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A REMARK CONCERNING PERFECTLY
NORMAL SPACES WITH DISTINCT LOCAL
AND GLOBAL DIMENSION

ELZBIETA POL*

ABSTRACT. We show that there exists a perfectly nor-
mal space which has small transfinite dimension but is
not countable dimensional and that there exist perfect-
ly normal spaces of arbitrarily large finite dimension (re-
sp. not strongly countable-dimensional) which are locally
homeomorphic to the irrationals.

1. INTRODUCTION

The aim of this note is to give the following two examples,
modifying constructions form [7] and [5]. The terminology is
explained in the next section.

1.1 Example. A perfectly normal space X with small transfi-
nite dimension defined which is not a countable union of zero-
dimensional subspaces.

This example provides an answer to Problem 8.11 in [4]. An
example (even locally compact) of that kind constructed under
the continuum hypothesis can be found in [4], Example 3.17.

1.2 Example. Perfectly normal spaces Y,, n = 1,2,... and
Y such that each Y, and Y is locally homeomorphic to the
irrationals, but dim Y, = n and Y is not a countable union
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of closed finite-dimensional subspaces. In particular the spaces
Y, and Y are homogeneous.

The spaces Y, and Y are of weight ®; and each separable
subset of Y, or Y is contained in an open-and-closed subspace
of this space homeomorphic to the irrationals.

Belnov [1] gave examples of homogeneous hereditarily nor-
mal spaces with different local and global dimensions. Example
1.2 provides some stronger results in this direction.

2. TERMINOLOGY AND NOTATION

Our terminology follows [2], [3] and [4]; I denotes the closed
unit interval and P is the set of irrational numbers from /.

2.1. The covering dimension of a space X is denoted by
dim X. The small transfinite dimension trind is the exten-
sion by the transfinite induction of the Menger-Urysohn in-
" ductive dimension ind. A space X is countable-dimensional if
X = U2, X;, where dim X; < oo, and is strongly countable-
dimensional if X = U2, F;. where each F; is closed in X and
dim F; < oo.

2.2. For an ordinal a we denote by D(a) the set of all ordi-
nals less than a with the discrete topology and by W(a) the
same set with the order topology. A cardinal is an initial ordi-
nal of a given cardinality; w; is the first uncountable cardinal,
and c* denotes the first cardinal after the continuum ¢. A set
S C W(a) is stationary if S meets every closed unbounded
subset of W(a).

2.3. For an ordinal a let B(a) = D(a)“ with the Cartesian
product topology (topologically, B(a) is the Baire space of
weight equal to cardinality of a if a > wp; see Example 4.1.23
of [2]). As shown in [6] (cf[7]), if A is regular cardinal, then the
family {B(B) : B < A} consists of closed subsets of B(\) and
satisfies the following conditions:

B(1)Cc B(2)C...C B(B) C...C B(}),
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B(B) = cl(U,<pB(7)) for every limit ordinal 8 < A, and

B()) = Usx B(8).

In the sequel by B()) we will denote the set B()\) with the
topology 7 defined by taking the family

{UNB(B) : U is open in B()) and § < A}

as a base of 7. As was proved in [6] for A = w; and in [5] for
any regular cardinal A, the space B()) is perfectly normal and
collectionwise normal.

For a < ) put B, = B(e)\ Up<s B(B) and for any set S C
W () put B(S) = UaesBa. Note that B, is closed subset of
B()) on which the topology of the subspace of B()) coincides
with the topology of subspace of B()) and that for any a < A
the set Ug<aBp is open in B()) and the set Up<aBg is closed
in B()).

3. AUXILIARY LEMMAS

We will need two simple lemmas to prove some properties of
our examples.

3.1 Lemma. If a perfectly normal space X can be represented
as the union of a transfiite sequence X3, Xz,... , Xay... ;@ < A
of pairwise disjoint closed subspaces such that ind X, = 0,
the union Up<qXp is open and the union UgcoXp is closed for
every a < A, then the space X has small transfinite dimension.

