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SOME REMARKS ON INITIAL 
a-COMPACTNESS, < a-BOUNDEDNESS AND 

p-COMPACTNESS 

SALVADOR GARCIA-FERREIRA 

ABSTRACT. The basic relationships among initial a
compactness, < a-boundedness and p-compactness are 
established. Our principal results are the following: it 
follows from GCB that every initially a-compact space 
is < a-bounded, we prove that there is a model M of ZFC 
in which M F there exist an initially wl-compact (ini
tially Nw-compact) topological group which is not < Wl
bounded « Nw-bounded); if f3a(a) is the a-boundification 
of a and a is a strong limit singular cardinal, then there 
is p E U(a) n f3a(a) such that p-compactness coincides 
with < a-boundedness; a result of Saks is improved by 
proving that X"Y is initially a-compact for all cardinal 
'Y ¢> 3 p E U(a) (p is decomposable 1\ X is p-compact); 
we know that GCB implies that 1f3(a)\ U (a)1 = lf3a(a)1 
for each cardinal a, and if a is a strong limit singular car
dinal then 1,B(a)\U(a)1 = l,Bo:(a) I= 20:,' we show in ZFC, 
that if a is singular then 1f30: (a) I= 1f3(a)\ U (a) 10:, and a 
model M ofZFC is defined so that M F= 1f3(Nw)\U(Nw )1 < 
I,BN w (Nw ) I· 

o. INTRODUCTION 

The authors of [18] introduced the concept of a-bounded
ness in their study of linearly ordered spaces: A space X is a
bounded if Clx(A) is compact for every A ~ X with IAI ~ a. 
W. W. Comfort [28] and J. E. Vaughan [37] slightly modified 
this concept as follows: A space X is < a-bounded if Clx(A) 
is compact for each A ~ X with IAI < a. Observe that < a+
boundedness coincides with the original definition given in [18]. 
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In this paper, we study the relations among < a-boundedness, 
initial a-compactness and p-compactness. We present (in sec
tion 2) the basic results. It is shown that, assuming GCH, 
every initially a-compact space is < a-bounded, and two ex
amples are given to see that this conclusion can not be es
tablished in ZFC. Nevertheless, we prove that if a is singular 
then every < a-bounded space is initially a-compact; if a i
a a strong limit cardinal then initial a-compactness implies 
< a-boundedness; and if a ia a strong limit singular cardi
nal then there is p E U(a) such that p-compactness == < a
boundedness == initial a-compactness. The author of [35] asked 
whether a is a strong limit singular cardinal whenever initial 
a-compactness is productive. In this direction, we show that 
if initial a-compactness is productive, then there is p E U(a) 
such that initial a-compactness coincides with p-compactness. 
O'Callaghan [28] pointed out that a cardinal a is regular iff 
(3a(a) == N(a). In our joint paper [16], we observed that if a is 
a strong limit singular then 1{3(a)\ U (a)1 == 1{3(a)1 == 2a 

, and 
GCH implies that 1{3(a)\ U (a)1 == 1{3(a)1 == 2a for each cardi
nal a: these two results are direct consequences .from Theorem 
1.4 below. This makes it natural to ask whether the equality 
I{3a (a) I == 1N (a )I can be established by using only the axiom
s of ZFC. In section 3. we show that there is a model M of 
ZFC in which M F 1{3(~w)\ U (~w)1 < I{3Nw(~w)1 answering this 
question in the negative. 

1. PRELIMINARIES. 

All spaces are assumed to be completely regular Hausdorf
f (Tychonoff). The Greek letters a and, stand for infinite 
cardinal numbers and the Greek letters ~ and 8 stand for or
dinals. If a is a cardinal, then a denotes the space whose 
underlying set is a with the discrete topology. If f : X ---+ Y 
is a continuous function, the Stone extension of f is denoted 
by 1 : (3(X) ---+ (3(Y). The remainder of (3(X) is the space 
X* == (3(X)\X. For a cardinal a, the set of uniform ultrafil
ters on a is U(a) == {p E w* : V A E p (IAI == a) } and 
its complement is denoted by N(a) = (3(a)\ U (a). If A ~ a 
then the closure of A in (3(a) is Ii == {p E (3(a) : A E pl. 
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A function ! : , ~ f3( a) is a strong embedding if there is a 
partition {Ae : e< ,} of a such that !(e) E Aefor each e< ,. 
The Rudin-I<eisler order on a* is defined by p ~RK q if there 
is f : a ~ a such that J(q) == p for p,q E a* (see [5]). For p,q 
E a*, we say that p ~ q if there is a permutation (J' of a with 
u(p) == q. Clearly, ~ is an equivalence relation on a*. If p E a*, 
then T(p) == {q E a* : p ~ q} is called the type of p: the types 
of ultrafilters were introduced by W. Rudin [29]. An ultrafilter 
p on a is decomposable if 'V w ::; , ::; a 3 q E U(,) (q ::;RK p). 
For p,q E a*, their tensor product is defined by 

p ® q == {A c a x a : {e < a : {( < a : (e, () E A} E q} E p}. 

