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SOME REMARKS ON INITIAL
a-COMPACTNESS, < o-BOUNDEDNESS AND
p-COMPACTNESS

SALVADOR GARCIA-FERREIRA

ABSTRACT. The basic relationships among initial a-
compactness, < a-boundedness and p-compactness are
established. Our principal results are the following: it
follows from GCH that every initially a-compact space
is < a-bounded, we prove that there is a model M of ZFC
in which M |= there exist an initially w;-compact (ini-
tially R,-compact) topological group which is not < wj-
bounded (< R,-bounded); if B,() is the a-boundification
of @ and « is a strong limit singular cardinal, then there
is p € U(a) N Bo(a) such that p-compactness coincides
with < a—boundedness; a result of Saks is improved by
proving that X7 is initially a-compact for all cardinal
v <& 3 p € U(a) (p is decomposable A X is p-compact);
we know that GCH implies that |3(a)\ U ()| = |Ba(e)|
for each cardinal a, and if « is a strong limit singular car-
dinal then |3(a)\U(@)| = |Ba(a)| = 2%, we show in ZFC,
that if « is singular then |84 (a)| = |B(a)\ U (a)|*, and a
model M of ZFC is defined so that M | |3(R,,)\U(XR.)| <
IﬂNu(Nw)l'

0. INTRODUCTION

The authors of [18] introduced the concept of a—bounded-
ness in their study of linearly ordered spaces: A space X is a-
bounded if Clx(A) is compact for every A C X with |A| < a.
W. W. Comfort [28] and J. E. Vaughan [37] slightly modified
this concept as follows: A space X is < a-bounded if Clx(A)
is compact for each A C X with |A| < a. Observe that < a™-
boundedness coincides with the original definition given in [18].
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12 SALVADOR GARCIA-FERREIRA

In this paper, we study the relations among < a-boundedness,
initial a-compactness and p-compactness. We present (in sec-
tion 2) the basic results. It is shown that, assuming GCH,
every initially a-compact space is < a-bounded, and two ex-
amples are given to see that this conclusion can not be es-
tablished in ZFC. Nevertheless, we prove that if « is singular
then every < a-bounded space is initially a-compact; if « i-
a a strong limit cardinal then initial a-compactness implies
< a-boundedness; and if « ia a strong limit singular cardi-
nal then there is p € U(a) such that p-compactness = < a-
boundedness = initial a-compactness. The author of [35] asked
whether « is a strong limit singular cardinal whenever initial
a-compactness is productive. In this direction, we show that
if initial a-compactness is productive, then there is p € U(«)
such that initial a-compactness coincides with p-compactness.
O’Callaghan [28] pointed out that a cardinal « is regular iff
Ba(c) = N(e). In our joint paper [16], we observed that if o is
a strong limit singular then |3(a)\ U (e)| = |B(a)| = 2%, and
GCH implies that |8(a)\ U (a)| = |B(a)| = 2* for each cardi-
nal a: these two results are direct consequences from Theorem
1.4 below. This makes it natural to ask whether the equality
|B+(a)| = |N(a)| can be established by using only the axiom-
s of ZFC. In section 3. we show that there is a model M of
ZFC in which M = |B(R,)\U(RL)| < |Bx. (R.)| answering this

question in the negative.