Proof. We will show by induction with respect to a that for
each a < A the space X! = Ug¢oXj has trind.

For a = 1 this is true. Assume that for every f < « trind
X} exists. To show that trind X, exists consider an arbitrary
point z € X and an arbitrary closed set F' C X! such that
z ¢ F; we will find a partition L between z and F such that
trind L exists.

Suppose first that a is a limit ordinal. Let 8 < a be such
that z € Xj. Then Xp,, is an open-and-closed neighbourhood
of a point z in X/, and by the inductive assumption there
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exists a partition L between z and F N Xp,, in Xj,, (hence
in X! ) such that trind L exists.

Suppose now that o = f+1; then X, = XzUXp. If z € X}
and B is a limit ordinal, then we can proceed as in the first
case. If z € Xj and § = v + 1, then X} is open-and-closed in
X! and we can use the inductive assumption in a similar way.

If £ € Xp, then the zero-dimensionality of Xj yields that
the empty set is a partition between z and F N Xj in Xj.
Thus there exists a partition L in X! between z and F such
that L N X3 = 0 (see Lemma 1.2.9 and Remark 1.2.10 of [2] ).
Hence L C X} and trind L exists because by the inductive
assumption trind X} exists (and trind L < trind Xp). '

3.2 Lemma. Let A be a countable ordinal and suppose that a
metrizable space X can be represented as the union of a trans-
finite sequence Xy, Xs,... ,Xa,... ,a < X of pairwise disjoint
subspaces such that X, is completely metrizable, the
union UpcaXp s open and the union Up<aXp is closed for
every a < A. Then X is completely metrizable.

Proof. We will show by induction with respect to a that
the subspace X = Ug<a X of X is completely metrizable for
every a < A. Suppose that for every § < a the space Xj is
completely metrizable (obviously this is true for g = 1).

If a is a limit ordinal, then let {a,}3%; be a sequence of
non-limit ordinals such that a = lima, and a, < an4; for
every n = 1,2,... . Then for every n = 1,2,... the subspace
X..\X.,_, is open-and-closed in X, and is completely metriz-
able by the inductive assumption. Thus X is the union of a
discrete family {X] \X. _ }32, of completely metrizable sub-
spaces, hence it is completely metrizable.

If a = f+1, then X = X U Xp, where both X} and X,
are completely metrizable, hence X, is completely metrizable.

4. CONSTRUCTIONS OF THE EXAMPLES

4.1.Construction of the space X from Example 1.1
As the space X we can take a perfectly normal not countable-



PERFECTLY NORMAL SPACES 129

dimensional space Y constructed in Example 1 of [5] or its
subspace X; constructed in Example 2 of [5]. Recall that the
space Y was obtained by taking the decomposition {5, : a <
¢} of W(c*) into ¢ disjoint stationary sets, arranging all points
of the Hilbert cube I“ into a transfinite sequence I¥ = {z, :
a < ¢} and putting

Y = Upc+Ys, where Yg = Bg x {z,} if B € S,.

It was also shown in [5], Example 2, that for some ordinal a; <
¢t the space X; = Upgcq, Yp is locally countable-dimensional,
but not countable-dimensional (both spaces Y and X are tak-
en with the topology of the subspace of the Cartesian product
B(c"‘) x Iv).

It is easy to see that the decomposition of Y into the sets
Y5, B < ct, satisfies the conditions of Lemma 3.1. Indeed,
each Y} is homeomorphic with the subspace of the Baire space
B(c*), hence ind Y = 0. Moreover, for every a < ¢t the
set Ug<aYs = Y N (Ugca B(B) % I*) is open in Y and the set
Up<aYp = Y N(B(a+ 1) x I) is closed in Y (see sec. 2.3).
Thus by Lemma 3.1 trind Y exists. The same is true for the
subspace X; of Y.

