \gamma^*$. If $e, f : \gamma \to \alpha^*$ are functions such that f is a strong embedding and $\{\xi < \gamma : e(\xi) \leq_{RK} f(\xi)\} \in p$, then $\overline{e}(p) \leq_{RK} \overline{f}(p)$.

Theorem 2.12. Let $\emptyset \neq M \subseteq \alpha^*$ be such that $\emptyset \neq M \cap \cup(\gamma)$ for $\gamma \leq \alpha$. Then $\forall A \in [\beta_M(\alpha) \setminus \alpha]^{\leq \alpha} \exists p \in \beta_M(\alpha) \cap \cup(\alpha) \forall q \in A(q <_{RK} p).$

Proof. Let $A = \{p_{\xi} : \xi < \alpha\} \subseteq \beta_M(\alpha) \setminus \alpha$. We will define $q_{\xi} \in \alpha^*$, for each $\xi \leq \alpha$, such that

(1) $q_{\xi} \in \beta_M(\alpha) \setminus \alpha$ for each $\xi \leq \alpha$

(2) $p_{\xi} \leq_{RK} q_{\xi}$ for $\xi < \alpha$: and

(3) $q_{\xi} \leq_{RK} q_{\zeta}$ whenever $\xi < \zeta < \alpha$.

We proceed by transfinite induction. For $\xi = 0$ we let $q_0 = p_0$. Assume that q_{ξ} has been defined so that (1), (2) and (3) hold for each $\xi < \delta \leq \alpha$ (where δ denotes an ordinal number). We consider two cases:

(a) If $\delta = \xi + 1$ then we define $q_{\delta} = p_{\delta} \otimes q_{\xi}$. Conditions (1), (2) and (3) follow from Lemma 2.10.

(b) Assume that δ is a limit ordinal. We may identify δ with the cardinal number $|\delta|$. Let $f : \delta \to \beta_M(\alpha) \setminus \alpha$ be a strong embedding such that $f(\xi) \in T(q_{\xi})$, for each $\xi < \delta$ (this embedding can be achieved by choosing a partition $\{A_{\xi} : \xi < \delta\}$ of α with $|A_{\xi}| = \alpha$ and picking $f(\xi) \in \hat{A}_{\xi} \cap T(q_{\xi})$, for $\xi < \delta$). Fix $r \in M \cap \cup(\delta) \subseteq \cup(\delta) \cap \beta_M(\alpha)$. For each $\xi < \delta$, let $e_{\xi} : \delta \to T(q_{\xi}) \subseteq \alpha^*$ be a strong embedding. By Lemma 2.10 (3), we obtain that $\overline{e}_{\xi}(r) \approx r \otimes q_{\xi}$, for each $\xi < \delta$. It follows from the induction hypothesis and (3) above that $q_{\xi} \approx e_{\xi}(\zeta) \leq_{RK} q_{\zeta} \approx f(\zeta)$ for $\xi \leq \zeta < \delta$. Hence, by Lemma 2.11, $q_{\xi} \leq_{RK} \overline{e}_{\xi}(r) \approx r \otimes q_{\xi} \leq_{RK} \overline{f}(r)$ for $\xi < \delta$. The *r*-compactness of $\beta_M(\alpha)$ implies that $\overline{f}(r) = s \in \beta_M(\alpha)$. Thus, we define $q_{\delta} = s \otimes p_{\delta}$. According to Lemma 2.10, we have that $q_{\delta} \in \beta_M(\alpha) \setminus \alpha$ and conditions (1), (2) and (3) hold.

Finally, choose $t \in \beta_M(\alpha) \cap \cup(\alpha)$ and define $p = q_\alpha \otimes t$. It is then evident that p is the required ultrafilter.