Notice that p0q is an ultrafilter on a x a and can be considered 
as an ultrafilter on a via a fixed bijection between a and a x a 
(for background and historical notes see [5]). 

Clearly, compact spaces are trivial examples of < a-bounded 
spaces for any cardinal a. Another important compact-like 
property is given in the next definition given by Saks [31] and 
Woods [38]: this is a generalization of Bernstein's concept of 
p-compactness introduced in [1], for p E w*. 

Definition 1.1. (Saks-Woods) Let 0 ~ M ~ a*. A space X 
is M-compaet if V f E ex X Yp E M(](p) EX). 

If M == {p} for p E a*, we simply write p-compact instead 
of {p}-compact. In Bernstein's terminology [1], we have that 
a space X is p-compact if every sequence has a p-limit. It 
should be mentioned that the p-limit concept of Bernstein was 
also introduced, in a different form, by Frolik [10], [11], Katetov 
[22], [23], and Saks [30], independently. 

The basic property of M-compactness is stated in the follow
ing Theorem. 

Theorem 1.2. Let 0 ~ M ~ a* and let X be a space. Then 
the space 

f3M(X) == n{Y : X ~ Y ~ f3(X) and Y is M-compact } 
satisfies 

(1) X is a dense subspace of f3M(X); 
(2) f3M(X) is M-compact; 
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(3)	 If f : X ~ Z is continuous and Z is M-compact, then 
](13M(X)) ~ Z; 

(4)	 Up to a homeomorphism fixing X pointwise the space 
13M(X) is the only space satisfying (1), (2) and (3). 

This space 13M(X) is precisely the (M-compact) reflection 
considered and studied, in a more general context, by Herrlich 
and Van der Slot [19],[33], Franklin [8], and Woods [38]: this 
space 13M(X) can be also obtained by an application of the 
adjoint functor Theorem of Freyd [9] (see [25]). 

If M = {p} for p E 0* then the space 13M(X) is denoted by 
f3p(X) and it is called the p-compactijication of X. 

It follows directly from the definition that if 0 =I M ~ 0* 

then M ~ 13M(a) and T(p) ~ f3M(a), for p E 0*. 

Bernstein [1] proved that a (Tychonoff) space X is w-bounded 
if and only if X is p-compact for all p E w*. Saks [31] general
ized Bernstein's result by establishing that X is < 0+-bounded 
iff X is p-compact for all p E 0*. For < a-boundedness, we 
have that: 

Theorem 1.3. A space X is < a-bounded if and only if X is 
(N(a)\a )-compact. 

Proof => Assume that X is < a-bounded, let P E N(a)\a 
and f E a X . Without loss of generality, we may suppose 
that p E U(,) for some, < a. Since X is < a-bounded 
then !((3(,)) = Clx (!(,)) ~ X. In particular, we have that 
l(p) E X. This shows that X is (N(a)\a)-compact. 

¢= If f E ryx, for some w ~ , < a, then Clx(Img(f)) ~ 

1(13(,)) ~ X (since X is (N(a)\a)-compact). Hence, X is 
< a-bounded. 

Thus, we have that < a-boundedness and (N(a)\a)-com
pactness are the same topological property. For a space X, we 
write f3a(X) in place of f3(N(a)\a)(X) and f3a(X) is called the 
0- boundification of X. By using Theorem 1.3 and elementary 
cardinal arithmetic we have (see [12] or [16]): 

Theorem 1.4. For every cardinal a, we have that 

IN(a)1 = a<a. L 22~ ~ lf3a(a)1 ~ (L 22~)a. 
ry<a ry<a 
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We remind the reader the definition of initially a-compact 
space ([35] offers a good survey on initially a-compact spaces): 

1.5 Definition. (Smirnov [34]) A space X is initially a-compact 
if every open cover U of X with lUI ~ a has a finite subcover. 

Saks [31] (see [35]) classified those spaces X whose product 
X'Y is initially a-compact for all cardinal, as follows: 

Theorem 1.6. (Saks) For a space X the following conditions 
are equivalent. 

(1)	 X'Y is initially a-compact for each cardinali: 
(2)	 for each I :::; a there is Pry E U(I) such that X is {pry : 

, :::; a} -compact. 

The Comfort {pre-)order on a*, introduced by W. W. Com
fort in [12], [13], is defined by p ~c q if every q-compact space 
is p-compact, for p, q E a*. The basic properties of Comfort 
order are stated in the following Lemma (a proof is available 
in [12] and [13]). 

Lemma 1.7. Let p, q E a*. Then, 

(1)	 if P :::;RK q then P ~c q; 
(2)	 P :::;c q if and only if p E (3q(a); 
(3)	 if 0 =I M ~ a*, then (3M(a) is p-compact if and 

only if there is r E (3M(a)\a such that P:::;c r. 