1. PRELIMINARIES.

All spaces are assumed to be completely regular Hausdorf-
f (Tychonoff). The Greek letters a and v stand for infinite
cardinal numbers and the Greek letters ¢ and é stand for or-
dinals. If a is a cardinal, then o denotes the space whose
underlying set is a with the discrete topology. If f: X — Y
is a continuous function, the Stone extension of f is denoted
by f : B(X) — B(Y). The remainder of B(X) is the space
X* = B(X)\X. For a cardinal «, the set of uniform ultrafil-
terson ais Ule) = {pew*: VA €p (|4 = @) } and
its complement is denoted by N(a) = B(a)\U (). If A C «
then the closure of A in B(a)is A = {p € B(a) : A € p}.
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A function f : v — B(«) is a strong embedding if there is a
partition {A¢ : £ < v} of a such that f(¢) € A{ for each ¢ < 7.
The Rudin-Keisler order on o* is defined by p <gg ¢ if there
is f: @ — a such that f(q) = p for p,q € o* (see [5]). For p,q
€ o*, we say that p = ¢ if there is a permutation o of a with
o(p) = ¢q. Clearly, = is an equivalence relation on o*. If p € o*,
then T(p) = {q € * : p = ¢} is called the type of p: the types
of ultrafilters were introduced by W. Rudin [29]. An ultrafilter
p on « is decomposable if Vw < v < a 3 ¢ € U(y) (¢ <rk p)-
For p,q € a*, their tensor product is defined by

p®g={ACaxa:{{<a:{(<a:({() € A} € q} € p}.

Notice that p®q is an ultrafilter on a X & and can be considered
as an ultrafilter on « via a fixed bijection between a and a X a
(for background and historical notes see [5]).

Clearly, compact spaces are trivial examples of < a-bounded
spaces for any cardinal a. Another important compact-like
property is given in the next definition given by Saks [31] and
Woods [38]: this is a generalization of Bernstein’s concept of
p-compactness introduced in [1], for p € w*.

Definition 1.1. (Saks-Woods) Let § # M C o*. A space X
is M-compact if V f € *X V pe M(f(p)€ X).

If M = {p} for p € a*, we simply write p-compact instead
of {p}-compact. In Bernstein’s terminology [1], we have that
a space X is p-compact if every sequence has a p-limit. It
should be mentioned that the p-limit concept of Bernstein was
also introduced, in a different form, by Frolik [10], [11], Katétov
[22], [23], and Saks [30], independently.

The basic property of M-compactness is stated in the follow-
ing Theorem.

Theorem 1.2. Let ) # M C o* and let X be a space. Then
the space

Bu(X) =n{Y : X CY C B(X) and Y is M-compact }
satisfies

(1) X is a dense subspace of fp(X);

(2) Bm(X) is M-compact;
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(3) If f : X — Z is continuous and Z is M-compact, then

F(Bu(X)) € Z;
(4) Up to a homeomorphism fizing X pointwise the space

Bu(X) is the only space satisfying (1), (2) and (3).

This space Bm(X) is precisely the (M-compact) reflection
considered and studied, in a more general context, by Herrlich
and Van der Slot [19],[33], Franklin [8], and Woods [38]: this
space Oum(X) can be also obtained by an application of the
adjoint functor Theorem of Freyd [9] (see [25]).

If M = {p} for p € o* then the space fp(X) is denoted by
Bp(X) and it is called the p-compactification of X.

It follows directly from the definition that if @ # M C o*
then M C By (a) and T'(p) € Bu(e), for p € a*.

Bernstein [1] proved that a (Tychonoff) space X is w-bounded
if and only if X is p-compact for all p € w*. Saks [31] general-
ized Bernstein’s result by establishing that X is < a*-bounded
iff X is p-compact for all p € a*. For < a-boundedness, we
have that:

Theorem 1.3. A space X is < a-bounded if and only if X is
(N(a)\a)-compact.

Proof. = Assume that X is < a-bounded, let p € N(a)\c
and f € “X. Without loss of generality, we may suppose
that p € U(y) for some ¥ < a. Since X is < a—bounded

then f(B(v)) = Clx(f(v)) € X. In particular, we have that
f(p) € X. This shows that X is (N(a)\a)-compact.

_ <« If feX, for some w < v < «a, then Clx(Img(f)) C
f(B(7)) € X (since X is (N(a)\a)-compact). Hence, X is
< a-bounded.

Thus, we have that < a-boundedness and (N(a)\«)-com-
pactness are the same topological property. For a space X, we
write B,(X) in place of B(n(a)\a)(X) and fo(X) is called the
a-boundification of X. By using Theorem 1.3 and elementary
cardinal arithmetic we have (see [12] or [16]):

Theorem 1.4. For every cardinal o, we have that

IN(e)] = o<+ 372" < |Ba(a)| < (32 27")°

y<o y<a
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We remind the reader the definition of initially a-compact
space ([35] offers a good survey on initially a-compact spaces):

1.5 Definition. (Smirnov [34]) A space X isinitially a-compact
if every open cover U of X with |U| < a has a finite subcover.