As an immediate Corollary of Theorem 2.12 we have:

Corollary 2.13. A cardinal number α is singular if only if $\forall A \in [\beta_{\alpha}(\alpha)]^{\leq \alpha} \exists p \in \beta_{\alpha}(\alpha) \cap \cup(\alpha) \forall q \in A(q <_{RK} p).$ In particular, if α is singular then there is $p \in \beta_{\alpha}(\alpha) \cap \cup(\alpha)$ such that $\beta_{\alpha}(\alpha)$ is initially α -compact, and if α is strong limit singular then p can be taken so that $\beta_p(X) = \beta_{\alpha}(X)$ for all spaces X; that is, p-compactness = < α -boundedness = initial α -compactness.

Proof. ⇒) If α is singular then it is evident that $\beta_{\alpha}(\alpha) \cap \cup(\alpha) \neq \emptyset$ (see [28]). Since $N(\alpha) \subseteq \beta_{\alpha}(\alpha)$ then $\beta_{\alpha}(\alpha)$ satisfies the conditions of Theorem 2.12. Thus, the conclusion follows from Theorem 2.12.

 \Leftarrow) It is not hard to see that $\beta_{\alpha}(\alpha) = N(\alpha)$ iff α is regular (see [28]); hence, α has to be singular.

The last statement follows from Theorem 1.6, Lemma 1.7 and Lemma 2.4 (2).

For regular cardinals we have the following characterization.

Theorem 2.14. Let α be a cardinal. Then

- (1) α is regular $\Leftrightarrow \forall A \in [N(\alpha)]^{<\alpha} \exists p \in N(\alpha) \forall q \in A(q <_{RK} p); and$
- (2) $\alpha = \gamma^+ \text{ for some } \gamma \Leftrightarrow \forall A \in [N(\alpha)]^{\leq \alpha} \exists p \in N(\alpha) \forall q \in A(q <_{RK} p)$

Proof. We only prove clause (1). \Rightarrow) Let $A = \{p_{\xi} : \xi < \gamma\} \subseteq N(\alpha)$ with $\gamma < \alpha$. For every $\xi < \gamma$, let $A_{\xi} \in p_{\xi}$ such that $|A_{\xi}| < \alpha$. Set $A = \bigcup_{\xi < \gamma} A_{\xi}$. Since α is regular then $|A| = \delta < \alpha$. By Hewitt-Pondiczery-Marczewski Theorem, we have that $d(\prod_{\xi < \gamma} \hat{A}_{\xi}) \leq \max(|A|, \gamma) = \lambda < \alpha$. By adding points to A if it is necessary, we may assume that $|A| = \lambda$. Applying an argument similar to that in the proof of Lemma 2.3 of [3], we can define a function $f : A \to \prod_{\xi < \gamma} A_{\xi}$ such that $\overline{f}(\hat{A}) = \prod_{\xi < \gamma} \hat{A}_{\xi}$, and we can also prove that if $p' \in \hat{A}$ satisfies $\overline{f}(p') = (p_{\xi})_{\xi < \gamma}$, then $\forall \xi < \gamma \ (p_{\xi} \leq_{RK} p')$. Thus $p = p' \otimes p'$ is the required point.

 \Leftarrow Assume that α is singular. Then $\alpha = \sum_{\xi < \gamma} \alpha_{\xi}$, where $\gamma = cf(\alpha) < \alpha$ and $\alpha_{\xi} < \alpha$ for $\xi < \gamma$. Choose $p_{\xi} \in \alpha_{\xi}^{*}$ for $\xi < \gamma$. By assumption, there is $p \in N(\alpha)$ such that $p_{\xi} \leq_{RK} p$ for each $\xi < \gamma$. Hence, if $A \in p$ then $|A| \geq \alpha_{\xi}$ for each $\xi < \alpha$, and so $|A| = \alpha$; that is, $p \in \bigcup(\alpha)$ which is a contradiction.

Theorem 2.12 suggests the following improvement of Theorem 1.6 above and Theorem 2.6 of [17]. Corollary 2.15. Let X be a space. The following are equivalent.

- (1) X^{γ} is initially α -compact for all cardinal γ ;
- (2) $X^{2^{2^{\alpha}}}$ is initially α -compact; (3) $X^{|X|^{\alpha}}$ is initially α -compact;
- (4) there is $p \in \bigcup(\alpha)$ decomposable such that X is p-compact.