2.	 ON INITIAL a-COMPACTNESS AND a-BOUNDEDNESS. 

In [18, Lemma 3], the authors noticed that an < a+-bounded 
spaces is initially a-compact. Clearly, if a is regular then 

G = {x E II Ge : I{e < a : xe # ee}1 < a}, 
e<a 

where Ge is a non-trivial, compact topological Abelian group 
with identity ee for ~ < a, is an example of an < a-bounded 
topological Abelian group which is not initially a-compact. 
The next Theorem shows that for a singular there is no such 
example. This Theorem is a direct application of the following 
Lemma, due to Stephenson and Vaughan [36]. 
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Lemma 2.1. (Stephenson-Vaughan) Let a be a singular 
cardinal. If X is initially a-compact for all w ~ , < a, then 
X is initially a-compact. 

Theorem 2.2. If a is singular, then every < a-bounded space 
is initially a-compact. 

Proof. Let a be singular and let X be an < a-bounded space. 
In virtue of Lemma 2.1, it is enough to verify that X is initially 
,-compact for all w ~ , < a. Indeed, if w ~ , < a, then X is 
< ,+-bounded: hence, by Lemma 3 of [18] quoted above, X is 
initially ,-compact. 

For a is regular, the space a with the order topology is an 
< a-bounded, non-compact space of cardinallity a. But for 
singular cardinals the situation is quite different. In fact, we 
have: 

Corollary 2.3. Let a be singular. If X is an < a-bounded, 
non-compact space, then a < IXI and a < w(X). 

Proof. Let X be a space satisfying our conditions. By Theorem 
2.2, X is initially a-compact. It is then evident that a < IXI 
and a < w(X). 

Gulden, Fleischman and Weston [18] asked whether there 
is an initially a-compact space, a > w, which is not < a+
bounded. In [32], the authors showed that for every regu
lar cardinal a ~ w there is an initially a-compact topological 
group which is not < a+-bounded. It is then natural to ask 
whether every initially a-compact space is a-bounded. The 
answer is in the positive if a is a strong limit cardinal. In fact, 
Saks and Stephenson [32] showed: 

Lemma 2.4. (Saks-Stephenson) If X is an initially a-com
pact space and 2ry ~ a for some cardinal w ~ , < a, then X 
is < ,+ -bounded. In addition, 

(1)	 if a is a strong limit cardinal, then every initially a
compact space is < a-bounded; and 

(2)	 if a is a strong limit singular cardinal, then initial a
compactness and < a-boundedness are the same concep
t. 
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The next two Theorems prove that initial < a-compactness 
and a-boundedness agree and disagree depending on the model 
of ZFC. 

Theorem 2.5. If GCH holds, every initially a-compact space 
is < a-bounded for each cardinala. 

Proof Assume GCH. let X be an initially a-compact space. 
If 0' is a strong limit cardinal, then the conclusion follows from 
Lemma 2.4 (1). Suppose that 0' is not a strong limit cardinal. 
Then, by GCH, we have that 0' == 2" == ,+ for some cardinal 
, < 0'. Since a == ,+ == 2", for, < a, then X is < a-bounded 
by Lemma 2.4. 

We need the next result discovered by Saks [32], [35, 3.5]. 

Lemma 2.6. (Saks) Let X be an initially a-compact space 
and A E [X]~2a. Then there is an initially a-compact sub
space G of X such that A ~ Gand IGI :::; 2°. In case X is a 
topological group, then G may be taken to be a subgroup of X. 

Theorem 2.7. There is a model of ZFC in which there exist
s an initially wI-compact (initially ~w - compact) topological 
group which is not < wI-bounded « ~w-bounded). 

Proof. Let M be a model of ZFC in which Lusin's hypothesis 
holds, that is M t= 2W == 2W1 

• Then, by Theorem 1.4 we 
22 1have that M t= I N(WI)I == • We know that l3(wI) can"1 

be embedded as a subspace of the topological group H == §2
W1 

(see, for instance, [5, Corollary 2.11]), where § is the unitary 
circle. Set F == ClH ( < f3(WI) », where < f3(WI) > denotes 
the subgroup of H generated by l3(wI). By Lemma 2.6, we can 
find an initially wI-compact topological subgroup G of F such 
that WI ~ G and IGI ~ 2W 

• Assume that G is < wI-bounded. 
Since WI ~ f3(WI) n G then f3wl (WI) == N(WI) ~ G and so 
M t= I N(WI)I == 22 == IGI, which is a contradiction. Thus"1 

G is an initially wI-compact, non-< WI- bounded topological 
group. To obtain the later example, we will use Easton Forcing 
(for a complete treatment of Easton Forcing see [20] and [26]). 

Indeed, let N be a countable transitive model of ZFC + 
GCH. We define a function E by dom(E)== {w, ~w+I}' E(w) == 
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~w+2' and E(~w+l) = ~w+2.Clearly, E is an Easton function. 
Then there is a generic extension M of N such that M and N 
have the same cardinals and M F 'V K E dom(E) (E(K) = 2~). 
Thus, we have that 

M F 2Nw 2Nw+1	 
2w 

2E 2Nw+2~ = E(~w+l) = ~w+2 < 2 = (w) = • 

Hence, by Theorem 1.4, M F 2Nw < 22w 
~ I,BNw(~w)l. Now, to 

show that CIK ( < ,8(~w) », where K = §2
Nw 

and < ,8(~w) > 
is the subgroup of !( generated by ,B(~w), contains a subgroup 
with the required properties, we proceed as in the previous 
example. 