Note that by the same argument the spaces X, and X con-
structed in Example 2 of [5] have trind. It follows that there ex-
ists a perfectly normal locally weakly infinite-dimensional (re-
spectively, locally 0-countable-dimensional) space having trind
which is not weakly infinite-dimensional (respectively, which is
not 0-countable-dimensional) (see [4] or [5] for these notions).

4.2 Constructions of spaces Y, and Y from Example
1.2 (A) The space Y,, is obtained by a minor modification of
an n-dimensional perfectly normal space X, which is locally
0-dimensional and locally second-countable, constructed in (7],
Theorem 2. Let us recall that the space X,, was obtained by
splitting W (w, ) into n+1 disjoint stationary sets Sop, S1,... , S
and taking the subspace of the space B(wl) x I defined by

Xn = Un0B(5») x R,



130 ELZBIETA POL

where R7 is the set of points in I, exactly m of whose coor-
dinates are rational.

Now, since dim R} = 0 by the enlargement theorem (see [2],
Theorem 1.5.11) there exists a G,-subset R™ of I" such that
R™ C R™ and dimR™ = 0. Let

Y;l = Unm:OB(Sm) X R:l

be the subspace of B(w;) x I™. Since Y, contains X, as a
subspace, dim Y;, = n (cf [2], Corollary 3.1.20). Represent Y,
as

Y, = Uacw, Yo Where Y, = B, x R™ if a € S,,..

Then every Y, is 0-dimensional and completely metrizable and
the decomposition of the space Y, = Up<qYp into the closed
subsets Y},Y5,...,Ys,... ,8 < « satisfies the conditions of
Lemma 3.2. Thus Y is completely metrizable. Moreover, Y is
separable, 0-dimensional (by the sum theorem) and obviously
" does not contain any non-empty compact open subspace, hence
it is homeomorphic to the space of irrational numbers by a
theorem of Alexandroff and Urysohn (see [2], Problem 1.3.E).
Finally, observe that the spaces Y, are homogeneous. In-
deed, for every two points x and y of Y,, there exists an open-
and-closed subspace U of Y, homeomorphic with the irrationals
and containing both z and y. Namely, one can take as U the
subspace X/, where a is a non-limit ordinal and z,y € X_.

(B) The space Y is obtained by a modification of the space
X constructed in Example 3 of [5]. Recall that the space
X was obtained in the following way. Let Z be a compact
countable-dimensional but not strongly countable-dimensional
space which is the union of a family {I'}{2, of disjoint sub-
sets homeomorphic to i-dimensional cubes and of a subset
P = Z\ U, I' homeomorphic to the space of irrationals (see
[4]), Example 1.12). For each : =1,2,... and m =0,1,...,:
let R denote the set of points in I i exactly m of whose coor-
dma.tes are rational and let R™, be a 0-dimensional G,-subset
of I' containing R™. Let us spht W (w,) into countably many
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disjoint stationary sets S;, i = 1,2,... and let S; = Ui _,S™,
where S™ are also disjoint and stationary in W(w;). As was
proved in [5], Example 3, the subspace

X = Ugcw, Xa, Where X, = B, X (R"UP) if a € ST,

of the space B(w;) X Z is a perfectly normal, locally 0-dimen-
sional and locally second-countable space which is not strongly
countable-dimensional. Thus the subspace

Y = Uascw,Ya, where Y, = B, x (R™ U P) if a € ST

of B(w;) x Z is also not strongly countable-dimensional, since
it contains X (cf [4], Proposition 2.2). Moreover, similarly as
in (A) one shows that the space Y is locally homeomorphic to
the irrationals (since every space Y, = Up<,Ys, where a < wy,
is an open-and -closed subspace of Y homeomorphic with P)
and thus it is homogeneous.

Note that the spaces Y, constructed above are not Cech
complete. This follows from the fact that every C,-subset of
B(wy) x I" containing Y, contains a subset homeomorphic to
I™(see [7], sec. 2.4, Lemma).
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