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1. INTRODUICTION 

This paper reports the progress made in the study of P­
closed topological spaces, where P is Urysohn or completely 
Hausdorff or regular, since the appearance of the survey paper 
[BPS] of Berri, Porter and Stephenson. We do not address H­
closed spaces, because its literature has grown enormously in 
the last twenty years, and the book. by Porter and Woods [PW] 
offers a recent examination of the main lines of the subject. All 
topological spaces discussed in this paper have the T1 proper­
ty. Our terminology follows Engelking [En], Berri, Porter, and 
Stephenson [BPS], and Porter and Woods [PW]. Recall that 
a space is Urysohn (resp. completely Hausdorff (CH») 
if every pair of distinct points are contained in disjoint closed 
neighborhoods (resp. can be separated by a real-valued contin­
uous function). A P space is P-closed if it is closed in every 
P space in which it can be embedded, is minimal P if it has 
no strictly coarser P topology, and is Katetov P if it has a 
coarser minimal P topology. A regular space is RC-regular if 
it can be densely embedded in an R-closed space. The terms 
minimal Urysohn and minimal regular are abbreviated as MU 
and MR, respectively. 

1Research partially supported by a faculty development grant from 
Beaver College. 

71 



72 FRIEDLER, GIROU, PETTEY, PORTER 

Alexandroff and Urysohn [AU] first defined R-closed spaces 
 in 1924, and asked whether such spaces are compact. In 1930, 
Tychonoff [T] constructed an example of a noncompact R­
closed space, answering the question posed by Alexandroff and 
Urysohn; this example is described in 1.1. In his 1939 study 
of extensions, Alexandroff [A] considered free maximal regular 
filters. A filter base is said to be open if the sets belonging 
to it are open sets. Then, a regular filter base is an open 
filter base in which each set contains the closure of some mem­
ber of the filter base. In 1941, Weinberg [We] proved that a 
regular space is R-closed iff every regular filter base clusters. 
Since a completely regular space has a compactification, it 
follows that a completely regular R-closed space is compact. 
Thus, noncompact R-closed spaces are contained in the fami­
ly of regular spaces that are not completely regular. A major 
source of noncompact, R-closed spaces is a technique called the 
Jones' machine (described in IY in [PW]). A lack of simple ex­
amples}s one of the reasons why the study of R-closed spaces 
is perceived to be difficult. 

In 1955, Banaschewski' showed that an MR space is R-closed. 
Berri and Sorgenfrey [BS] modified Tychonoff's example to ob­
tain a noncompact MR space. Herrlich showed in [Herl] that 
Tychonoff's noncompact R-closed space is not MR. 

We conclude this section with a fundamentally important 
example - a noncompact MR space having a subspace that is 
CH-closed and R-closed but not MR. Subspaces of this space 
are the beginning stage of the construction of many examples 
in P-closed spaces. First, some necessary notational definitions 
are presented. 

Notational Definitions. For a spaces X, let T(X) denote 
the set of open subsets of X. Let Z be the set of all integers, 
N be the set of positive integers, and lR be the set of real num­
bers. Let I denote the unit interval with the usual topology 
inherited from the reals and J be the subspace I\{l}. For an 
ordinal 0, [0,0) (resp. [0,0]) denotes the set of all ordinals 
less than (resp. less than or equal to) 0, equipped with the 
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order topology. Let W (resp. WI ) denote the set of all finite 
(resp. countable) ordinals. The non-normal, locally compact, 
zero-dimensional space T = [O,Wl] x [O,W]\{(Wl,W)} is called 
the Tychonoff plank. Let A = [O,WI) x J have the order 
topology based on the lexicographic ordering of A, i.e., A is 
Alexandroff's long line. Let A' = A U {oo} be the one 
point compactification of A. 

1.1. Let R denote the quotient space of T x Z where the points 
(wl,y,n) and (wI,y,n + 1) are identified if n is odd, and the 
points (x,w.n) and (x,w,n+1) are identified ifn is even. The 
image of T x {n} in R is denoted as Tn. Let S = R U {±oo}. 
A subset U ~ S is defined to be open if U n R is open in R, 
and oo(resp. -00) E U implies there is some n E Z such that 
U{Tm : m ~ n} (resp. U{Tm : m ~ -n}) ~ U. The space S 
(see [BS]) is noncompact MR, and. Tychonoff's example is the 
subspace {oo} U U{Tn : n ~ O} which is CH-closed, R-closed, 
and not MR (see [Herl]). 0 

We wish to thank the referee for a number of most useful 
suggestions. 

2. THE STATUS OF THE QUESTIONS IN [BPS] 

In this section, we will review the progress made on questions 
raised in [BPS]. Our numbering system reflects the original 
question numbers. 

Q1. Is a regular, CR-closed space necessarily R-closed? 

Herrlich [Her2] answered this question in the negative with 
the following example. 

2.1. Let R be the space described in 1.1. There is exactly one 
point p in [3R such that every neighborhood of p meets each Tn. 
Let X = [3R\{p} U {p+,p-}. A subset U ~ X is defined to be 
open if Un ([3R\ {p}) is open in {3R and p+ E U (resp. p- E U) 
implies there is n E Z such that (U\{p+,p-}) U clpR({UTm : 

m ~ n}) (resp. U\{p+,p-}UclpR({UTm : m ~ n})) is a 
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neighborhood of p in {JR. The space X is regular and CH­
closed but is·not R-closed. D 

Q2. Prove or disprove that the product of U-closed spaces is 
U-closed. 