Proof. The proof of the equivalence of (1), (2), (3) and (2) of Theorem 1.6 is completely similar to that of Theorem 2.6 of [17].

(1) \Rightarrow (4) According to Theorem 1.6, there is $p_{\gamma} \in \cup(\gamma)$ such that X is p_{γ} -compact, for each $\gamma \leq \alpha$. Set $M = \{p_{\gamma} :$ $\gamma \leq \alpha$. Now, we verify that X is $(\beta_M(\alpha) \setminus \alpha)$ -compact. In fact, we know that $Y = \beta_M(\alpha) = \bigcup_{\xi < \alpha^+} Y_{\xi}$, where $Y_0 = \alpha$, and $Y_{\eta} = \{\overline{f}(p_{\gamma}); \gamma \leq \alpha \text{ and } f : \alpha \to \bigcup_{\xi < \eta} Y_{\xi}\} \text{ for } \eta < \alpha^{+}.$ We proceed by transfinite induction. Let $q \in Y$. If $q \in Y_1$ then there is $\gamma \leq \alpha$ such that $q \leq_{RK} p_{\gamma}$; hence, X is q-compact (by Lemma 1.7 (1)). Assume that for every $r \in (\bigcup_{\xi < \eta} Y_{\xi}) \setminus \alpha$ we have that X is r-compact and that $q \in Y_n$. Let $f : \alpha \to X$ be a function and let $g: \alpha \to \bigcup_{\xi < \eta} Y_{\xi}$ such that $\overline{g}(p_{\delta}) = q$ for some $\delta \leq \alpha$. By induction hypothesis, we have that $\overline{f}(g(\zeta)) \in X$ for each $\zeta < \alpha$. Put $h = \overline{f} \circ g$. Since X is p_{δ} -compact and $h(\alpha) \subseteq X$, we obtain that $\overline{h}(p_{\delta}) = \overline{f}(\overline{g}(p_{\delta})) = \overline{f}(q) \in X$. This proves our claim. By Theorem 2.12, there is $p \in \beta_M(\alpha) \setminus \alpha$ such that $p_{\gamma} \leq_{RK} p$ for $\gamma \leq \alpha$. Then p is decomposable and X is p-compact.

 $(4) \Rightarrow (1)$ This follows from Theorem 1.6 and Lemma 1.7 (1).

The question whether "there is $p \in \bigcup(\alpha)$ such that X is pcompact" implies "every power of X is initially α -compact" is answered in the affirmative in the core model (H. D. Donder [6] has shown that in the core model every uniform ultrafilter is, regular, decomposable), and it is false whenever p is an indecomposable ultrafilter on a strong limit cardinal α $(p \in \cup(\alpha))$ is indecomposable if there is not $r \in \bigcup(\gamma)$ with $r \leq_{RK} p$ for each $\omega < \gamma < \alpha$), moreover, the statement does not even imply that X^1 is initially α -compact: for a proof see [15] and more detailed information concerning indecomposable ultrafilters can be found in [21]. In [37], the author showed that if X is $< \alpha$ -bounded and p-compact, for $p \in \cup(\alpha)$, then every power of X is initially α -compact.

It is still unknown in ZFC whether the product of initially α -compact spaces is initially α -compact for a regular cardinal α . In the negative fashion, van Douwen [7] (see [35]), assuming GCH, showed that there are two initially α -compact subspaces of $\beta(\alpha)$ whose product is not initially α -compact. Nyikos and Vaughan [27] proved that if α is a cardinal such that $\alpha^{++} \leq 2^{\omega}$, then there is a family of α^{++} initially α -compact spaces whose product is not countably compact. In [35], the author proposed the following question:

2.16 Question. (Stephenson) If initial α -compactness is productive, must α be a strong limit singular cardinal?

In this connection we have:

Theorem 2.17. If initial α -compactness is productive, then there is $p \in \bigcup(\alpha)$ decomposable such that initial α -compactness and p-compactness are the same concept.

