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IF L IS THE RATIONAL LONG LINE, THEN
(L®1)* IS HOMOGENEOUS

STEPHEN WATSON

ABSTRACT. We establish that the direct sum of the ra-
tional long line and an isolated point is a zero-dimensional
first countable space whose w-power is homogeneous. The
method is more general and shows that adding an isolat-
ed point to a “very” homogeneous space will not affect
the homogeneity of the w-power.

In 1988, Gary Gruenhage raised the question of whether the
w-power of any first countable zero-dimensional space must
be homogeneous. Gruenhage and Zhou have written a pa-
per entitled “Homogeneity of X“” in which they prove, a-
mong other things, that the w-power of any first countable
zero-dimensional space with a dense set of isolated points is
homogeneous.

Definition 1. Let P be a countable dense-in-itself linearly or-
dered space with a first element. Let L be wy x P with the
lezicographic ordering and the induced topology. We call L the
rational long line.

The rational long line L was used in the 1990 thesis of David
Mclntyre. Robin Knight conjectured in November 1990 that
L & {1} is an example of a zero-dimensional first countable
space whose w-power is not homogeneous.

Theorem 1. (L @ 1)¥ is homogeneous.

The method of establishing homogeneity of (L& 1)“ requires
little of L other than a kind of strong homogeneity. We present
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the specific result, believing that this best reveals the simple
but non-trivial ideas used in this argument. The reader can
verify that L can be any homogeneous space which admits Q,
h, {Q; : i € w} and {h; : i € w} satisfying conditions (1) to (5)
below.

Let X = (L@ 1)“.

Lemma 1. There is an autohomeomorphism f of X such that
£(0) #0.
Proof. Let 1 € Q C L and {Q@, : n > 0} be such that
(1) Q and each @, is clopen
(2) {@n:n >0}U {1} is a partition of Q
(3) (Vi > 0)h; : @ — Q; is a homeomorphism
4)h:(L-Q)®1 > L1 is a homeomorphism
(5) {Qn:n>0}—1
-We also make some definitions:
o X; ={z€ X :z(0) =0,z(2) € Q,(Vj < i)z(j) ¢
Q}( for : > 0)
oY,={ze€ X:2(0) € Q:}(fori>0)
e X*={z€X:2(0) =0,(Vi € w)z(i) € Q}
e Y*={z€X:2(0)=1}
e Z={zeX:2(00¢QU1}
The family {X; :7 > 0}U{Y;::> 0} U {X*,Y*, Z} partitions
X.
hi(z(z)) ifj=0
Define 7; : X; = Y; by mi(z)(5) = S h(2z(j)) f0<j<:
z(G+1) ifj>i

0 ifj=0
hil(z(0)) ifj=1i
Y (z(j)) f0<j<i
z(j—1) ifj>i

Define p; : Y; — X; by pi(z)(5) =
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1 ifj=0

Define 7 : X* — ¥* by x(z)(j) = {h(z(i)) if7>0

Y (z(5)) ij>0
Let f=U{m : t€ew}UU{p; : t€EW}UTUpU]| Z.

Define p: Y* — X* by p(z)(j) = {0 ifj=0

Checking the details: We can calculate, by cases on j, that p;(m;(z))(j) =
z(5), mi(pi(z))(4) = z(4), p(n(2))(§) = z(j) and n(p(z))(j). Thus since
pi, %i, p and 7 are well-defined, they are bijections. Since each of these
functions is continuous (this can be checked coordinate-wise), they are all
homeomorphisms.

Each X;,Y; as well as Z are clopen. Each p;,7; aswell as p,rand id | Z
are homeomorphisms. X* UU{X; : i € w} and Y* UU{Y; : i € w} are
clopen. X* and Y* are closed.

Suppose z; € X; and ¢ € X* and z; — z. Now (Vj)z;(j) — z(j) and
(V3 > 0)(Vi > j)mi(z:)(4) = h(zi(s)) and also, if j > 0, h(z()) = 7(z)(5)-
Thus (Vj > 0)m;(z;)(5) — n(z)(j) and so =;(z;) — #(x).

Suppose y; € Y; and y € Y* and y; — y. Now (Vj)yi(j) — y(j) and
(V5 > 0)(Vi > 7)pi(%:)(5) = h=Y(y:(5)) and (Y5 > 0)p(¥)(§) = h~ (¥(4))-
Now (V5)h~*(yi(5)) — h='(y(4)) so that (V5 > 0)pi(y:)(5) — p(¥)(j) and
pi(y:) — p(v).

Lemma 2. There is an autohomeomorphism j of X such that

i) =o.

Proof. For each z € X — {0}, let i(z) be the least 7 such that
z(z) # 0.

0 if i = 0,:(z) even
z(t—1) if¢>0,i(x) even
z(i+1) if¢€ w,i(z) odd

Define j : X — X by j(z)(z) =
' 0 if ¢(z) undefined
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Checking the details: We can calculate, by cases on j, that j2(z)(i) = z(¢)

-and so j is a bijection. Let X; = {z € X : i(z) = i}. Each X; is clopen.
Since j is continuous on each X; (we can check this coordinate-wise), it
suffices to assume that z; € X; so that z; — 0 and check that j(z;) — 0.
This can be done coordinate- wise, finding, for each j, some k(j) such
that (Vi > k(j))zi(j) = 0. Now, letting k*(j) = max{k(j — 1),k(j + 1)},
we get, for each 7, (Vi > k*(5))j(z:)(j) =0

Lemma 3. For any z € X such that rng(z) C {0,1}, there is
an autohomeomorphism j of X such that (j(z)~1)(0) is infinite
and coinfinite.

Proof. Suppose that z71(0) is finite. Partition w into infinitely
many infinite sets {A; : ¢ € w} such that (Vi > 0)A4; C z71(1).
Note that |Ap N z71(1)| = w. Find an autohomeomorphism j;
of (L & 1)# which is a copy of j from lemma 2.

Suppose that z71(1) is finite. Partition w into infinitely many
infinite sets {A; : ¢ € w} where z7!(1) C Ap. Note that
|AoNz~1(0)| = w. Find an autohomeomorphism j; of (L& 1)4
which is a copy of j from lemma 1.

j=idl (L®1)* x [[{ji:i> 0}

Proof of Theorem. By coordinate-wise homeomorphisms using
homogeneity of L, we can map any z to another z’ whose range
is contained in {0,1}. By Lemma 3 and applying this fact
again, we can map any point to a z € X such that rng(z) C
{0,1} and z~(0) infinite and coinfinite. Let zo € X be defined
by letting zo(j) = 0 if j is even and z¢(j) = 1 if 7 is odd. By
permuting the coordinates, we can get any point mapped to
Zo.
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