Herrlich [He2] constructed U-closed spaces Y and X such 
that Y x Z is not V-closed. The spaces Y and Z are described 
in the following example. 

2.2. Let D 1 , D 2 , and D3 be three pairwise disjoint dense sub­
sets of J whose union is J and 0 E D1 • Let Y be A' (A' 
is defined before 1.1) with the finer topology generated by 
r(A') U {[O,WI) x D2 , [O,WI) X D3 U {oo}}. To the subspace 
T1 U T2 of the space R defined in 1.1, we add a point t. Let 
Z = T1 U T2 U {t}. A subset U ~ Z is defined to be open if 
U n (T1 U T2 ) is open in T1 U T2 and t E U implies for some 
(a,n) E [O,WI) x [O,w),(a,wI) x (n,w] X {I} ~ U. The spaces 
Y and Z are V-closed, but Y x Z is not U-closed. 0 

Q3. Prove or disprove that the product of MU spaces is MU. 

Stephenson [Stl] constructed MU spaces whose product is 
not V-closed. 

2.3. Let X = T1 U T2 U T3 U {a,b} where Tn is defined in 1.1. 
A subset U ~ X is defined to be open if U n (T1 U T2 U T3 ) 

is open in T1 U T2 U T3 and a (resp. b) E U implies for some 
(a, n) E [O,WI) x [O,w), (a,wl) x (n,w] X {I} (resp. (a,wl] x 
(n,w) X {3}) ~ U. Let R1 ,R2 ,R3 ,R4 , and Rs be five pairwise 
disjoint dense subsets of a compact space !( whose union is !(. 
Let Y (!<) = (R1 X {I, 5, 9} ) U (R2 X {2, 8} ) U (R3 X {3, 7, 11 }) U 
(R4 x {4, 10}) U (Rs x {6, 12}) with the topology generated by 
{(U x {i}) n Y(]{): i E {1,3,5, 7,9,11}, U E r(]{)} U {(U x 
{i-I,i,i+I})nY(]{): i E {2,4,6,8,IO}, U E r(I{)}U{(Ux 
{I, 11, 12}) n Y(I{) : U E T(I{)}. 

Let R1 , R2 , R3 , R4 , and Rs be five pairwise disjoint dense 
subsets of I whose union is I and 1 E R3 and form Y(I). 
Form Y(A')(A' is defined before 1.1) using Si = [O,Wl) x ~ 
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for i = 1,2,4,5 and 83 = ([O,Wl) x R3\{1}) U {oo}. The 
spaces X, Y(I), and Y(A') are MU but X x Y(I) X Y(A') is 
not V-closed. 0 

Q4. Prove or disprove that the product of CH-closed spaces is 
CH-closed 

Stephenson [8t3] constructed a CH-closed space X such that 
X x X is not CH-closed; the space X is described in the fol­
lowing example. 

2.4. By 9.15 in [GJ] there is a space G such that N ~ G ~ 

PN, every infinite subset of PN has a limit point in G, and 
G x G contains an infinite closed discrete subset D such that 
D ~ N ~ N. Let B be the set pN with the topology generated 
by T(PN) U {PN\(G\N)}. Let X be the quotient space of the 
subspace G x {I} U B x {2} of B x {1,2} where (y, 1) and 
(y,2) are identified for y E G\N. The space X is GH-closed 
but X x X is not. D 

Q5. Prove or disprove that the product of R-closed spaces is 
R-closed. 

Q6. Prove or disprove that the product of M R spaces is M R. 

Pettey [Pe2] solved Q5 and Q6 by constructing an MR space 
M whose product with itself is not even R-closed. The space 
M is described in 4.3. 

Q7. Find a necessary and sufficient condition for a Urysohn 
space to be embedded (or densely embedded) in an MU space. 

To the best of our knowledge, both parts of this question 
remain unanswered. 

Q8. Find a necessary and sufficient condition that a regular 
space can be embedded in an R-closed space. 

Q9. Find a necessary and sufficient condition that a regular 
space can be embedded (or densely embedded) in an M R space. 
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Dow and Porter [DPl] completely resolved Q8 and the non-
dense portion of Q9 by showing that every regular space can 
be embedded as a closed subspace in an MR space. The topo­
logical dense embedding question is still open. Harris [Hal] 
has characterized RC-regular spaces as those regular spaces 
whose topology is generated by a generalized proximity, called 
an RC-proximity. Since the topology of an RC-regular space 
can be determined by several RC-proximities, Harris' charac­
terization is, in some sense, not topological; this observation 
is the motivation for Q18. Porter and Votaw [PV] showed 
that every regular space can be densely embedded in a regular 
space which is nearly R-closed. (A regular space is nearly R­
closed if every regular end converges; a regular filter F on a 
space X is a regular end if whenever U and V are open sets 
in X such that clxU n clxV = 0 and F meets U, it follows 
that X\clxV E F.) 

QI0/Qll. Is a minimal P space of second category when P 
is Urys·ohn or first countable Urysohn q . 

Stephenson [St1] solved both Q10 and Q11 by constructing 
the non-second category space Y(I) described in 2.3. 

Q12. Is a regular, CH -closed space necessarily of second cat­
egoryq 

This question seems to be open. 