2

2

Theorem 1.3 shows that < a-boundedness implies p-com
pactness for each p E N(a)\a. Conversely, it is evident that if 

Q < 2" for some w ::; I < a then there is no p E U(a) such 
that p-compactness implies < a-boundedness since IN(a)1 > 

Q 2:: l,Bp (a )I for each p E U(a ). Nevertheless, we have: 

Theorem 2.8. If 0 =1= M E [a*]~2Q, then there is p E U (a) 
such that p-compactness implies M -compactness. In particu
lar, 

(1)	 if a is a strong limit cardinal, then 3 p E U(a) (p
compactness:::} < a-boundedness}; 

(2)	 assuming GCH, for each cardinal a we have that 3 p E 
U(a) (p-compactness =} < a-boundedness}. 

The con"clusion will be a direct consequence of the following 
Lemma due to Comfort and Negrepontis [4], [5, 10.9-10.13] and 
[3, Theorem 6.4]. 

Lemma 2.9. (Comfort-Negrepontis) Let K be a regular cardi
nal such that w ::; K ::; a = a<~, and suppose that every K

complete filter on a extends to a K-complete ultrafilter. Then 
'V A E [{p E ,B(a) : p is K-complete}]~2Q 3 q E U(a) 'V p E 
A(p <RK q). 

Proof (This alternative proof is due to Alan Dow). It is a 
result of Hausdorff, and Engelking and Karlowicz (see [5, The
orem 3.16]) that for each a there is a ((2Q

, a)-independent ma
trix) family {A~ : e< a and ( < 2Q 

} of subsets of a such 
that 
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(1)	 A~ n A, = 0 for e< 'rJ < a and ( < 2cx ; 

(2) if I E [2 CX 
]<K and "p E Ia , then nCEIAte> =f. 0. 

< 2cxWe may assume that Ue<cxA~ = a for each ( . Let 
{PC : ( < 2°} be a set of K- complete ultrafilters on a. Define 
:F = {UeEBA~ : B E Pc and ( < 2CX 

} +. It is evident that :F 
is K-complete, and if F ~ P E f3(a) (p can be taken to be 
K-complete) then ],(p) = Pc, where !c E °a is defined by 1,1 

( { e}) = A~ for e< a and ( < 2CX 
• 

Proof of Theorem 2.8. Let 0 =I M E [a*]~2a. According to 
Lemma 2.9, there is r E a* such that q ~RK r for all q E M. 
Fix s E U(a) and let N == M U {s}. Applying Lemma 2.9 
again, there is P E a* for which q ~RK P for all q E N. It is not 
then hard to show that p E U(a) and p-compactness implies 
M-compactness (by Lemma 1.7. (1)). If a is a strong limit 
cardinal, then the conclusion to (1) follows from Theorem 1.3, 
Theorem 1.4 and Lemma 2.9 since /N(a)/ == 2°. 

Next, we will show that if a is a strong limit singular car
dinal then < a-boundedness coincides with p-compactness for 
some p E f3o(a) n (a) (Corollary 2.14). In fact, this will be a 
particular case of a more general result (Theorem 2.13). We 
need the following two Lemmas: A proof of clauses (1) and (3) 
of Lemma 2.10 is available in [5], clause (2) of the same Lemma 
is shown in [14], and lemma 2.11 is a slight generalization of a 
result proved by Blass [2]. 

Lemma 2.10. Let p,q E a*. Then 

(1)	 ([5, Lemma 7.21. (b))) p <RK P ® q and q <RK P ® q; 
(2)	 ([14JJ if0 =I M ~ a* and p,q E f3M(a), then p ® q E 

f3M(a)\a; and 
(3) (Blass	 [5, Lemma 16.5}) if ! : a ---4 T(q) ~ a* zs a 

strong embedding, then](p) ~ p ® q. 

Lemma 2.11. Let p E ,*. lje,!:, ---4 a* are junctions such 
that! is a strong embedding and {e < , : e(e) ~RK !(e)} E p, 
then e(p) ~RK ](p). 
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Theorem 2.12. Let 0 =1= M ~ a* be such that 0 f M n U(,) 
for, ~ a. Then V A E [,8M( a)\a]~O :I p E ,8M(a) nU(a) V q E 
A(q <RK p). 

Proof. Let A = {Pe : e < a} ~ ,8M(a)\a. We will define 
qe E a*, for each e~ a, such that 

(1) qe E ,8M(a)\a for each e~ a 
(2) Pe ~RK qe for e< a : and 
(3) qe ~RK q, whenever e< ( < a. 

We proceed by transfinite induction. For e= 0 we let qo = 
Po. Assume that qe has been defined so that (1), (2) and (3) 
hold for each e< 6 ~ a (where 6 denotes an ordinal number). 
We consider two cases: 

(a) If 6 = e+ 1 then we define qs = Ps ® qe. Conditions (1), 
(2) and (3) follow from Lemma 2.10. 