Proof. Assume that initial α -compactness is productive. Let $M = \bigcap\{Y \subseteq \beta(\alpha) : \alpha \subseteq Y \text{ and } Y \text{ is initially } \alpha\text{-compact}\}$. Then M is the initial α -compact reflection of α (see [19] or [33]); in particular, M is the smallest initially α -compact subspace of $\beta(\alpha)$ containing α . According to Corollary 2.15, there is $p \in \bigcup(\alpha)$ decomposable such that M is p-compact. It is evident that $p \in M$. We claim that a space X is initially α -compact if and only if X is p-compact. In fact, let X be p-compact. Since $\forall \gamma \leq \alpha \exists p_{\gamma} \in \bigcup(\gamma)(p_{\gamma} \leq_{RK} p)$ then X is initially α -compact (by Theorem 1.6 and Lemma 1.7 (1)). Conversely, let X be a initially α -compact space. By Theorem 1.6, for each $\gamma \leq \alpha$ there is $q_{\gamma} \in \bigcup(\gamma)$ such that X is q_{γ} -compact. Set $I = \{q_{\gamma} : \gamma \leq \alpha\}$. As in the proof of Corollary 2.15, we have that X is $(\beta_I(\alpha) \setminus \alpha)$ -compact, since $I \subseteq \beta_I(\alpha) \setminus \alpha$. By Theorem 1.6 and Lemma 1.7, $\beta_I(\alpha)$ is initially α -compact. Thus, $p \in M \subseteq \beta_I(\alpha)$ and so X is p-compact. This proves our claim

Theorem 2.17 suggests the following question:

2.18 Question. If initial α -compactness is productive, must initial α -compactness coincide with $< \alpha$ -boundedness?

3. The α -Boundification of α

Our aim in this section is to produce a model M of ZFC in which $M \models |N(\aleph_{\omega})| < |\beta_{\aleph_{\omega}}(\aleph_{\omega})|$. The following sequence of results are needed.

Lemma 3.1. Let $\omega \leq \lambda \leq \alpha$ be cardinals, $p \in \bigcup(\lambda)$, $\{A_{\xi} : \xi < \lambda\}$ a partition of α with $|A_{\xi}| = \alpha$ for $\xi < \lambda$, and $f, g : \lambda \to \beta(\alpha)$ functions satisfying $f(\xi), g(\xi) \in \hat{A}_{\xi}$ for $\xi < \lambda$. The $\overline{f}(p) = \overline{g}(p)$ if and only if $\{\xi < \lambda : f(\xi) = g(\xi)\} \in p$.

Proof. \Leftarrow) This is evident.

⇒) Assume that $A = \{\xi < \lambda : f(\xi) \neq g(\xi)\} \in p$. For every $\xi \in A$ choose β_{ξ} and C_{ξ} disjoint subsets of A_{ξ} such that $f(\xi) \in \hat{B}_{\xi}, g(\xi) \in \hat{C}_{\xi}$ and $A_{\xi} = B_{\xi} \cup C_{\xi}$. Define $B = \bigcup_{\xi \in A} B_{\xi}$ and $C = \bigcup_{\xi \in A} C_{\xi}$. Then $\overline{f}(p) \in \hat{B}$ and $\overline{g}(p) \in \hat{C}$, but this is a contradiction because $\hat{B} \cap \hat{C} = \emptyset$.

In the next results we use the concept of ultraproduct: the reader may consult [5, p. 186] for the definition of ultraproducts.

