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Research Announcement

SOME NEW TWO-DIMENSIONAL
HOMOGENEOUS CONTINUA

KAREN VILLARREAL*

A continuum is a compact, connected metric space. A con-
tinuum is homogeneous if, for any pair of points z,y in X,
there exists a homeomorphism & : (X,z) — (X,y). A contin-
uum Y is aposyndetic if for each pair of distinct points z and
y in Y, there is a subcontinuum S of Y such that z € int(S)
andyeY - S.

A continuous decomposition of a continuum is a partition of
the continuum into subcontinua such that the quotient map of
the partition is both open and closed. Let X be a continuum
which has a continuous decomposition into continua, and let
f : X — @ be the quotient map where ) is a homogeneous
continuum. We call the following property of X, with respect
to f, Property H:

If h is any homeomorphism of @, and if A(f(z)) =
f(y), then there is a homeomorphism % : (X, z) —
(X,y) such that foh="hof.

We announce the proof of the following theorem:

Theorem. Let X be a continuum with a continuous decompo-
sition into nondegenerate continua, and let f : X — @ be the
quotient map, where ) is a homogeneous continuum and X
has Property H with respect to f. Let X = {(z,y) € X x X :

f(@) = fy)} = U{f g x fq) : ¢ € Q}. Then X is an

aposyndetic, homogeneous continuum such that for each q € @,
dim(f~(q) x f~'(q)) < dimX < dim(X x X).

*It is acknowledged that this research was a dissertation done at Tulane
University under the direction of Professor James T. Rogers, Jr..
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Three continua which satisfy the hypothesis of the above
theorem are the pseudo-arc, the circle of pseudo-arcs, and a
solenoid of pseudo-arcs.

A pseudo-arc, which we will denote P, is a chainable, hered-
itarily indecomposable continuum. A chainable continuum is
a continuum which is homeomorphic to an inverse limit of arc-
s, and an indecomposable continuum is a continuum which is
not the union of two of its proper subcontinua. A continuum
is hereditarily indecomposable if every subcontinuum is inde-
composable. The pseudo-arc was first constructed by Knaster
[3] in 1922. It was shown to be homogeneous by Bing [1] in
1948.

A circle of pseudo-arcs (CP) is a circle-like continuum with
a continuous decomposition into pseudo-arcs, such that the
quotient space is a circle. Bing and Jones[2] constructed a
circle of pseudo-arcs in 1954, and showed that the circle of
pseudo-arcs is homogeneous.

A solenoid is an inverse limit of circles with covering maps
as the bonding maps. In 1977, for each solenoid S, J.T. Rogers
[6] constructed a solenoid of pseudo-arcs (SP), that is, a ho-
mogeneous continuum with a continuous decomposition into
pseudo-arcs, such that the quotient space is S.

In 1984, W. Lewis [4] generalized the above results by show-
ing that the points of any homogeneous one-dimensional con-
tinuum ¢ can be “blown up” into pseudo-arcs, so that the
resulting continuum is a homogeneous continuum with a con-
tinuous decomposition into pseudo-arcs such that the quotient
space is (). The continuum obtained by blowing up the points
of the pseudo-arc into pseudo-arcs is known to be homeomor-
phic to the pseudo-arc [5]. The continua constructed in Lewis’
paper satisfy Property H with respect to the quotient map
of the continuous decomposition into pseudo-arcs. Hence, for
each of these continua, the construction in the theorem above
yields a two-dimensional, aposyndetic, homogeneous continu-
um.

_In_a paper_to be published elsewhere, we will show that
P,CP, and SP are not homeomorphic to any known homoge-
neous continua. J.T. Rogers has informed the author that, in
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the case of C'P, this solves a problem posed by the late Andrew
Conner about 10 years ago.
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