(b) Assume that 6 is a limit ordinal. We may identify fJ with 
the cardinal number IfJl. Let f : fJ --+ ,8M(a)\a be a strong 
embedding such that !(e) E T(qe), for each e< fJ (this embed
ding can be achieved by choosing a partition {Ae : e< 6} of 

a with IAel = a and picking !(e) E Ae n T(qe), for e< fJ). 
Fix rEM n U(fJ) ~ U(fJ) n ,8M(a). For each e < fJ, let 
ee : 6 --+ T(qe) ~ a* be a strong embedding. By Lem
ma 2.10 (3), we obtain that ee(r) ~ r ® qe, for each e< 6. 
It follows from the induction hypoth.esis and (3) above that 
qe ~ ee(() ~RK q( ~ f(() for e~ ( < S. Hence, by Lem
ma 2.11, qe -5:.RK ee(r) ~ r (8) qe -5:.RK ](r) for e< fJ. The 
r-compactness of f3M(a) implies that l(r) = s E ,8M(a). Thus, 
we define qs = s ® Ps. According to Lemma 2.10, we have that 
qs E ,8M(a)\a and conditions (1), (2) and (3) hold. 

Finally, choose t E ,8M(a) n U(a) and define P = qo (8) t. It is 
then evident that P is the required ultrafilter. 

As an immediate Corollary of Theorem 2.12 we have: 

Corollary 2.13. A cardinal number a is singular if only if 
V A E [f3o(a)]~°:l P E ,8o(a) n U(a) V q E A(q <RK p). 
In particular, if a is singular then there is p E ,80 (a) n U(a) 
such that ,80 (a) is initially a-compact, and if a is strong limit 



21 REMARKS ON INITIAL a-COMPACTNESS 

singular then p can be taken so that (3p(X) = (3a(X) for all 
spaces X,. that is) p-compactness == < a-boundedness == initial 
a-compactness. 

Proof. =» If a is singular then it is evident that (3a(a) n 
U(a) =I 0 (see [28]). Since N(a) ~ (3o:(a) then (3o:(a) satisfies 
the conditions of Theorem 2.12. Thus, the conclusion follows 
from Theorem 2.12. 

¢=) It is not hard to see that {30: (a) = N (a) iff a is regular 
(see [28]); hence, a has to be singular. 

The last statement follows from Theorem 1.6, Lemma 1.7 
and Lemma 2.4 (2). 

For regular cardinals we have the following characterization. 

Theorem 2.14. Let a be a cardinal. Then 

(1)	 a is regular {::} V A E [N(a)]<O: 3 p E N(a) V q E 
A(q <RK p); and 

(2) a = ,+ for some, {::} V A E [N(a)]~O: 3 p E N(a) V q E 

A(q <RK p) 

Proof We only prove clause (1). =» Let A = {Pe : ~ < 
,} ~ N(a) with, < a. For every e< " let Ae E Pe such 
that IAel < a. Set A = Ue<ryAe. Since a is regular then IAI = 
6 < a. By Hewitt-Pondiczery-Marczewski Theorem, we have 
that d(I1e<-yAe) ~ max (IAI,,) = A < Q. By adding points 
to A if it is necessary, we may assume that IAI = A. Applying 
an argument similar to that in the proof of Lemma 2.3 of [3], 
we can define a function f : A ---+ TIe<, Ae such that 7(A) = 

I1e<-y Ae, and we can also prove that if p' E A satisfies !(p') = 
(pe)e<ry, then V ~ < , (pe ~RK p'). Thus P = p' ® p' is the 
required point. 

¢= Assume that a is singular. Then a = Le<ry ae, where 
, = cf(a) < a and ae < a for e< ,. Choose Pe E ae for 
~ < ,. By assumption, there is pEN(a) such that Pe ~RK p 
for each e< ,- Hence, if A E P then IAI ~ ae for each ~ < a, 
and so IAI = a; that is, p E U(a) which is a contradiction. 

Theorem 2.12 suggests the following improvement of Theo
rem 1.6 above and Theorem 2.6 of [17]. 
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Corollary 2.15. Let X be a space. The following are equiva
lent. 

(1) X--y is initially a-compact for all cardinal,; 

(2) X 22Q 
is initially a-compact; 

(3) Xlxl<l is initially a-compact; 
(4) there is p E U(a) decomposable such that X is p-compact. 

Proof. The proof of the equivalence of (1), (2), (3) and (2) of 
Theorem 1.6 is completely similar to that of Theorem 2.6 of 
[17]. 