Lemma 3.2. Let $\omega \leq \lambda \leq \alpha$ be cardinals, let $\emptyset \neq M \subseteq \alpha^*$ and let γ_{ξ} be a cardinal such that $\omega \leq \gamma_{\xi} \leq |\beta_M(\alpha)|$ for each $\xi < \lambda$. Then

 $|\prod_{\xi < \lambda} \gamma_{\xi}/p| \leq |\beta_M(\alpha)| \text{ for every } p \in \cup(\lambda) \cap \beta_M(\alpha).$

Proof. Let $\{A_{\xi} : \xi < \lambda\}$ be a partition of α with $|A_{\xi}| = \alpha$ for $\xi < \lambda$. Since $\beta_M(A_{\xi})$ (A_{ξ} with the discrete topology) is homeomorphic to $\beta_M(\alpha)$ and $\beta_M(A_{\xi}) \subseteq \beta_M(\alpha) \cap \hat{A}_{\xi}$, we have that $|\beta_M(\alpha) \cap \hat{A}_{\xi}| = |\beta_M(\alpha)|$, for $\xi < \lambda$. Hence, for each $\xi < \lambda$ we can choose a subset $S_{\xi} = \{a(\xi, \zeta) : \zeta < \gamma_{\xi}\}$ (faithfully indexed) of $\beta_M(\alpha) \cap A_{\xi}$. Fix $p \in \bigcup(\lambda) \cap \beta_M(\alpha)$. Then define $\Phi : \prod_{\xi < \lambda} \gamma_{\xi}/p \to \beta_M(\alpha)$ by $\Phi(f/p) = \overline{\phi}_f(p)$, where $\phi_f : \lambda \to \beta_M(\alpha)$ is defined by $\phi_f(\xi) = a(\xi, f(\xi))$ for all $f \in \prod_{\xi < \lambda} \gamma_{\xi}$. Observe from Lemma 3.1 that Φ is well-defined, and since $\beta_M(\alpha)$ is p-compact, for all $\xi, \zeta < \lambda$, then the image of Φ is contained in $\beta_M(\alpha)$. By Lemma 3.1, Φ is one-to-one. Therefore, $|\prod_{\xi < \lambda} \gamma_{\xi}/p| \leq |\beta_M(\alpha)|$.

The following Lemma was proved by Keisler [24, Theorem A] (a proof is available in [5, Theorem 12.18 (b)]).

Lemma 3.3. (Keisler) For $p \in \bigcup(\alpha)$ we have that $|^{\alpha}(\gamma^{<\alpha})/p| = |^{\alpha}\gamma/p|^{\alpha} = \gamma^{\alpha}.$

Theorem 3.4. Let $\omega \leq \kappa \leq \alpha$ be cardinals and let $\emptyset \neq M \subseteq \alpha^*$ such that $\cup(\gamma) \cap \beta_M(\alpha) \neq \emptyset$ for each cardinal $\omega \leq \gamma \leq \kappa \leq \alpha$. Then

$$|\beta_M(\alpha)|^{\kappa} = |\beta_M(\alpha)|.$$

Proof. Let $\theta = |\beta_M(\alpha)|$. According to Lemma 3.2 and Lemma 3.3, it is enough to prove that $\theta^{<\kappa} \leq |\beta_M(\alpha)|$ since $\cup(\kappa) \cap \beta_M(\alpha) \neq \emptyset$, which is equivalent to show that $\theta^{\lambda} \leq \theta$ for all $\lambda < \kappa$. Indeed, we proceed by transfinite induction. Assume that $\theta^{\lambda} \leq \theta$ for all $\lambda < \gamma < \kappa$. Since $\alpha \leq \theta$ we have that $\theta^{<\gamma} \leq \theta$. Now, choose $q \in \cup(\gamma) \cap \beta_M(\alpha)$. It then follows, from Lemma 3.2 and Lemma 3.3, that $\theta^{\gamma} = |\gamma(\theta^{<\gamma})/q| \leq |\beta_M(\alpha)|$. Therefore, $\theta^{<\kappa} \leq \theta$.

As a Corollary of Theorem 3.4 we have that:

Corollary 3.5. If α is a singular cardinal, then $|\beta_{\alpha}(\alpha)| = |N(\alpha)|^{\alpha}$.