Saks [31] (see [35]) classified those spaces X whose product
X7 is initially a-compact for all cardinal v as follows:

Theorem 1.6. (Saks) For a space X the following conditions
are equivalent.
(1) X7 is initially a-compact for each cardinal v:
(2) for each v < a there is p, € U(7) such that X is {p, :
v < a}-compact.

The Comfort (pre-)order on o*, introduced by W. W. Com-
fort in [12], [13], is defined by p <. q if every g-compact space
is p-compact, for p,q € a*. The basic properties of Comfort
order are stated in the following Lemma (a proof is available

in [12] and [13)]).
Lemma 1.7. Let p,q € a*. Then,

(1) if p <rk q then p <. ¢;

(2) p <. q if and only if p € B,(e);

3)if 0 # M C o*, then By(a) is p-compact if and
only if there is r € Pp(a)\a such that p <. r.

2. ON INITIAL a-COMPACTNESS AND a-BOUNDEDNESS.

In [18, Lemma 3], the authors noticed that an < a*-bounded
spaces is initially a-compact. Clearly, if « is regular then

G={z€ [[ Ge: |{{ <a:z¢#e}| <e},
{<a
where G is a non-trivial, compact topological Abelian group
with identity e; for { < a, is an example of an < a-bounded
topological Abelian group which is not initially a-compact.
The next Theorem shows that for « singular there is no such
example. This Theorem is a direct application of the following
Lemma, due to Stephenson and Vaughan [36].
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Lemma 2.1. (Stephenson-Vaughan) Let o be a singular
cardinal. If X is initially a-compact for all w < v < a, then
X s initially a-compact.

Theorem 2.2. If a is singular, then every < a-bounded space
is tnitially a-compact.

Proof. Let o be singular and let X be an < a-bounded space.
In virtue of Lemma 2.1, it is enough to verify that X is initially
v-compact for all w < v < a. Indeed, if w < v < a, then X is
< yt-bounded: hence, by Lemma 3 of [18] quoted above, X is
initially 4-compact.

For a is regular, the space o with the order topology is an
< a-bounded, non-compact space of cardinallity «. But for
singular cardinals the situation is quite different. In fact, we
have:

Corollary 2.3. Let o be singular. If X is an < a-bounded,
non-compact space, then a < |X| and a < w(X).

Proof. Let X be a space satisfying our conditions. By Theorem
2.2, X is initially a-compact. It is then evident that o < |X|
and a < w(X).

Gulden, Fleischman and Weston [18] asked whether there
is an initially a-compact space, @ > w, which is not < at-
bounded. In [32], the authors showed that for every regu-
lar cardinal @ > w there is an initially a-compact topological
group which is not < a*-bounded. It is then natural to ask
whether every initially a-compact space is a-bounded. The
answer is in the positive if « is a strong limit cardinal. In fact,
Saks and Stephenson [32] showed:

Lemma 2.4. (Saks-Stephenson) If X is an initially a-com-
pact space and 27 < « for some cardinal w < ¥ < a, then X
is < y¥-bounded. In addition,
(1) if @ is a strong limit cardinal, then every initially a-
compact space ts < a-bounded; and
(2) if o is a strong limit singular cardinal, then initial -
compactness and < a-boundedness are the same concep-
t.
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The next two Theorems prove that initial < a-compactness

and a-boundedness agree and disagree depending on the model
of ZFC.

Theorem 2.5. If GCH holds, every initially a-compact space
is < a-bounded for each cardinal o.

Proof. Assume GCH. let X be an initially a-compact space.
If o is a strong limit cardinal, then the conclusion follows from
Lemma 2.4 (1). Suppose that « is not a strong limit cardinal.
Then, by GCH, we have that @ = 2 = 4* for some cardinal
v < a. Since @ = T =27, for v < @, then X is < a-bounded
by Lemma 2.4.