(1) =} (4) According to Theorem 1.6, there is pry E U(,) 
such that X is pry-compact, for each, ::; a. Set M == {pry : 
, ::; a}. Now, we verify that X is (,BM(a)\a)-compact. In 
fact, we know that Y == ,BM(a) == Ue<a+ Ye, where YO = a, and 
~ == {](p--y);, ::; a and f : a ~ Ue<77Ye} for TJ < a+. We 
proceed by transfinite induction. Let q E Y. If q E Y1 then 
there is , ::; a such that q ~RK pry; hence, X is q-compact (by 
Lemma 1.7 (1)). Assume that for every r E (Ue<77Ye)\a we 
have that X is r-compact and that q E ~. Let f : a ~ X be a 
function and let 9 : a ~ Ue<77Ye such that g(ps) == q for some 
fJ ::; a. By induction hypothesis, we have that 7(g( ()) E X 
for each ( < a. Put h == 7 0 g. Since X is ps-compact and 
h(a) ~ X, we obtain that h(ps) == ](g(ps)) == ](q) E X. This 
proves our claim. By Theorem 2.12, there is p E (3M(a)\a such 

Q.that P"( ~RK P for , ~ Then p is decomposable and X is 
p-compact. 

(4) =} (1) This follows from Theorem 1.6 and Lemma 1.7 
(1 ). 

The question whether "there is p E U(a) such that X is p
compact" implies "every power of X is initially a-compact" is 
answered in the affirmative in the core model (H. D. Donder [6] 
has shown that in the core model every uniform ultrafilter is, 
regular, decomposable), and it is false whenever p is an inde
composable ultrafilter on a strong limit cardinal a (p E U(a) 
is indecomposable if there is not r E U(,) with r ~RK p for 
each w < , < a), moreover, the statement does not even im
ply that Xl is initially a-compact: for a proof see [15] and 
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more detailed information concerning indecomposable ultrafil
ters can be found in [21]. In [37], the author showed that if 
X is < a-bounded and p-compact, for p E U(a), then every 
power of X is initially a-compact. 

It is still unknown in ZFC whether the product of initially 
a-compact spaces is initially a-compact for a regular cardinal 
a. In the negative fashion, van Douwen [7] (see [35]), assuming 
GCH, showed that there are two initially a-compact subspaces 
of f3(a) whose product is not initially a-compact. Nyikos and 
Vaughan [27] proved that if a is a cardinal such that a++ ~ 2w , 

then there is a family of a++ initially a-compact spaces whose 
product is not countably compact. In [35], the author proposed 
the following question: 

2.16 Question. (Stephenson) If initial a-compactness is pro
ductive, must a be a strong limit singular cardinal? 

In this connection we have: 

Theorem 2.17. If initial a-compactness is productive, then 
there is p E U(a) decomposable such that initial a-compactness 
and p-compactness are the same concept. 

Proof. Assume that initial a-compactness is productive. Let 
M == n{Y ~ f3(a) : a ~ Y and Y is initially a-compact}. 
Then M is the initial a-compact reflection of a (see [19] or 
[33]); in particul~r, M is the smallest initially a-compact sub
space of f3( a) containing a. According to Corollary 2.15, there 
is p E U(a) decomposable such that M is p-compact. It is 
evident that p E M. We claim that a space X is initially a
compact if and only if X is p-compact. In fact, let X be p
compact. Since V,::; a ~ p--y E U(,)(P--y ::;RK p) then X 
is initially a-compact (by Theorem 1.6 and Lemma 1.7 (1)). 
Conversely, let X be a initially a-compact space. By Theo
rem 1.6, for each , ~ a there is q--y E U(,) such that X is 
q--y-compact. Set I == {q--y : , ~ a}. As in the proof of Corollary 
2.15, we have that X is (f31(a)\a)-compact, since I ~ f31(a)\a. 
By Theorem 1.6 and Lemma 1.7, f31(a) is initially a-compact. 
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Thus, p E M ~ f31(a) and so X is p-compact. This proves our 
claim 

Theorem 2.17 suggests the following question: 

2.18 Question. If initial a-compactness is productive, must 
initial a-compactness coincide with < a-boundedness? 

3. THE a-BOUNDIFICATION OF a 

Our aim in this section is to produce a model M of ZFC in 
which M F I N(~w)1 < If3Nw(~w)l. The following sequence of 
results are needed. 

Lemma 3.1. Let w ~ A ~ a be cardinals, p E U(A), {Ae :e< 
A} a partition ofa with IAeI == a for e< A, and f, 9 : A --+ (3(a) 
functions satisfying f(e),g(e) E Ae for e< A. The ](p) == g(p) 
if and only if {e < A : !(e) == g(e)} E p. 

Proof. ¢::) This is evident. 
=» Assume that A == {e < A : f(e) =I- g(e)} E p. For 

everYe E A choose f3e and Ge disjoint subsets of Ae such that 
!(e) E Be, g(e) E Oe and Ae == Be U Ge· Define B == UeEABe 
and C == UeEACe. Then l(p) E Band g(p) E 0, but this is a 
contradiction because Bn0 == 0. 

In the next results we use the concept of ultraproduct: the 
reader may consult [5, p. 186] for the definition of ultraprod
ucts. 

Lemma 3.2. Let w ~ A ~ a be cardinals, let 0 f M ~ a* 

and let ,e be a cardinal such that w ~ Ie ~ I{3M(a) I for each 
e< A. Then 

ITIe<A Ie/pI ~ If3M(a)1 for every p E U(A) n f3M(a). 