Proof. Let α be a singular cardinal. It is clear that $\cup(\gamma) \subseteq N(\alpha) \subseteq \beta_{\alpha}(\alpha)$, for each $\omega \leq \gamma < \alpha$, and $\beta_{\alpha}(\alpha) \cap \cup(\alpha) \neq \emptyset$. Applying Theorem 3.4, we have that $|\beta_{\alpha}(\alpha)|^{\alpha} = |\beta_{\alpha}(\alpha)|$. The inequality of Theorem 1.4 implies that $|\beta_{\alpha}(\alpha)| \leq (\sum_{\gamma < \alpha} 2^{2^{\gamma}})^{\alpha} \leq |N(\alpha)|^{\alpha} \leq |\beta_{\alpha}(\alpha)|^{\alpha}$, since $|N(\alpha)| = \alpha^{<\alpha} \cdot \sum_{\gamma < \alpha} 2^{2^{\gamma}}$. Therefore, $|\beta_{\alpha}(\alpha)| = |N(\alpha)|^{\alpha}$.

Next, we show the main result of this section which is a consequence of Corollary 3.5 and Easton forcing Theorem.

Theorem 3.6. There is a model M of ZFC in which

$$M \models |N(\aleph_{\omega})| < |\beta_{\aleph_{\omega}}(\aleph_{\omega})|$$

Proof. Let N be a countable transitive model of ZFC and assume that GCH holds in N. Define a function $E \in N$ as follows:

$$E(\aleph_n) = \aleph_{\omega_n}^+ \text{ for } n < \omega, \text{ and } E(\aleph_{\omega_n}^+) = \aleph_{\omega_{n+1}}^+ \text{ for } n < \omega.$$

Clearly, E is an Easton index function. According to Easton Theorem (see [26]), there is a generic extension M of N such that

(1) M and N have the same cardinals; and

(2) $M \models \forall \kappa \in dom(E) \ (E(\kappa) = 2^{\kappa}).$

Then $M \models 2^{2^{\aleph_n}} = 2^{E(\aleph_n)} = 2^{\aleph_{\omega_n}^+} = E(\aleph_{\omega_n}^+) = \aleph_{\omega_{n+1}}^+$ for $n < \omega$; hence, $M \models 2^{2^{\aleph_n}} < 2^{2^{(\aleph_{n+1})}}$ for $n < \omega$. Thus $M \models cf(\sum_{n < \omega} 2^{2^{\aleph_n}}) = \omega$. Since $M \models 2^{\aleph_0} = E(\aleph_0) = \aleph_{\omega_1} > \aleph_{\omega}$ then $M \models |N(\aleph_{\omega})| = \sum_{n < \omega} 2^{2^{\aleph_n}}$, by Theorem 1.4.

In virtue of Corollary 3.5, we have that

$$M \models |N(\aleph_{\omega})| < |N(\aleph_{\omega})|^{\omega} \le |N(\aleph_{\omega})|^{\aleph_{\omega}} = |\beta_{\aleph_{\omega}}(\aleph_{\omega})|.$$

References

- A. R. Bernstein, A new kind of compactness for topological spaces, Fund. Math. 66 (1970), 185-193.
- [2] A. R. Blass, Kleene degree of ultrafilters, in: Recursion Theory week (Oberwolfach, 1984), Lecture Notes in Math. 1141, (Springer-Verlag), 1985, 29-48.
- [3] W. W. Comfort, Ultrafilters: some old and some new results, Bull. Amer. Math. Soc. 83 (1977), 417-455.
- [4] W. W. Comfort and S. Negrepontis, On families of large oscillation, Fund. Math. 75 (1972), 275-290.
- [5] —, The Theory of Ultrafilters, Grudlehren der Mathematischen Wissenschaften Vol. 211, Springer-Verlag, 1974.
- [6] H. D. Donder, Regularity of ultrafilters and the core model, Israel J. Math. 63 (1988), 289-322.
- [7] E. K. van Douwen, The product of two normal initially κ -compact spaces, to appear.