We need the next result discovered by Saks [32], [35, 3.5].

Lemma 2.6. (Saks) Let X be an initially a-compact space
and A € [X]|S*". Then there is an initially a-compact sub-

space G of X such that A C G and |G| < 2% In case X is a
topological group, then G may be taken to be a subgroup of X.

Theorem 2.7. There is a model of ZFC in which there exist-
s an initially w;-compact (initially R, — compact) topological
group which is not < wy-bounded (< R, -bounded).

Proof. Let M be a model of ZFC in which Lusin’s hypothesis
holds, that is M | 2 = 2“1, Then, by Theorem 1.4 we
have that M |= | N(w;)| = 2%*. We know that B(w;) can
be embedded as a subspace of the topological group H = §*
(see, for instance, [5, Corollary 2.11]), where S is the unitary
circle. Set F' = Cly(< p(w1) >), where < f(w;) > denotes
the subgroup of H generated by 3(w;). By Lemma 2.6, we can
find an initially w;-compact topological subgroup G of F' such
that w; C G and |G| < 2¥. Assume that G is < w;-bounded.
Since w; C B(wy) N G then B,,(w1) = N(w1) € G and so
M E | N(w)| = 2% = |G|, which is a contradiction. Thus
G is an initially w;-compact, non-< w;- bounded topological
group. To obtain the later example, we will use Easton Forcing
(for a complete treatment of Easton Forcing see [20] and [26]).

Indeed, let N be a countable transitive model of ZFC +
GCH. We define a function E by dom(E)= {w, Ry 41}, F(w) =
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Ryt2, and E(R,41) = Ruta. Clearly, E is an Easton function.
Then there is a generic extension M of N such that M and N
have the same cardinals and M |= V & € dom(E) (E(x) = 2%).
Thus, we have that

M 28 < 2% = B(Rypy) = Rupa < 227 =25 = 2%,

Hence, by Theorem 1.4, M |= 2% < 2%° < |8y, (Ru)|. Now, to
show that Clx(< B(R.) >), where K = §*“ and < B(R,) >
is the subgroup of K generated by B(R,), contains a subgroup
with the required properties, we proceed as in the previous
example.

Theorem 1.3 shows that < a-boundedness implies p-com-
pactness for each p € N(a)\a. Conversely, it is evident that if
2% < 27 for some w < v < « then there is no p € U(a) such
that p-compactness implies < a-boundedness since |N(a)| >
2% > |B,(a)| for each p € U(a). Nevertheless, we have:

Theorem 2.8. If ) # M € [a*]$%°, then there is p € U ()
such that p-compactness implies M -compactness. In particu-
lar,
(1) if a is a strong limit cardinal, then 3 p € U(a) (p-
compactness = < a-boundedness);
(2) assuming GCH, for each cardinal o we have that I p €
U(a) (p-compactness = < a-boundedness).

The conclusion will be a direct consequence of the following
Lemma due to Comfort and Negrepontis [4], [5, 10.9-10.13] and
[3, Theorem 6.4].

Lemma 2.9. (Comfort-Negrepontis) Let « be a regular cardi-
nal such that w < k < a = a<*, and suppose that every k-
complete filter on a extends to a k-complete ultrafilter. Then
V A€ [{p€Ba):pisk-complete}]<** 3 ¢ € U(a) V p €
A(p <rk q)-

Proof. (This alternative proof is due to Alan Dow). It is a
result of Hausdorff, and Engelking and Karlowicz (see [5, The-
orem 3.16]) that for each « there is a ((2*, @)-independent ma-
trix) family {AE : € < aand ¢ < 2°} of subsets of a such
that
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(1) AEOAZ:(Z)for§<n<aandC<2°‘;
(2) if I € [2°]<* and ¢ € a, then NeerAYE) # 0.