Q13. Is there a noncompact minimal perfectly normal spaceq 

Recall (see 5.2 in [BPS]) that a space is minimal perfectly 
normal iff it is perfectly normal and countably compact. Using 
Martin's axiom with the negation of the continuum hypothesis, 
Weiss [Ws] has shown that such spaces are compact. On the 
other hand, assuming the set axiom diamond, Ostaszewski [0] 
has shown the existence of a noncompact, perfectly normal, 
countably compact space. Thus, Q13 is independent of the 
usual ZFC axioms of set theory. 
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Q14. [Ba] Is a space in which each closed set is R-closed nec­
essarily compact? 

This notoriously difficult problem is still open and has at­
tracted the attention of several researchers. A resolution will 
probably require the development of new machinery or insights. 
It ~s well known that a Hausdorff space is compact if and only 
if every closed set is H-closed. Several results and problems 
listed in this survey were motivated by Q14. These include 
3.11,3.12,4.6,4.7, Q26, Q32, Q33, Q34, and Q42. 

Q15. Is a space in which each closed set is U-closed necessarily 
compact? 

This question is still open. 

Q16. Is a U -closed space necessarily ](atetov Urysohn? Is 
there only one MU topology coarser than a U -closed, /(atetov 
Urysohn ..·topology? 

Porter [Pol] constructed a first countable semiregular V­
closed space for which there exists neither a coarser MU topol­
ogy nor a coarser minimal first countable Vrysohn topology; 
this example is described below. The second part of the ques­
tion remains open. 

2.6. Let R1 , R2 , R3 , and R4 be pairwise disjoint dense subsets 
of I == [0,1] such that I = U{Ri : 1 $ i $ 4} and X = 
U{Ri x {i} : i E {1,2,3,4}} U R1 x {5}. The topology on X 
is generated by {(U x {i}) n X : i E {1,3,5}, U E T(I)} U 
{{Ux{i-l,i,i+l})nX: iE{2,4}, UET{I)}. The space 
X is first countable, semiregular, and V-closed, but X is not 
Katetov P where P is Urysohn or first countable Urysohn. 0 

Q17. Is an R-closed space necessarily !(atetov regular? Is 
there only one M R topology coarser than an R-closed, /(atetov 
regular topology? 
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The second part of the question remains open. The first part 
was solved by Dow and Porter [DPl],. where they. constructed 
an R-closed space which has no coarser minimal regular topol­
ogy. Here is a description of their space. 

2.7. Let S be the space defined in 1.1. The subspace Z = 
{(x, ,) E Sx [O,w] : if, E [O,w), then x = +00 or x = (0, (3, n) 
where n ~ -,} is R-closed but not Katetov regular. 

3.	 RECENT DEVELOPMENTS - EMBEDDINGS AND 

SUBSPACES 

In this section, we present results and concepts concern­
ing embeddings and subspaces that have arisen since the ap­
pearance of [BPS]. Open questions/problems are concurrently 
presented using a continuation of the numbering system of the 
second section. We start this section by stating an embedding 
result by Dow and Porter; this result was noted after Q9 as a 
solution to Q8 and a partial solution to Q9. 

3.1. [DPl] Every regular space can be embedded as a closed 
subspace of an M R space. 

A regular space is strongly minimal regular, or SMR, 
if the complements of R-closed subspaces form an open base. 
The noncompact, MR space S described in 1.1 is also SMR. 

3.2. [St2] An SM R	 space is MR. 

Pettey, in response to a question by Stephenson [St2], con­
structed an example of an MR space which is not SMR. 

3.3. [Pel] Let F denote the closed subspace To n T_ 1 of the 
space S described in 1.1. Let M denote the space obtained 
from the product S x [0, w + 1] by first identifying the point 
(oo,w) with the point (-oo,w) and then for each point of t of 
F identifying (t,w) with (t,w + 1). The quotient space M is 
MR but not SMR. 
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In response to the question [St4, Wi] of whether every R­
closed space is the continuous image of an MR space, Friedler 
and Pettey established this much stronger result. 

3.4. [FPl] Every R-closed space is the image of an 8MR space 
by a perfect, open retraction. 

This theorem when combined with 3.1 produces an improve­
ment of 3.1 

3.5 Every regular space can be embedded as a closed subspace 
of an 8MR space. 

The topological dense embedding problem for R-closed 
spaces is still open. Herrlich demonstrated in [Her1] that there 
are regular spaces that are not Re·· regular. 

Q18. [DPl] Find a topological characterization of RC-regular 
spaces. 

The dense embedding problem seems rather difficult. Per­
haps it will be easier to first solve a very restricted case. 

Q19. Characterize those regular spaces that have one-point R­
closed extensions. 

Note that a regular space has a one-point R-closed extension 
iff some free regular filter meets every other free regular filter. 
This is equivalent to some free regular filter being in every 
free maximal regular filter. Nevertheless, other (more useful) 
characterizations would be desirable. 

A regular space is locally R-closed (resp. rim R-closed) 
if it has an open base with R-closed closures (resp boundaries). 
We use this definition of locally R-closed space instead of the 
one presented in [DPl]: a regular space in which each point 
has a quasi-base of R-closed neighborhoods. Dow and Porter 
established this next result. 