Proof. Let {Ae : e < A} be a partition of a with IAel == Q 

for ~ < A. Since f3M(Ae) (Ae with the discrete topology) 
is homeomorphic to f3M(a) and f3M(Ae) ~ f3M(a) n Ae, we 
have that If3M(a) n Ael == If3M(a)l, for e < A. Hence, for 
each e< A we can choose a subset Be == {a(e,() : ( < ,e} 
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(faithfully indexed) of f3M( 0:) n Ae. Fix P E U(,\) n f3M( 0:). 
Then define ~ : TIe<A ,e/p --+ f3M(O:) by ~(f /p) = ¢j(p), 
where <Pj:'\ --+ f3M(O:) is defined by <pj(e) = a(e,!(e)) for all 
f E TIe<A ,e· Observe from Lemma 3.1 that ~ is well-defined, 
and since f3M( 0:) is p-compact, for all e, (< '\, then the image 
of ~ is contained in f3M(O:). By Lemma 3.1, q> is one-to-one. 
Therefore, ITIe<A ,e/pi ~ If3M(O:) I· 

The following Lemma was proved by Keisler [24, Theorem 
A] (a proof is available in [5, Theorem 12.18 (b)]). 

Lemma 3.3. (Keisler) For P E U(0:) we have that 

10(,<0)/pl = lo,/plo = ,0. 
Theorem 3.4. Let w ~ K, ~ 0: be cardinals and let 0 =1= M ~ 

0:* such that U(,) n f3M( 0:) =1= 0 for each cardinal w ~ , ~ K, ~ 

0:. Then 

If3M(o:)IK = If3M (0:) I· 
Proof. Let () = If3M(o:)l. According to Lemma 3.2 and Lemma 
3.3, it is enough to prove that ()<K ~ If3M(O:) I since U(I\:) n 
f3M(O:) =1= 0, which is equivalent to show that ()A ~ () for all 
,\ < 1\:. Indeed, we proceed by transfinite induction. Assume 
that ()A ~ () for all ,\ < , < K,. Since 0: ~ () we have that 
()<'Y ~ (). Now, choose q E U(,) n f3M(O:): It then follows, from 
Lemma 3.2 and Lemma 3.3, that ()'Y = I'Y(()<'Y)/ql ~ I,8M(o:)l. 
Therefore, ()<", :s (). 

As a Corollary of Theorem 3.4 we have that: 

Corollary 3.5. If 0: is a singular cardinal, then 1f30(0:) I = 
IN(o:)lo. 

Proof. Let 0: be a singular cardinal. It is clear that U(,) ~ 

N(o:) ~ ,80(0:), for each w ~,< 0:, and ,8o(a)nu(o:) =1= 0. Ap
plying Theorem 3.4, we have that l,8o(a)IO = l,8o(a)l. The in
equality of Theorem 1.4 implies that l,8o(a) 1 ::; (L'Y<a 22'Y)a ::; 
IN(a)la::; l,8a(a)la, since IN(a)1 = a<a. L'Y<022 'Y. Therefore, 
1,80(0:)1 = IN(o:)lo. 
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Next, we show the main result of this section which is a 
consequence of Corollary 3.5 and Easton forcing Theorem. 

Theorem 3.6. There is a model M of ZFC in which 

Proof. Let N be a countable transitive model of ZFC and 
assume that GCH holds in N. Define a function E E N as 
follows: 

E(~n) == ~~n for n < w, and E(~~n) == ~~n+l for n < w. 

Clearly, E is an Easton index function. According to Easton 
Theorem (see [26]), there is a generic extension M of N such 
that 

(1)	 M and N have the same cardinals; and 
(2)	 M F'VK E dom(E) (E(K) == 2~). 

22NnThen M L == 2E (N n) == 2Ntn == E(~+ ) == ~+ forI Wn Wn+l 

F 22Nn n 1 n < Wi hence, M < 22(N + ) for n < w. Thus M F 
2Nncf(En<w 2 ) == w. Since M F 2No == E(~o) == ~Wl > ~w then 

M F IN(~w)1 == En<w 22Nn 
, by Theorem 1.4. 

In virtue of Corollary 3.5, we have that 

REFERENCES 

[1]	 A. R. Bernstein, A new kind of compactness for topological spaces, 
Fund. Math. 66 (1970), 185-193. 

[2]	 A. R. Blass, Kleene degree of ultrafilters, in: Recursion Theory week 
(Oberwolfach, 1984), Lecture Notes in Math. 1141, (Springer-Verlag), 
1985, 29-48. 

[3]	 W. W. Comfort, Ultrafilters: some old and some new results, Bull. 
Amer. Math. Soc. 83 (1977),417-455. 

[4]	 W. W. Comfort and S. Negrepontis, On families of large oscillation, 
Fund. Math. 75 (1972), 275-290. 

[5]	 --, The Theory of Ultrafilters, Grudlehren der Mathematischen 
Wissenschaften Vol. 211, Springer-Verlag, 1974. 