We may assume that U§<O,AE = a for each { < 2%. Let
{p¢ : ¢ < 2%} be a set of k- complete ultrafilters on a. Define
F = {U£EBA§ : B € pc and ( < 2°}*. Tt is evident that F
is k-complete, and if F C p € f(a) (p can be taken to be
k-complete) then —fc(p) = p¢, where f; € “a is defined by

fc_l({f}) = Ag for £ < o and ¢ < 2°.

Proof of Theorem 2.8. Let § # M € [a*]*". According to
Lemma 2.9, there is r € o* such that ¢ <gg r for all ¢ € M.
Fix s € U(a) and let N = M U {s}. Applying Lemma 2.9
again, there is p € o for which ¢ <pg p for all ¢ € N. It is not
then hard to show that p € U(a) and p-compactness implies
M-compactness (by Lemma 1.7. (1)). If « is a strong limit

cardinal, then the conclusion to (1) follows from Theorem 1.3,
Theorem 1.4 and Lemma 2.9 since |N(a)| = 2°.

Next, we will show that if « is a strong limit singular car-
dinal then < a-boundedness coincides with p-compactness for
some p € f3,(ca) N () (Corollary 2.14). In fact, this will be a
particular case of a more general result (Theorem 2.13). We
need the following two Lemmas: A proof of clauses (1) and (3)
of Lemma 2.10 is available in [5], clause (2) of the same Lemma
is shown in [14], and lemma 2.11 is a slight generalization of a
result proved by Blass [2].

Lemma 2.10. Let p,q € a*. Then

(1) (/5, Lemma 7.21. (b)]) p <rx p® q and ¢ <grg p ® ¢;

(2) ([14]) if 0 # M C o* and p,q € Bu(«), then p® q €
Pu(e)\a; and

(3) (Blass [5, Lemma 16.5]) if f : @ — T(q) C a* is a
strong embedding, then f(p) =~ p® q.

Lemma 2.11. Let p € v*. Ife, f : v — a* are functions such
that f is a strong embedding and {¢ < v : e(§) <rk f(£)} € p,
then €(p) <rk f(p)-
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Theorem 2.12. Let § # M C o* be such that § # M NU(y)
fory < a. ThenV A € [Bu(a)\a]** Ip € Bu(a)NU(a) Vg €
A(q <rxk p)-

Proof. Let A = {p : £ < a} C Bu(a)\a. We will define
g¢ € a*, for each £ < a, such that

(1) ¢¢ € Bu(a)\a for each { < o
(2) Pe <RK q foré <a: and
(3) g¢ <rk q¢ whenever { < ( < c.

We proceed by transfinite induction. For £ = 0 we let g5 =
po. Assume that g¢ has been defined so that (1), (2) and (3)
hold for each £ < § < a (where § denotes an ordinal number).
We consider two cases:

(a) If 6§ = £ + 1 then we define g5 = ps ® ¢¢. Conditions (1),
(2) and (3) follow from Lemma 2.10.

(b) Assume that 4 is a limit ordinal. We may identify § with
the cardinal number |6]. Let f : § — Bum(a)\a be a strong
embedding such that f(§) € T'(ge), for each ¢ < § (this embed-
ding can be achieved by choosing a partition {A, : £ < 6} of
a with |A¢| = « and picking f(§) € /ig N T(ge), for £ < §).
Fix r € M NnU(8) C U(6) N Pm(e). For each £ < 6, let
e¢ : 6 — T(g) C o be a strong embedding. By Lem-
ma 2.10 (3), we obtain that €(r) = r ® g, for each ¢ < 6.
It follows from the induction hypothesis and (3) above that
¢ ~ e(¢) <rrx q¢ = f(¢) for £ < ( < 6. Hence, by Lem-
ma 2.11, ¢ <grk &(r) = r ® ¢¢ <px f(r) for { < é. The
r-compactness of Sy(c) implies that f(r) = s € Ba(e). Thus,
we define g5 = s ® ps. According to Lemma 2.10, we have that
¢s € Bm(a)\a and conditions (1), (2) and (3) hold.