3.6. [DPl] A rim R-closed, R-closed space is locally R-closed 
and SMR. 
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In light of well-known theorems about locally compact spaces 
- and locally H-closed space (see [En, 3.5.11] and [PW, 7.3(b)]), 

an obvious question is whether a regular space is locally R­
closed iff it has a one-point R-closed extension. Note, however, 
that if S is the space described in 1.1, then S\( {WI} x [O,w) x 
{O}) is a locally R-closed, RC-regular space without a one-point 
R-closed extension. Furthermore, a simple modification of an 
example given by Dow and Porter [DPl, p.5l] yields a regular 
space that is not locally R-closed but does have a one-point 
SMR extension. 

Q20. [DPI] Prove or disprove that a regular space is RC­
regular if it is rim R-closed or locally R-closed or both. 

A natural question is whether the regular continuous image 
of an RC-regular space is also RC-regular. Not only is this 
false, but the regular continuous perfect or open image is not 
necess~rily RC-regular. To show this we start .with the descrip­
tion of an example by H~rrlich of a regular space which is not 
RC-regular. 

3.7. Let Ii be the subspace defined in 1.1, Rn = To U ... U Tn' 
and Y = U{Rn x {n} : nEw} U{co}. Now U S; Y is defined 
to be open if U n (Rn x {n}) is open in Rn x {n} for nEw 
and 00 E U implies U{Tk x {m} : m 2: k 2: n} ~ U for some 
nEw. Herrlich [Herl] showed that Y is a regular space but 
not .RC-regular. 

From the subspace (T x [O,w)) U ([O,Wl] x [O,w] x {w}) of 
the compact space [0, WI] X [0, w] X [0, w] identify the points 
(WI, y, n) and (WI, y, n + 1) if n is odd, and the points (x,w, n) 
and (x,w, n + 1) if n is even to obtain a space denoted as Z*; 
let Z denote the subspace T x [O,w] of Z*. Now, Rn is the 
subspace T x [0, n] of Z. The space Z* is R-closed and so the 
product Z* x [O,w] is also R-closed. From Z* x [O,w], shrink 
the compact set [O,Wl] x [O,w] x {w} x {w} to a point 00 to 
obtain an R-closed space denoted as X*. 



A SURVEY OF R-, U-, AND CH-CLOSED SPACES 81 

The dense subspace (Z x [0, w ))U{oo} of X* is denoted as Xl; 
so Xl is RC-regular. The subspace U{Rn x {n} : nEw} U {oo} 
is the space Y, i.e., Herrlich's example of a regular space which 
is not RC-regular. There is a perfect retraction form Xl onto 
Y. 

For nEw, let Hn denote the subspace RnU([O,WI) x [O,w) x 
[n+l,w]) of Z. Let X 2 denote the dense subspace U{Hn x in} : 
nEw} U {oo} of Xl; so X 2 is RC-regular. There is an open 
retraction with compact point inverses from X 2 onto Y. 0 

3.8. The space Y is not the image of an RC-regular space 
under an open perfect mapping. 

Proof: Assume that X is an RC-regular space and f is a con­
tinuous open perfect surjection onto Y. Let X* denote an 
R-closed extension of X, and let A denote the set X*\X. 

For each n in N, every free regular filter base that traces on 
Rn x {n}"necessarily traces on each of the sets T x {i} x {n} for 
1 ~ i ~ n. Therefore, since f is open ad closed (and thus takes 
regular filter bases on X to regular filter bases on V), if x is a 
point of Anclx.f'-[Rn x in}], then x E clx.f+-[T x {i} x {n}] 
for 1 ~ i ~ n. 

Each of the sets f+- [Rn x {n }] is open and closed with respect 
to X but is not R-closed and thus cannot be closed with respect 
to X*. Thus, for each n in N we can choose a point X n of 
An clx.f+-[Jln x {n}]. 

Since T x {I} x N is a closed subset of Y and does not con­
tain 00, there is an open (with respect to X*) neighborhood V 
of f'-( 00) that misses f'- [T x {I} x :N]. Since {Xl, X2, X3, ••• } ~ 

c1x. f'- [Tx {I} xN], it follows that ~1 also misses {Xl, X2, X3, • •• }. 

Because f'- ((0) is compact, there is an open neighborhood W 
of f+-(oo) such that clx.W ~ V. Let U = Y\f[X\W]. Then U 
is an open neighborhood of 00 and thus contains T x {n} x {n} 
for all but finitely many n. But f+-[U] ~ W, so it follows that 
X n E clx.f+-[T x in} x in}] ~ clx.jf+-[U] ~ clx. W ~ V for all 
but finitely many n. We therefore have a contradiction. 0 
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The above result motivates the next question. 

Q21. If a regular space is the open perfect image ·of an RC­
regular space, it is also RC-regular? 

Harris [Hal] asked if comparable RC proximities give rise 
to comparable R-closed embeddings and if there is a largest 
R-closed extension of an RC-regular space, in the spirit of the 
Stone-Cech compactification or Katetov extension. Sharma 
and Naimpally answered both questions in the negative with 
the same example. 

3.9. [SN] let S be Berri and Sorgenfrey's example of a non­
compact, MR space described in 1.1, and let W be the dense 
subspace of S consisting of points none of whose coordinates 
are infinite limit ordinals. Then,8W and S are non-comparable 
R-closed extensions of W although their corresponding RC­
proximities are comparable. The space W has no largest R-
closed extension. D 

The 'solutions to the standard extension of continuous func­
tions problem in the setting of R-closed or V-closed spaces are 
unknown. 

