Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

Topology Proceedings Vol 16, 1991

FORCING AND TOPOLOGICAL PROPERTIES

WILLIAM FLEISSNER

ABSTRACT. Adding a dominating real is a *ccc* forcing which transforms a non-normal space of van Douwen to a metrizable space. An Ostaszewski space remains countably compact after adding Cohen reals.

Watson[W] posed the following problems, which are numbered 146 and 147 in [vMR].

Problem 78. Can countable chain condition forcing make a non-normal space metrizable?

Problem 79. Is there, in ZFC, a cardinal-preserving forcing which makes a non-normal space metrizable?

We answer both of these questions affirmatively by combining the following two well known constructions. The space is from Remark 12.6 of van Douwen [vD]; the forcing is from Exercise 2.8 of Kunen's text [K].

Topologize $Y = {}^{\omega}\omega \cup \omega \cup {}^{\omega}\omega \times \omega \times \omega$ as follows: Points of ${}^{\omega}\omega \times \omega \times \omega$ are isolated, a basic neighborhood of $f \in {}^{\omega}\omega$ has the form $f \cup f \times (f \setminus F)$, with F finite, and a basic neighborhood of $k \in \omega$ has the form $k \cup {}^{\omega}\omega \times k \times (\omega \setminus n)$, with $n \in \omega$.

The space Y is not normal because of the two closed sets ${}^{\omega}\omega$ and ω . Moreover, it should be clear that for $\mathcal{F} \subset {}^{\omega}\omega$, the subspace $\mathcal{F} \cup \omega \cup {}^{\omega}\omega \times \omega \times \omega$ of Y is metrizable iff the closed sets \mathcal{F} and ω can be separated iff \mathcal{F} is <*-bounded in ${}^{\omega}\omega$ (it means that there is $g \in {}^{\omega}\omega$ so that $\{n \in \omega : g(n) \leq f(n)\}$ is finite for all $f \in \mathcal{F}$). Therefore, a forcing which makes ${}^{\omega}\omega \cap M$ (the ground model reals) <*-bounded in ${}^{\omega}\omega \cap M[G]$ (the reals of the

extension) will make the non-normal space Y metrizable. We now give Kunen's description of "adding a dominating real" forcing.

 \mathbb{P} is the set of pairs $\langle p, F \rangle$ such that p is a finite partial function from ω to ω and F is a finite subset of ω^{ω} . $\langle p, F \rangle \leq \langle q, G \rangle$ iff $q \subset p$, $G \subset F$, and

 $\forall f \in G \ \forall n \in (\operatorname{dom}(p) \setminus \operatorname{dom}(q)) \ (p(n) > f(n)).$

This forcing is countable chain condition, and hence cardinal preserving, because the set of finite partial functions from ω to ω is countable.

The following lemma might be folklore, at least in the case when X is an Ostaszewski space, but maybe a proof should be published. A space satisfying the hypothesis of the lemma must be a NAC(Normal Almost Compact) space [FKL].

Lemma. If X is a T_1 countably compact space, and the uncountable closed subsets of X from a filter base, then X remains countably compact after adding Cohen reals.

Proof. First we note that in the extension X is countably compact iff every countable subset has a cluster point. Every countable set in the extension appears in an intermediate model where countably many Cohen reals have been added. So it suffices to consider the case when \mathbb{P} is countable. Towards a contradiction, let T and τ_n , $n \in \omega$ be \mathbb{P} -names so that 1 $\Vdash T = {\tau_n : n \in \omega} \land T$ has no cluster point. For $p \in \mathbb{P}$, define $U = {\tau_n : n \in \omega} \land T$ has no cluster point.

 $H_p = \{x \in X : \forall U, \text{open containing } x \exists q < p(q \Vdash |T \cap U| > 1)\}$

It is easy to see that H_p is closed.

Case 1: H_p is uncountable for all $p \in \mathbb{P}$. By our hypothesis on X, there is a point $z \in \cap \{H_p : p \in \mathbb{P}\}$, and it is routine to see that 1 forces that z is a cluster point of T. Contradiction! Case 2: $H_{p_0} = \{y_n : n \in \omega\}$ for some $p_0 \in \mathbb{P}$. By induction on $n \in \omega$, define $a_n \in X$, U_n an open subset of X, and $p_n \in \mathbb{P}$ so that

(1) $y_n \in U_n$

- $(2) p_{n+1} \leq p_n,$
- $(3) p_{n+1} \Vdash \tau_n = \check{a}_n$
- $(4) p_{n+1} \Vdash |T \cap \check{U}_n| \le 1$

Item (4) is possible because we started with the assumption that 1 forces that T has no cluster point. This induction was done in the ground model, where X is countably compact. So there is a, a cluster point of $\{a_n : n \in \omega\}$. Every open set containing a contains infinitely many a_n 's, so a should be in H_p . However, for each $n \in \omega$, U_n is an open set containing y_n and at most one point of T. Hence a is not y_n for any $n \in \omega$. Contradiction!

References

- [vD] E. van Douwen, The Integers and Topology, Handbook of Set Theoretic Topology, North Holland, 1984, 111-168.
- [FKL] W. Fleissner, J. Kulesza and R. Levy, Cofinality in Normal Almost Compact Spaces, Proc. AMS.
- [K] K. Kunen, Set Theory, North Holland, 1980.
- [vMR] J. van Mill, G. M. Reed, Open Problems in Topology, North-Holland, 1990.
- [W] S. Watson, Problems I wish I could solve, Open Problems in Topology, 1990, 37-76.

The University of Kansas Lawrence, KS 66045