Finally, choose t € fy(a) NU(e) and define p = ¢, @t. It is
then evident that p is the required ultrafilter.

As an immediate Corollary of Theorem 2.12 we have:

Corollary 2.13. A cardinal number a is singular if only if
VAE€[B)]* T p € Bala)NU(a) V q € A(q <pr p)-
In particular, if a is singular then there is p € By(@) N U(a)
such that B,(a) is initially a-compact, and if a is strong limit
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singular then p can be taken so that B,(X) = Bu(X) for all
spaces X; that is, p-compactness = < a-boundedness = initial
a-compactness.

Proof. =) If « is singular then it is evident that G,(a) N
U(a) # @ (see [28]). Since N(a) C B.(a) then B,(«a) satisfies
the conditions of Theorem 2.12. Thus, the conclusion follows
from Theorem 2.12.

<) It is not hard to see that 8,(a) = N(a) iff a is regular
(see [28]); hence, a has to be singular.

The last statement follows from Theorem 1.6, Lemma, 1.7
and Lemma 2.4 (2).

For regular cardinals we have the following characterization.

Theorem 2.14. Let o be a cardinal. Then
(1) a is reqular & V A € [N(a)]<* I p € N(a) V q €
A(q <gk p); and
(2) a =4t forsomey & VA€ [N(a)]**3Ipe N(a)Vg €
A(g <rk Pp)

Proof. We only prove clause (1). =) Let A = {pe : £ <
v} € N(a) with ¥ < a. For every ¢ < v, let A¢ € pe such
that |A¢] < a. Set A = Ugc,A,. Since « is regular then [A| =
6 < a. By Hewitt-Pondiczery-Marczewski Theorem, we have
that d(Il¢<, A¢) < max (|A|,7) = A < a. By adding points
to A if it is necessary, we may assume that |A| = A. Applying
an argument similar to that in the proof of Lemma 2.3 of [3],
we can define a function f : A — [¢., A¢ such that F(A) =
[Te<y Ag, and we can also prove that if p’ € A satisfies F(p') =
(Pe)e<ys then ¥ & <y (pe <px p'). Thus p = p' ® p’ is the
required point.

<= Assume that « is singular. Then o = ¥, ., a¢, where

= cf(a) < @ and o < a for { < 7. Choose p¢ € of for
¢ < v. By assumption, there is p € N(«) such that p; <pg p
for each ¢ < 7. Hence, if A € p then |A| > a; for each £ < a,
and so |A| = a; that is, p € U(a) which is a contradiction.

Theorem 2.12 suggests the following improvement of Theo-
rem 1.6 above and Theorem 2.6 of [17].
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Corollary 2.15. Let X be a space. The following are equiva-
lent.

(1) X7 is initially a-compact for all cardinal v;

(2) X% s initially a-compact;

(3) XWXI* is initially a-compact;

(4) there isp € U(a) decomposable such that X is p-compact.

Proof. The proof of the equivalence of (1), (2), (3) and (2) of
Theorem 1.6 is completely similar to that of Theorem 2.6 of
[17].

(1) = (4) According to Theorem 1.6, there is p, € U(Y)
such that X is p,-compact, for each v < a. Set M = {p, :
v < a}. Now, we verify that X is (Bm(a)\a)-compact. In
fact, we know that Y = fp(a) = Ugco+ Y, Where Yy = o, and
Y, = {f(p,);7 < aand f : a = Ug, Y} for n < at. We
proceed by transfinite induction. Let ¢ € Y. If ¢ € Y; then
there is v < a such that ¢ <gg p,; hence, X is g-compact (by
Lemma 1.7 (1)). Assume that for every r € (Ugc,Ye)\ we
have that X is r-compact and that ¢ € Y. Let f: o — X be a
function and let ¢ : @ — Ugc, Yz such that g(ps) = ¢ for some
6 < a. By induction hypothesis, we have that f(g(¢)) € X
for each ( < a. Put A = f o g. Since X is ps-compact and
h(c) C X, we obtain that k(ps) = f(g(ps)) = f(q) € X. This
proves our claim. By Theorem 2.12, there is p € Byr(a)\a such
that p, <gg p for v < a. Then p is decomposable and X is
p-compact. .