Q22. Let Y be an R-closed extension of a space X and f : 
X --+ Z be a continuous function where Z is R-closed. Find a 
necessary and sufficient condition for. f to have a continuous 
extension to Y. 

Q23. Let Y be a U -closed extension of a space X and f : 
X --+ Z be a continuous function where Z is U -closed. Find a 
necessary and sufficient condition for f to have a continuous 
extension to Y. 

Although most examples of regular, non-completely regular 
spaces are quite complicated, there is a simple example due to 
Mysior. 

3.10. [M] Let X denote the upper half plane together with 
a distinct point a. All points (x, y) with y > 0 are isolated. 
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For x E lR, a neighborhood of (x,D) contains({(x,y): 0 ~ y < 
.2} U {(x +y, y) : 0 < y < 2} )\F for some finite subset F of X. 
A neighborhood of a contains {a} U {(x, y) : x > r} for some 
r E JR. The space X is regular but not completely regular. 0 

Q24. For the space X described in 3.10, is X or X X X RC­
regular? 

There are many nondense subspace problems which remain 
unsolved. 

Q25. [Hal] Characterize the R-closed subspaces of an R-closed 
space. 

Q26. Is an R-closed space in which the closure of every open 
set is R-closed necessarily compact? 

Q27. Is a U -closed space in which the closure of every open 
set is U -closed necessarily compact? 

Another subspace problem is whether a countable decreasing 
chain of nonempty, R-closed subspaces is nonempty. This has 
been answered, in the negative, by Pettey [Pe5]. 

Q28. Does there exist a (countable) nested chain of nonempty 
U-closed (MU) spaces with an empty intersection? 

The next result shows that any space satisfying the condi­
tions of Q14 or Q15 must be at least countably compact. 

3.11. If every countable, closed subset of a space X is R-closed 
or U-closed, then X is countably compact. 

Proof· It is well known that a space is countably compact iff it 
has no infinite closed discrete subspaces, and since infinite dis­
crete spaces are neither R-closed nor U-closed, the conclusion 
is immediate. 0 

This last result overlaps with the following result by Scarbor­
ough and Stone. First recall that a space is feebly compact if 
every countable open cover has a finite subfamily whose union 
is dense. Clearly, a countably compact space is feebly compact. 
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3.12. [88] An R-closed space is feebly compact. 

4.	 RECENT DEVELOPMENTS - PRODUCTS AND 

CATEGORIZATIONS 

Due to the number of new concepts that have arisen in the 
last twenty years, there are a number of unresolved questions 
that focus on creating a classification system for topological 
spaces. We start this section with a useful product result by 
Pettey. 

4.1. [Pe2] Let {Xo : 0: E A} be a nonempty family of nonemp­
ty R-closed (resp. M R) spaces. Then TI{Xo : 0: E A} is R­
closed (resp. MR) iffII{Xo : Q E A} is feebly compact. 

In addition to solving Q6, Pettey has shown that the product 
of SMR spaces need not be R-closed; this example is described 
below. 

In [Pe2], Pettey defined a space X to be *-feebly compact 
if for every countable family {Un : nEw} of nonempty open 
sets of X, there is an infinite subset A S; wand a compact 
subspace 1< of X such that every neighborhood of I( meets Un 
for all but finitely many n E A. The importance of *-feebly 
compact in the class of R-closed spaces is indicated by the 
following result by Pettey. 

4.2. [Pe2] (a) A feebly compact k space is * -feebly compact, 
and a * -feebly compact space is feebly compact. 

(b) If {Xo : Q E A} is a family of *-feebly compact space, 
then II{Xo : a E A} is feebly compact. 

(c) If {Xo : 0: E A} is a family of *-feebly compact, R­
closed (resp. M R, SM R) spaces, then Il{Xo : 0: E A} is also 
R-closed (resp. M R, SMR). 

(d) If {Xa : a E A} is a family of * -feebly compact, R­
closed (resp M R) spaces and Y is R-closed (resp. M R), then 
II{Xa : a E A} x Y is R-closed (resp. M R). 
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Stephenson's result [St2] that a product of first countable 
R-closed (resp. MR) spaces is R-closed (resp. MR) is an im­
mediate consequence of 4.2(a,c). It is unknown if 4.2(d) is true 
for SMR spaces even when there are only two factors. 

Q29. [Pe2] Is the product of an 8MR space and a * -feebly 
compact 8MR space necessarily 8.MR? 

4.3. [Pe2] This is an example of an SMR space M such that 
M x M is not R-closed. Let D and G be the spaces described 
in 2.4. Let U denote the set of first and second coordinates 
of points of D. Now U is a subset of N and hence is open in 
G. Now, by 3.5, G\U is a closed subset of some SMR space, 
but Pettey proves in 4.4 of [Pe2] that any Tychonoff space is a 
closed subset of a *-feebly compact, SMR space. Let Z denote 
a *-feebly compact, SMR space which contains G\U as a closed 
set; let h denote the embedding of G\U in Z. Let M denote 
the space obtained by attaching G to Z through h. The space 
M is SMR and D is an infinite clopen discrete subset of M x M; 
so, M x M is not feebly compact ,and, by 4.1, M x M is not 
R-closed. 

