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A REMARK CONCERNING PERFECTLY 
NORMAL SPACES WITH :DISTINCT LOCAL 

AND GLOBAL DIMENSION 

ELZBIETA PC)L* 

ABSTRACT. We show that there exists a perfectly nor­
mal space which has small transfinite dimension but is 
not countable dimensional and that there exist perfect­
ly normal spaces of arbitrarily large finite dimension (re­
sp. not strongly countable-dimensional) which are locally 
homeomorphic to the irrationals. 

1. INTRODUCTION 

The aim of this note is to give the following two examples, 
modifying constructions form [7] and [5]. The terminology is 
explained in the next section. 

1.1 Example. A perfectly normal space X with small transfi­
nite dimension defined which is not a countable union of zero­
dimensional subspaces. 

This example provides an answer to Problem 8.11 in [4]. An 
example (even locally compact) of that kind constructed under 
the continuum hypothesis can be found in [4], Example 3.17. 

1.2 Example. Perfectly normal spaces~, n = 1,2, ... and 
Y s'uch that each ~ and Y is locally homeomorphic to the 
ifTationals, but dim Yn = nand Y is not a countable union 
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of closed finite-dimensional subspaces. In particular the spaces 
Yn and Y are homogeneous. 

The spaces ~ and Yare of weight NI and each separable 
subset of Yn or Y is contained in an open-and-closed subspace 
of this space homeomorphic to the irrationals. 

Belnov -Ill-gave, examples of homogeneous hereditarily nor­
mal spaces with different local and global dimensions. Example 
1.2 provides some stronger results in this direction. 

2. TERMINOLOGY AND NOTATION 

Our terminology follows [2], [3] and [4]; I denotes the close'd 
unit interval and P is the set of irrational numbers from I. 

2.1. The covering dimension of a space X is denoted by 
dim X. The small transfinite dimension trind is the exten­
sion by the transfinite induction of the Menger-Urysohn in­

- ductive dimension ind. A space X is countable-dimensional if 
X = U~IXi, where dim Xi < 00, and is strongly countable­
dimensional if X = U~IFi. where each Fi is closed in X and 
dim Fi < 00. 

2.2. For an ordinal 0 we denote by D(o) the set of all ordi­
nals less than 0 with the discrete topology and by. W(a) the 
same set with the order topology. A cardinal is an initial ordi­
nal of a given cardinality; WI is the first uncountable cardinal, 
and c+ denotes the first cardinal after the continuum c. A set 
S C W(a) is stationary if S meets every closed unbounded 
subset of W(a). 

2.3. For an ordinal 0 let B(o:) = D(o)W with the Cartesian 
product topology (topologically, B(0:) is the Baire space of 
weight equal to cardinality of 0 if 0 ~ Wo; see Example 4.1.23 
of [2]). As shown in [6] (cf[7]), if A is regular cardinal, then the 
family {B(P) : P< A} consists of closed subsets of B(A) and 
satisfies the following conditions: 

B(l) C B(2) C ... C B(P) c ... C B(A), 
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B({3) = cl(U~<pB(/)) for every limit ordinal (3 < A, and 
B(A) = Up<>.B((3). 
In the sequel by B(A) we will denote the set B(A) with the 

topology T defined by taking the family 

{U n B({3) : U is open in B(A) and {3 < A} 

as a base of T. As was proved in 16] for A = WI and in [5] for 
any regular cardinal A, the space B(~~) is perfectly normal and 
collectionwise normal. 

For a < Aput BOt = B(a)\ Up<Ot B((3) and for any set S c 
W(A) put B(S) = UOtEsBOt . Note that BOt is closed subset of.
B(A) on which the topology of the subspace of B(A) coincides 
with the topology of subspace of B(~~) and that for any a < A 
the set Up<OtBp is open in B(A) and the set Up<OtBp is closed 
in B(A). ­

3. AUXILIARY LEMMAS 

We will need two simple lemmas to prove some properties of 
our examples. 

3.1 Lemma. If a perfectly normal s,pace X can be represented 
as the union of a transfiite sequence Xl, X 2 , ••• ,XQ , ••• ,a < A 
of pairwise disjoint closed. subspaces such that ind .XQ = 0, 
the union UP<QXp is open and the u'nion UP<QXp is closed for 
every a < A, then the space X has small transfinite dimension. 