(4) = (1) This follows from Theorem 1.6 and Lemma 1.7

(1).

The question whether “there is p € U(a) such that X is p-
compact” implies “every power of X is initially a-compact” is
answered in the affirmative in the core model (H. D. Donder [6]
has shown that in the core model every uniform ultrafilter is,
regular, decomposable), and it is false whenever p is an inde-
composable ultrafilter on a strong limit cardinal @ (p € U(«)
is indecomposable if there is not » € U(y) with r <gg p for
each w < 4 < a), moreover, the statement does not even im-
ply that X! is initially a-compact: for a proof see [15] and
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more detailed information concerning indecomposable ultrafil-
ters can be found in [21]. In [37], the author showed that if
X is < a-bounded and p-compact, for p € U(a), then every
power of X is initially a-compact.

It is still unknown in ZFC whether the product of initially
a-compact spaces is initially a-compact for a regular cardinal
a. In the negative fashion, van Douwen [7] (see [35]), assuming
GCH, showed that there are two initially a-compact subspaces
of B(a) whose product is not initially a-compact. Nyikos and
Vaughan [27] proved that if  is a cardinal such that at* < 2¢
then there is a family of o** initially a-compact spaces whose
product is not countably compact. In [35], the author proposed
the following question:

2.16 Question. (Stephenson) If initial a-compactness is pro-
ductive, must o be a strong limit singular cardinal?

In this connection we have:

Theorem 2.17. If initial a-compactness is productive, then
there is p € U(a) decomposable such that initial a-compactness
and p-compactness are the same concept.

Proof. Assume that initial a-compactness is productive. Let
M=n{Y C B(a) : @ CY and Y is initially a-compact}.
Then M is the initial a-compact reflection of a (see [19] or
[33]); in particular, M is the smallest initially a-compact sub-
space of #(«a) containing a. According to Corollary 2.15, there
is p € U(a) decomposable such that M is p-compact. It is
evident that p € M. We claim that a space X is initially a-
compact if and only if X is p-compact. In fact, let X be p-
compact. Since Vv < a 3 p, € U(7)(py <mrk p) then X
is initially a-compact (by Theorem 1.6 and Lemma 1.7 (1)).
Conversely, let X be a initially a-compact space. By Theo-
rem 1.6, for each v < a there is ¢, € U(y) such that X is
¢,-compact. Set I = {¢, : v < a}. As in the proof of Corollary
2.15, we have that X is (81(a)\a)-compact, since I C fr(a)\c.
By Theorem 1.6 and Lemma 1.7, 81(«) is initially a-compact.
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Thus, p € M C Bi(«) and so X is p-compact. This proves our
claim

Theorem 2.17 suggests the following question:

2.18 Question. If initial a-compactness is productive, must
initial a-compactness coincide with < a-boundedness?

3. THE a-BOUNDIFICATION OF «

Our aim in this section is to produce a model M of ZFC in
which M | | N(R,)| < |Br. (Ro)|- The following sequence of
results are needed.

Lemma 3.1. Let w < A < a be cardinals, p € U(X),{A¢ : £ <
A} a partition of o with |A¢| = o for§ < A, and f,g: XA — B(a)
functions satisfying f(£),g(¢) € Ag for € < \. The f(p) = 9(p)
if and only if {£ < X: f(§) = g(£)} € p.

Proof. <) This is evident.
=) Assume that A = {£ < X : f(¢) # g(§)} € p. For
every £ € A choose ,35 and C¢ disjoint subsets of A¢ such that

7(€) € Beg(€) € Ce and Ag = By U Cy. Define B = UgeBe
and C = UgeaC;. Then f(p) € B and g(p) € C, but this is a
contradiction because BN C = 0.

In the next results we use the concept of ultraproduct: the
reader may consult [5, p. 186] for the definition of ultraprod-
ucts.