4.4. Let M be the space described in 4.3. Then M x M is 
RC-regular. 

Proof: Let M, Z, G, U, and D be the space described in 4.3. 
Since M x Z and Z x Mare R-closed by 4.2(d), their union, 
which is (M x M)\(U x U), is also R-closed. Let H = (G x G) 
\(U x U). Since G x G is closed subspace of M x M, it is 
sufficient to show that G x G can be densely embedded in a 
regular Hausdorff space Y such that H is closed in Y, and, for 
every regular filter base F on Y, if there exists F E F such that 
F nH = 0, then the restriction of :F to Y\H, {F\H : F E F}, 
has a cluster point in Y. (For if }{ is the space obtained by 
attaching Y to (M x M)\(U x U) along H, then the space 
K is R-closed and M x M is a dense subspace of Ii.) Let 
y = f3(G x G)\(cl{j(GxG)H\H). Then clearly G x G is dense in 
Y and H is closed in Y. Suppose F is a regular filter base on 
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Y such that there exists F E :F with F n H = 0, and let B be 
the restriction of:F to Y\H. Let B' = {B n (G x G) : B E B}. 
Then B' is a regular filter base in G x G and each member of B' 
lies in U x U. If 8' has a cluster point in G x G, then this same 
point is obviously a cluster point of B in Y. If B' has no cluster 
point in G x G, then we may obtain a new regular Hausdorff 
space X by adding a new point q to the space G x G and letting 
{V U {g} : V E 8'} be a neighborhood base at q. Since U x U 
is a discrete open subspace of G x G and since no member of 
8' meets H, X is completely regular and q ¢ c1x H. Then r;X 
is a Hausdorff compactification of G x G, and therefore, there 
is a continuous function f from (j( G x G) onto (jX such that 
the restriction of f to G x G is the identity. Since q is a cluster 
point of 8', some point p of f+- (q) must be a cluster point of 
B' and thus of B. Since q is not in c1xH, p is not in cl{j(GxG)H. 
Hence, p E Y. So 8 has a cluster point in Y. D 

Q30. [Hal] Is the product of two R-closed spaces RC-regular'? 

In response to a question by Harris [Hal] of whether the 
product of RC-proximity spaces is an RC-proximity, Friedler 
established the next result. 

4.5 . [Frl] For every R-closed, noncompact Hausdorff space 
X, there is a compact Hausdorff space Y such that the product 
proximity on X x Y is not an RC-proximity. 

Q31. If the product of regular spaces is RC-regular, is each 
factor RC-regular'? 

A regular space is said to be R-functionally compact (R­
Fe) if every continuous function from it to a regular space is 
a closed map. Pettey has constructed a noncompact MR space 
whose every regular continuous image is MR. 

The next proposition is new; its proof follows from 3.1.17 in 
[En]. 
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4.6. Let Y be a regular space which has every closed subset 
R-closed. Then the following are equivalent: 

(aJ Y is compact, 
(bJevery closed subset ofX x Y is R-closed for every co·mpact 

Hausdorff space X, and 
(c) X x Y is RFC for every compact Hausdorff space X. 

Q32. [Pe4] Does every RFC space have the property that ev­
ery closed subspace is R-closed'l 

Q33. [Pe4] Does every RFC space have the property that ev­
ery regular continuous image is SAl R? 

In response to a question in [FP 1] of whether a regular space 
is RFC if every regular continuous image of a space is MR, 
Pettey found an example of an SMR, non-RFC space whose 
every regular continuous image is SMR; a description of this 
space follows 

4.7. [Pe4] Let B denote the deleted big square [O,WI] x [O,WI]\ 
{(WI, WI)}. Let Q be the quotient space obtained from B x 
[0, w) by identifying the point (Q, WI' n) with the point 
(WI, 0, n + 1) for each n in [0, w) and each Q' in [0, WI). The 
image of each B x {n} is denoted as Bn , and the image of each 
point (WI,O,O) of the subset {WI} x [O,WI) x {O} of B x {a} is 
denoted as bOt. Let Z = QU{00}. A subset U of Z is defined to 
be open if unQ is open in Qand 00 E U implies Bn ~ U for all 
but finitely may n in [0, w). Finally~, let Y denote the quotient 
space obtained from Z x [O,WI]\{(OO,WI)} as follows: for each 
Q in [O,WI) and each f3 in [O,WI], identify the point (bOt, (3) with 
the point (00,0). Then every regular T} continuous image of 
Y is SMR but Y is not RFC. 

In the above example, there is an uncountable chain of nonemp­
ty SMR subspaces of Y (each of which is a topological copy of 
Y) such that the intersection of these subspaces is empty. 

Q34. [BB, FPI] Is every RFC space necessarily compact? 
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Q35. Does every MU space have a base of open sets with U­
closed complements'? 

Q36. A Urysohn space is U -functionally compact (UFe) if 
every continuous function onto a Urysohn space is closed. Is 
there a noncompact UFe space '? 

Q37. [St4] Is it true that every U -closed space is a retract of 
an MU space (under an open, perfect map)? 

If Q37 has an affirmative answer, then every Urysohn space 
can be embedded in a MU space, and this would answer part 
of Q7. 

In 1983, Pettey established the next result. 

4.8. [Pe3] Every locally R-closed, R-closed space is the retract, 
under an open and perfect map, of an R-closed, rim R-closed 
space. 

This result answers a question posed by Dow and Porter [D­
PI] of whether every R-closed, rim R-closed space is compact, 
since the space S of 1.1 -is noncompact, locally R-closed, and 
R-closed. 