Proof. We will show by induction with respect to Q that for 
each Q ~ A the space X~ = UfJ<cxXp has trind. 

For Q = 1 this is true. Assume that for every {3 < a trind 
X pexists. To show that trind X~ exists consider an arbitrary 
point x E X~ and an arbitrary closed set F C X~ such that 
x ¢ F; we will find a partition L between x and F such that 
trind L exists. 

Suppose first that 0 is a limit ordinal. Let f3 < a be such 
that x E Xp. Then X~+l is an open-and-closed neighbourhood 
of a point x in X~, and by the inductive assumption there 
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exists a partition L between x and F n XP+I in Xp+I (hence 
in X~) such that trind L exists. 

Suppose now that Q = P+1; then X~ = XpU X p• If x E Xp 
and f3 is a limit ordinal, then we can proceed as in the first 
case. If x E X pand P= ,+ 1, then X pis open-and-closed in 
X~ and we can use the inductive assumption in a similar way. 

H x E X p, then the zero-dimensionality of Xp yields that 
the empty set is a partition between x and F n X p in X p• 

Thus there exists a partition L in X~ between x and F such 
that L nXp = 0 (see Lemma 1.2.9 and Remark 1.2.10 of [2] ). 
Hence L C Xpand trind L exists because by the inductive 
assumption trind X pexists (and trind L ~ trind X p). . 
3.2 Lemma. Let A be a countable ordinal· and suppose that a 
metrizable space X can be represented as the union of a trans­
finite sequence Xl, X 2 , ••• ,XOl , ••• ,Q < A of pairwise disjoint 
subspaces such that X OI is completely metrizable, the 
union Up<OlXp is open and the union Up<OtXp is closed for 
every Q < A. Then X is completely metriza-ble. 

Proof. We will show by induction with respect to Q th~t 

the subspace X~ = Up<OtXp of X is completely metrizable for 
every Q < A. Suppose that for every f3 < Q the space X p is 
completely metrizable (obviously"this is true for f3 = 1). 

H Q is a limit ordinal, then let {Qn}~=l be a sequence of 
non-limit ordinals such that a = liman and an < an+l for 
every n = 1,2, .... Then for every n = 1,2, ... the subspace 
X~n \X~n_l is open-and-closed in X~ and is completely metriz­
able by the inductive assumption. Thus X~ is the union of a 
discrete family {X~n \X~n_l}~=l of completely metrizable sub­
spaces, hence it is completely metrizable. 

H Q = P+ 1, then X~ = X pU X p, where both X pand X p 
are completely metrizable, hence X~ is completely metrizable. 

4. CONSTRUCTIONS OF THE EXAMPLES 

4.1.Construction of the space X from Example 1.1 
As the space X we'can take a perfectly normal not countable­
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dimensional space Y constructed in Example 1 of [5] or its 
subspace Xl constructed in Example 2 of [5]. Recall that the 
space Y was obtained by taking the decomposition {So: a < 
c} of W (c+) into c disjoint stationar)' sets, arranging all points 
of the Hilbert cube [W into a transfinite sequence [W = {xo : 

a < c} and putting 

Y = UP<c+Yp, where Yp = Bt~ X {xo} if {3 E So. 
It was also shown in [5], Example 2, that for some ordinal al ~ 

c+ the space Xl = UP<al Yp is locally countable-dimensional, 
but not countable-dimensional (both spaces Y and Xl are tak­
en with the topology of the subspace of the Cartesian product' 
B(c+) x [W). 

It is easy to see that the decomposition of Y into the sets 
Yp, (3 < c+, satisfies the conditions of Lemma 3.1. Indeed, 
each Yp is homeomorphic with the subspace of the Baire space 
B(c+), hence ind Yp = o. Moreover, for every Q < c+ the 
set UP<al'p = Y n (Up<oB({3) x JW) is open in Y and the set 
UP~aYP = Y n (B(a + 1) x [W) is closed in Y (see sec. 2.3). 
Thus by Lemma 3.1 trind Yexists. The same is true for the 
subspace Xl of Y. 