Lemma 3.2. Let w < A < « be cardinals, let ) # M C o*
and let v¢ be a cardinal such that w < 4¢ < |Bm(a)| for each
& < A. Then

| Te<r ve/pl < |Bm(a)| for every p € U(X) N By (a).
Proof. Let {A¢ : £ < A} be a partition of o with |A¢| = «
for £ < A. Since Bm(A¢) (Ag with the discrete topology)
is homeomorphic to fp(a) and Bu(Ae) C Bu(a) N /Alé, we

have that |Bu(a) N A¢| = |Bum(a)], for € < A. Hence, for
each £ < X we can choose a subset S¢ = {a(&,() : ( < ¢}
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(faithfully indexed) of Ba(@) N Ae. Fix p € U(X) N Bar(a).
Then define @ : H§<,\’)’£/P — Bu(a) by ®(f/p) = é4(p),
where ¢; : A — Bp(a) is defined by ¢4(¢) = a(é, f(£)) for all
J € Il¢<r7e- Observe from Lemma 3.1 that @ is well-defined,
and since () is p-compact, for all €, < A, then the image
of ® is contained in By(a). By Lemma 3.1, ¢ is one-to-one.

Therefore, | [Tecx e/l < 1Bu(a)].

The following Lemma was proved by Keisler [24, Theorem
A] (a proof is available in [5, Theorem 12.18 (b)]).

Lemma 3.3. (Keisler) For p € U(a) we have that
*(v<*)/pl = I*v/pl* = 7*.

Theorem 3.4. Let w < k < a be cardinals and let ) # M C
a* such that U(y) N By(@) # O for each cardinal w < v < k <
a. Then

|1Bu (@) = |Br(@)]-

Proof. Let 8 = |Bm(c)|. According to Lemma 3.2 and Lemma
3.3, it is enough to prove that < < |Bp(e)| since U(k) N
Brr(a) # 0, which is equivalent to show that * < 6 for all
A < k. Indeed, we proceed by transfinite induction. Assume
that 6* < 0 for all A < v < k. Since @ < 6 we have that
6<7 < 6. Now, choose q € U(y) N Bpr(a). It then follows, from
Lemma 3.2 and Lemma 3.3, that 87 = [7(6<"7)/q| < |Bm()|.
Therefore, <" < 0.

As a Corollary of Theorem 3.4 we have that:

Corollary 3.5. If a is a singular cardinal, then |B,(c)| =
[N (a)]*.

Proof. Let a be a singular cardinal. It is clear that U(y) C
N(a) C B,(), for each w < v < @, and B,(a)NU(a) # 0. Ap-
plying Theorem 3.4, we have that |3,(@)|* = |B.()|- The in-
equality of Theorem 1.4 implies that |8,(a)| < (Z,<q2¥7)* <
IN(@)|* < |Ba(@)|?, since |N(a)| = a<* - 3, 2%". Therefore,
|Ba(@)| = [N (a)]*.
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Next, we show the main result of this section which is a
consequence of Corollary 3.5 and Easton forcing Theorem.

Theorem 3.6. There is a model M of ZFC in which

M | [N(R)| < [Br, (Ro)l-

Proof. Let N be a countable transitive model of ZFC and
assume that GCH holds in N. Define a function £ € N as

follows:

ER,) =R} forn <w, and E(R} ) =R}  forn <w.

Wn41

Clearly, E is an Easton index function. According to Easton
Theorem (see [26]), there is a generic extension M of N such
that
(1) M and N have the same cardinals; and
(2) M V& € dom(E) (E(k) = 2%).
Then M [ 22 = 2B() — 9%, — E(RF ) = RE  for

Wn41
n < w; hence, M | 22" < 22" for n < w. Thus M E
cf(Trew2?™) = w. Since M | 2% = E(Xy) = R, > X, then
M E |N®R,)| = Tpew 22", by Theorem 1.4.

In virtue of Corollary 3.5, we have that

M IN(R)| < [NR)I < [NRL)™ = [y, ().
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