It is known [Pe3] that the locally R-closed property is pre­
served by open continuous mappings. 

Q38. If a space Y is a retract of a locally R-closed space, then 
is Y also locally R-closed'? 

The analogous question about locally H-closed spaces has 
been answered in the affirmative by Girou [Gi]. Furthermore, 
as is shown below, the answer to Q38 is yes when the less re­
strictive definition of locally R-closed (see the paragraph after 
Q19) is used. 

4.9. Suppose X is a regular space having a quasi-base of R­
closed neighborhoods (i.e., for every point x and every neigh­
borhood U of x, there is an R-closed neighborhood N of x such 
that N ~ U). Then every retract of X has a quasi-base of 
R-closed neighborhoods. 
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Proof: Let r be a retraction of X onto a subspace Y of X. 
,Let y be a point of Y and U an open neighborhood of y in Y. 
Choose N to be an R-closed neighborhood of y in X such that 
N ~ r+-[U]. Then y E (Y n intxN) ~ intyr[N] ~ r[N] ~ u. 
Since r[N] is necessarily R-closed, this completes the proof. 
o 

The following two problems are old and well-known in the 
folklore literature; they are questions that most researchers in 
this area have tried at one time or another. The two problems 
are motivated by the facts that all H-closed space is minimal 
Hausdorff iff it is semiregular and a CH-closed space is minimal 
CH iff it is completely regular (iff :it is compact). 

Q39. Find a property P which does not imply R-closed for 
which a space is R-closed and has property P iff it is M R. 

Q40. Find a property Q which does not imply U -closed for 
which a space is U -closed and has property Q iff it is M U . 

We now focus on the classification of R-closed and V-closed 
spaces by various cardinality functions. The examples of non­
compact, R-closed spaces so far presented have not been sep­
arable nor first countable. Using the continuum hypothesis, 
Stephenson [St2] gave an example of a noncompact, separable, 
first countable R-closed space: Hechler [Hec] modified this ex­
ample and eliminated the continuum hypothesis assumption. 
This example is now presented. 

4.10. Let X = N u M where M is an infinite maximal 
almost disjoint family on N. A set (1 ~ X is defined to be open 
if M E M n U implies M\U is finite. The space X is the well­
known \II space (see [GJ, PW]) which is first countable, zero­
dimensional, locally compact, feebly compact, and not normal. 
Also, M can be selected so that 1M I = c and there is some 
A ~ M such that IAI = c and for each open set U of X, IUnAI 
> w implies IcIUnM\AI > w. Let Band C be disjoint subsets 
of A such that 181 = lei = c. Let f : 8 ~ M\A and 9 : 
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C ~ M\A be bijections. Let Y denote the quotient space of 
X x Z where these pairs of points are identified: (g(x), i) and 
(x,i + 1) for x E C, (x,i) and (g(x),i -1) for x E C, (f(x),i) 
and (x,i-1) for x E B, (x,i) and (f(x),i+ 1) for x E B, (x,i) 
and (g+-(f(x)),i+2) for x E B, and (x,i) and (f+-(g(x)),i-2) 
for x E C.Let Z = Y u {±oo} and denote the image of X x {n} 
in. Y as X n • A subset U ~ Z is defined to be open if U n Y 
is open in Y, and 00 E U implies there is n E Z such that 
(N U B) x in} U (X\C) x {n + I} U U{Xm : m ~ n +2} ~ U, 
and -00 E U implies there is n E Z such that (N U C) x {n} U 
(X\B) x {n - I} U U{Xm : m ~ n - 2} ~ U. The space Z 
is first countable, separable, feebly compact, and SMR but is 
not countably compact. 

The character of a space X, denoted as 'l/J(X), is the least 
cardinal .A such that every point of X has a neighborhood base 
of cardinality less than or equal to.A. A well known result of 
Ahangel'skii for compact Hausdorff space (IXI ~ 21P(X) when­
ever X is compact Hausdorff) has been extended to H-closed 
spaces fn [DP3] and shown to be false for R-closed spaces in 
[DP2]. The following question about V-closed spaces remains 
open. 

Q41. Prove or disprove that if X is U-closed, IXI ~ 21P(X). 

We do not know the answer to Q41 even in the class of first 
countable spaces nor do we know the answer to Q14 in the 
more restrictive setting of first countable spaces. 

Q42 Is a first countable space compact when every closed sub­
set is R-closedlf 

By 3.11, a space in which every closed subset is R-closed is 
countably compact. If the first countable hypothesis of Q42 is 
replaced by perfect (i.e., every closed set is a Gs), then Q42 has 
an affirmative answer under the assumption of Martin's axiom 
and the negation of the continuum hypothesis. This follows by 
a result of Weiss [Ws], who has established that a perfect, regu­
lar, countably compact space is compact under the assumption 
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of Martin's axiom and the negation of the continuum hypoth­
eSIS. 

Another question about first countable spaces is the follow­
Ing: 

Q43. [Pol] Is every first countable C H -closed space !(atetov 
(first countableJ-CH? 

Recall that the weigh wZ of a space Z is the least cardinal 
of a base of Z. If X and Yare compact Hausdorff spaces 
and f : X --+ Y is a continuous surjection, then wY ~ wX; 
this result is also true when X is H-closed and Y is minimal 
Hausdorff [Fr2]. We do not know the answer in the setting of 
R-closed spaces. 