Note that by the same argument the spaces X o and X 2 con­
structed in Example 2 of [5] have trind. It follows that there ex­
ists a perfectly normal locally weakly infinite-dimensional (re­
spectively, locally O-countable-dimensional) space having trind 
which is not weakly infinite-dimensional (respectively, which is 
not O-countable-dimensional) (see [4] or [5] for these notions). 

4.2 Constructions of spaces Yn and Y from Example 
1.2 (A) The space ~ is obtained by a minor modification of 
an n-dimensional perfectly normal space Xn which is locally 
O-dimensional and'locally second-countable, constructed in [7], 
Theorem 2. Let us recall that the space Xn was obtained by 
splitting W(Wl) into n+l disjoint stationary sets 80,81 , ••• ,Sn 
and taking the subspace of the space B(Wl) X In defined by 

X n = U~=oB(Sm) x R':, 
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where R:: is the set of points in In, exactly m of whose coor­
dinates are rational. 

Now, since dim R': = 0 by the enlargement theorem (see [2], 
Theorem 1.5.11) there exists a Gq-subset R': of In such that 
R:: c Rr;: and dimRr;: = O. Let 

~= .U~=oB(Sm) x R': 
be the subspace of B(Wl) X In. Since ~ contains Xn as a 
subspace, dim Yn = n (cf [2], Corollary 3.1.20). Represent Yn 

as 
Yn = UO<Wl Yo where Yo = Bo x R;: if 0 E 8m • 

Then every Yo is O-dimensional and completely metrizable and 
the decomposition of the space Y~ = UP<oYp into the closed 
subsets Yi, Y2, ... ,Yp, ••• ,(3 < 0 satisfies the conditions of 
Lemma 3.2. Thus Y~ is completely metrizable. Moreover, y~ is 
separable, O-dimensional (by the sum theorem) and obviously 

. does not contain any non-empty compact open subspace, hence 
it is homeomorphic to the space of irrational numbers by a 
theorem of Alexandroff and Urysohn (see [2], Problem 1.3.E). 

Finally, observe that the spaces ~ are homogeneous. In­
deed, for every two points x and y of Yn there exists an open­
and-closed subspace U of ~ homeomorphic with the irrationals 
and containing both.x and y. Namely, one can ta:ke as U the 
subspace X~, where 0 is a non-limit ordinal and x, y E X~. 

(B) The space Y is obtained by a modification of the space 
X constructed in Example 3 of [5]. Recall that the space 
X was obtained in the following way. Let Z be a compact 
countable-dimensional but not strongly countable-dimensional 
space which is the union of a family {Ii}~l of disjoint sub­
sets homeomorphic to i-dimensional cubes and of a subset 
P = Z\ U~l Ii homeomorphic to the space of irrationals (see 
[4], Example 1.12). For each i = 1,2, ... and m = 0, 1, ... ,i 
let Ri denote the set of points in Ii exactly m of whose coor­
dinates are rational and let ki, be a O-dimensional Gq-subset 
of Ii containing R"{". Let us split W(Wl) into countably many 
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disjoint stationary sets Si, i = 1,2, ... and let Si = U~=oSr, 
where S'(" are also disjoint and stationary in W(Wl). As was 
proved in [5], Example 3, the subspace 

X = Ua<w1Xa , where Xa = Ba >~ (Ri U P) if Q E Si, 

of the space B(Wl) x Z is a perfectly normal, locally O-dimen­
sional and locally second-countable space which is not strongly 
countable-dimensional. Thus the subspace 

Y = Ua<w1Ya, where Ya = Ba x (Ri U P) if Q E Si. 

of B(Wl) x Z is also not strongly countable-dimensional, since 
it contains X (cf [4], Proposition 2.2). Moreover, similarly as 
in (A) one shows that the space Y is locally·homeomorphic to 
the irrationals (since every space Y~ := UP<aYP, where Q < WI, 

is an open-and -closed subspace of }" homeomorphic with P) 
and thus it is homogeneous. 

Note that the spaces Yn constructed above are not tech 
complete. This follows from the fact that every C(1-subset of 
B(Wl) X In contoaining ~ contains a subset homeomorphic to 
In(see [7], sec. 2.4, Lemma). 
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