[6]	 H. D. Donder, Regularity of ultrafilters and the core model, Israel J. 
Math. 63 (1988), 289-322. 

[7]	 E. K. van Douwen, The product of two normal initially ",-compact 
spaces, to appear. 



27 REMARKS ON INITIAL a-COMPACTNESS 

[8]	 S. P. Franklin, On epi-reflective hulls, Topology Appl. 1 (1971),29-31. 
[9]	 P. J. Freyd, Functor Theory, Doctoral Dissertation, Princeton Uni

versity, 1960. 
[10]	 Z. Frolfk, Types of ultrafilters on countable sets, in: General Topology 

and its Relations to Modern Analysis and Algebra II (Proc. Second 
Prague topological Symposium, 1966) (Academia, Prague, 1967), 142
143. 

[11]	 --, "Sums of ultrafilters, Bull. Amer. Math. Soc. 73 (1967), 87-91. 
[12]	 S. Garcia-Ferreira, Various Orderings on the Space of Ultrafilters, 

Doctoral Dissertation, Wesleyan University, 1990. 
[13]	 ---, Three orderings on j3(w)\w, preprint. 
[14]	 ---, On free p-compact groups, preprint. 
[15]	 --, Comfort types of ultrafilters, preprint. 
[16]	 S. Garcia-Ferreira and A. Tamariz-Mascarua, The a-boundification 

of 0', preprint. 
[17]	 J. Ginsburg and V. Saks, Some applications of ultrafilters in topology, 

Pacific J. Math. 57 (1975), 403-418. 
[18]	 S. L. Gulden, W. M. Fleischman and J .H. Weston, Linearly ordered 

topological spaces, Proc. Amer. Math. Soc. 24 (1970), 197-203. 
[19]	 H. Herrlich and J. Van der Slot, Properties which are closely related 

to compactness, Indag. Math. 29 (1967), 524-529. 
[20]	 T. Jech, Set Theory, Academic Press, New York, 1978. 
[21]	 A. Kanamori, Finest partitions for ultrafilters, J. Symbolic Logic 51 

(1986), 327-332. 
[22]	 M. Katetov, Characters and types of point sets, Fund. Math. 50 

(1961/62), 369-380 (Russian). 
[23]	 ----, Products of filters, Comment. Math. Univ. Carolinae 9 

(1968), 173-189. 
[24]	 H. J. Keisler, On the cardinalities of ultraproducts, Bull. Amer. Math. 

Soc. 70 (1964), 644-647. 
[25]	 J. F. Kennison, Reflective functors in general topology and elsewhere, 

Trans. Amer. Math. Soc. 118 (1965), 303-315. 
[26]	 K. Kunen, Set Theory, An Introduction to Independence Proofs, Vol 

102 of Studies of Logic and Foundations of Mathematics, North
Holland, 1980. 

[27]	 P. J. Nyikos and J. E. Vaughan, Sequentially compact Franklin
Rajagopalan spaces, Proc. Amer. Math. Soc. 101 (1987), 149-155. 

[28]	 L. O'Callaghan, Topological Endohomeomorphisms and Compactness 
Properties of Products and Generalized E-products, Doctoral Disser
tation, Wesleyan University, 1975. 

[29]	 W. Rudin, Homogeneity problems in the theory of tech compactiji
cations, Duke Math. J. 23 (1956), 409-419. 

[30]	 V. Saks, Countably Compact Topological Groups, Doctoral Disserta
tion, Wesleyan University, 1972. 



28 SALVADOR GARCIA-FERREIRA 

[31]	 ----, Ultrafilter invariants in topological spaces, Trans. Amer. 
Math. Soc. 241 (1978),79-97. 

[32]	 V. Saks and R. M. Stephenson Jr., Products of M-compact spaces, 
Proc. Amer. Math. Soc. 28 (1971), 279-288. 

[33]	 J. Van der Slot, Universal Topological Properties, ZW 1966-011. 
Math. Centrum, Amsterdam, 1966. 

[34]	 Y. M. Smirnov, On topological spaces, compact in a given interval of 
powers, Izv. Akad. Nauk. SSSR Sere Mat. 14 (1950), 155-178. 

[35]	 R. M. Stephenson Jr., Initially ",-compact and related spaces, in: 
K.Kunen and J .E. Vaughan, ed. Handbook of Set-Theoretic Topology, 
North-Holland, 1984. 

[36]	 R. M. Stephenson Jr. and J .E. Vaughan, Products of initially M
compact spaces, Trans. Anler. Math. Soc. 196 (1974),177-189. 

[37]	 J. E. Vaughan, Powers of spaces of non-stationary ultrafilters, Fund. 
Math. 117 (1983), 5-14. 

[38]	 R. G. Woods, Topological extension properties, Trans. Amer·. Math. 
Soc. 210 (1975), 365-385. 

Instituto de Matematicas 
Ciudad Universitaria (UNAM) 
Mexico, D.F. 04510 
Mexico 


	a1.pdf