Q44. If X and Y are R-closed spaces arid f : X --. Y is a 
continuous surjection, is it true that wY ~ wX? 

We conclude this section with diagrams indicating the known 
relationships between some of the regular classes discussed so 
far. " 

Let CPT denote the class of compact Hausdorff spaces, CRC 
denote regular spaces for which all closed sets are R-closed, and 
RC denote R-closed spaces. We have these two diagrams: 

CPT ~ CRC ~ RFC ~ M R ~ RC and 

CRC S; SMR ~ MR 

We do not know if CPT = CRC (Q14) or if CRC = RFC 
(Q32). 

5. RECENT DEVELOPMENTS - RELATED AREAS 

The first area we examine is the class of hyperspaces. For a 
space X, let 2x denote the set of all nonempty closed subsets 
of X with the topology generated by the base {(UI , • .. , Un) : 
n E N, Ui E T(X) for i = 1, ... ,n} where if AI, ... ,An ~ 

X, (AI, . .. , An) = {F E 2x : F ~ U{Ai : 1 5 i :5 n}, F n 
Ai =I- 0 for I ~ i ~ n}. The investigation of hyperspaces is 
motivated by QI4 and the well-known fact that 2x is compact 
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iff X is compact. Friedler, Dickman, and Krystock established 
the next result. 

5.5. [FDK] For a Hausdorff space X, X is compact iff 2x is 
R-closed. 

A question in [FDK] of whether 2x has the property that 
every regular filter clusters (i.e., R-closed without the regu­
larity property) whenever X is R-closed is answered in the 
negative by using the next result and the R-closed space M of 
4.3. (Since M x M is not R-closed, by 5.2, there is a regular 
filter on 2M which does not have a cluster point.) 

5.2. [FP2] If X is regular and every regular filter on 2x has 
a cluster point, then 2x is feebly compact and xn is R-closed 
for each n E N. 

Q45. [FP2] If X is R-closed and 2x is feebly compact, then 
does every regular filter on 2x have a cluster point? 

Q46. (FP2] What are necessary and sufficient conditions on 
a space X for every regular filter on 2x to have a cluster point? 

The second area of investigation is the class of S(o) spaces. 
Let 0 > 0 be an ordinal. Two filters F and g on a space X 
are R(o)-separated (resp., U(o)-separated) if there are open 
families {Up: {3 < o} ~ F and {Vp : {3 < o} ~ g such that 
Uon Vo = 0 (resp., clUonclvo = 0) and for ,+1 < 0, clU--y+l ~ 

U'Y and clV'Y+I ~ V'Y. A space X is R(o) (resp., U(o)) if for 
distinct points x, y EX, the neighborhood filters Nx and Ny 
are R(o)-separated (resp., U(o)-separated). For 0 2:: w, R(o) 
and U(o) are equivalent concepts. So, for 0 ~ w, let S(o) = 
R(o) = U(o:) and for 0 < n < w, let 8(2n-1) = R(n) and 8(2n) 
= U(n). Now the property of Hausdorff is the same as 5(1), 
Urysohn the same as 8(2), a 8(0: +1) space is 5(0:), a regular 
space is S(w) (but not necessarily S(w +1)), and a CH space 
is 5(0) for 0 < WI (but not necessarily 5(WI)). 

5.3. [PV] let 0 > 0 be an ordinal. 

(1) A minimal S (0) space is S (0)-closed and semiregular. 
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(2) A compact space is minimal S(o) for 0 < WI. 

(3)	 An 8(0) space can be densely embedded in an S(o)­
closed space. 

(4) A	 minimal S(o) space is regular when 0 is a limit or­
dinal. 

(5)	 An 8(0 +1), minimal 8(0) space is regular. 
(6) A CH, minimal S(o) space is regular whenever 0 ~ WI. 

(7) A space is R-closed iff it is S(w)-closed and regular. 
(8) A space is MR iff it is minimal S(w). 

Many of the questions in this survey are analogous to open 
questions for S(0) spaces. 

The third area of investigation is in the setting of subcom­
pact spaces. J. de Groot defined a regular space X to be a 
subcompact if there is a base B of open sets of X such that 
if :F ~ B is a regular filter base, then n:F =F 0. Every local­
ly compact Hausdorff space is subcompact relative to a base 
of open sets with compact closures and in metrizable spaces, 
subcompactness is equivalent to completeness, so this concept 
yields a general setting for the Baire category theorem. Sub­
compact spaces are preserved by products [dG] and by open 
maps if either the domain or range is metrizable or if the range 
is a Moore space [AL]. Every R-closed space is subcompact and 
an infinite discrete space is subcompact but not R-closed. The 
following questions, due to Aarts and Lutzer, are apparently 
still open. 

Q47. If X is subcompact and Y is a dense Go subset of X, is 
Y subcompact? 

Q48. Do open mappings between regular spaces presenJe sub­
compactness? 

Q49. Do perfect, irreducible mappings preserve subcompact­
ness? 

For a Hausdorff space X, let S(X) be the Stone space of the 
Boolean algebra of all regular open sets of X. The absolute 
of X is the subspace {U E S(X) : U has a cluster point}; 
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a more detailed discussion of absolutes is provided in [PW]. 
The absolute of an R-closed space is both feebly compact and 
subcompact. 

Q50. Characterize the absolute of an R-closed space. 

Q51. Characterize the absolute of a U -closed space. 
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