- [8] S. P. Franklin, On epi-reflective hulls, Topology Appl. 1 (1971), 29-31.
- [9] P. J. Freyd, Functor Theory, Doctoral Dissertation, Princeton University, 1960.
- [10] Z. Frolik, Types of ultrafilters on countable sets, in: General Topology and its Relations to Modern Analysis and Algebra II (Proc. Second Prague topological Symposium, 1966) (Academia, Prague, 1967), 142-143.
- [11] -----, Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91.
- [12] S. Garcia-Ferreira, Various Orderings on the Space of Ultrafilters, Doctoral Dissertation, Wesleyan University, 1990.
- [13] —, Three orderings on $\beta(\omega) \setminus \omega$, preprint.
- [14] ———, On free p-compact groups, preprint.
- [15] ——, Comfort types of ultrafilters, preprint.
- [16] S. Garcia-Ferreira and A. Tamariz-Mascarua, The α -boundification of α , preprint.
- [17] J. Ginsburg and V. Saks, Some applications of ultrafilters in topology, Pacific J. Math. 57 (1975), 403-418.
- [18] S. L. Gulden, W. M. Fleischman and J.H. Weston, Linearly ordered topological spaces, Proc. Amer. Math. Soc. 24 (1970), 197-203.
- [19] H. Herrlich and J. Van der Slot, Properties which are closely related to compactness, Indag. Math. 29 (1967), 524-529.
- [20] T. Jech, Set Theory, Academic Press, New York, 1978.
- [21] A. Kanamori, Finest partitions for ultrafilters, J. Symbolic Logic 51 (1986), 327-332.
- [22] M. Katětov, Characters and types of point sets, Fund. Math. 50 (1961/62), 369-380 (Russian).
- [23] ——, Products of filters, Comment. Math. Univ. Carolinae 9 (1968), 173-189.
- [24] H. J. Keisler, On the cardinalities of ultraproducts, Bull. Amer. Math. Soc. 70 (1964), 644-647.
- [25] J. F. Kennison, Reflective functors in general topology and elsewhere, Trans. Amer. Math. Soc. 118 (1965), 303-315.
- [26] K. Kunen, Set Theory, An Introduction to Independence Proofs, Vol 102 of Studies of Logic and Foundations of Mathematics, North-Holland, 1980.
- [27] P. J. Nyikos and J. E. Vaughan, Sequentially compact Franklin-Rajagopalan spaces, Proc. Amer. Math. Soc. 101 (1987), 149-155.
- [28] L. O'Callaghan, Topological Endohomeomorphisms and Compactness Properties of Products and Generalized Σ -products, Doctoral Dissertation, Wesleyan University, 1975.
- [29] W. Rudin, Homogeneity problems in the theory of Cech compactifications, Duke Math. J. 23 (1956), 409-419.
- [30] V. Saks, Countably Compact Topological Groups, Doctoral Dissertation, Wesleyan University, 1972.

- [31] ———-, Ultrafilter invariants in topological spaces, Trans. Amer. Math. Soc. 241 (1978), 79-97.
- [32] V. Saks and R. M. Stephenson Jr., Products of M-compact spaces, Proc. Amer. Math. Soc. 28 (1971), 279-288.
- [33] J. Van der Slot, Universal Topological Properties, ZW 1966-011. Math. Centrum, Amsterdam, 1966.
- [34] Y. M. Smirnov, On topological spaces, compact in a given interval of powers, Izv. Akad. Nauk. SSSR Ser. Mat. 14 (1950), 155-178.
- [35] R. M. Stephenson Jr., Initially κ-compact and related spaces, in: K.Kunen and J.E. Vaughan, ed. Handbook of Set-Theoretic Topology, North-Holland, 1984.
- [36] R. M. Stephenson Jr. and J.E. Vaughan, Products of initially Mcompact spaces, Trans. Amer. Math. Soc. 196 (1974), 177-189.
- [37] J. E. Vaughan, Powers of spaces of non-stationary ultrafilters, Fund. Math. 117 (1983), 5-14.
- [38] R. G. Woods, Topological extension properties, Trans. Amer. Math. Soc. 210 (1975), 365-385.

Instituto de Matemáticas Ciudad Universitaria (UNAM) México, D.F. 04510 México