# **Topology Proceedings**



| Web:    | http://topology.auburn.edu/tp/         |
|---------|----------------------------------------|
| Mail:   | Topology Proceedings                   |
|         | Department of Mathematics & Statistics |
|         | Auburn University, Alabama 36849, USA  |
| E-mail: | topolog@auburn.edu                     |
| ISSN:   | 0146-4124                              |

COPYRIGHT © by Topology Proceedings. All rights reserved.

## METRIZABLE GENERALIZED ORDER SPACES

#### E.C. MILNER<sup>1</sup> AND SHANGZHI WANG<sup>2</sup>

ABSTRACT. In 1971 D.J. Lutzer [10] proved a metrization theorem for generalized order topological spaces (GOspaces) which says that, if X is a p-embedded subspace of a linear ordered topological space, then X is metrizable if and only if it has a  $G_{\delta}$ -diagonal. After stating this theorem, he raised the question whether there is any larger class of GO-spaces than the p-embedded subspaces of linear ordered topological spaces for which the  $G_{\delta}$ -diagonal metrization theorem is true. In this paper we answer this question negatively by proving the following result. If  $(X, \leq, \tau)$  is a metrizable GO-space and d is a metric on X which is compatible with the topology  $\tau$ , then there is a metrizable linear ordered topological space  $(Y, \leq_Y, \lambda)$ and a metric d<sup>\*</sup> compatible with  $\lambda$  such that (i)  $(X, \leq)$  is a subordered set of  $(Y, \leq_Y)$ , (ii)  $d^*$  is equivalent to d on X (equal if d is bounded), and (iii)  $(X, \tau)$  is a p-embedded closed subspace of  $(Y, \lambda)$ .

#### 1. INTRODUCTION

Let  $(X, \leq)$  be a linearly ordered set. We denote by

 $X(< a) = \{x \in X : x < a\}$  and  $X(> a) = \{x \in X : x > a\}$ 

the open intervals determined by the element  $a \in X$ , and as usual (a, b) denotes the open interval  $X(> a) \cap X(< b)$ . We also write  $X(\le a) = X(< a) \cup \{a\}$ , and  $X(\ge a)$  is similarly

<sup>&</sup>lt;sup>1</sup>Research supported by NSERC grant #69-0982.

<sup>&</sup>lt;sup>2</sup>This paper was written while the second author was a Visiting Scholar at the University of Calgary.

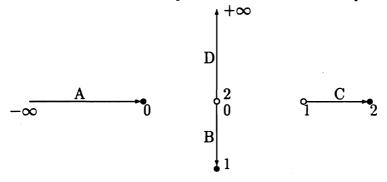
defined. The *linear order topology*,  $\lambda$ , on X has for a subbasis the family of intervals

$$\mathcal{B} = \{X\} \cup \{X(< a) : a \in X\} \cup \{X(> a) : a \in X\}.$$

A subspace of a linear ordered topological space (LOTS) is not, in general, a LOTS. For example,  $\Re$ , the real line with the natural ordering is a LOTS, but the subspace  $X = \{0\} \cup \{x : |x| > 1\}$  is not since  $\{0\}$  is an open set in the induced topology on X, but not in the linear order topology on X. A topology  $\tau$ on the linearly ordered set  $(X, \leq)$  is called a *generalized order* topology on X, briefly we say  $(X, \leq, \tau)$  is a GO-space, if  $\tau$ extends the order topology and has a base of order-convex sets. An equivalent formulation, and the one we shall use, is that there are two subsets L, R of X such that, if  $a \in L$  then a is not the maximum element of X and  $X(\leq a)$  is open, and if  $a \in R$  then a is not the minimal element of X and  $X(\geq a)$ is open, and

$$\mathcal{B} \cup \{X(\leq a) : a \in L\} \cup \{X(\geq a) : a \in R\}$$

is a subbasis for  $\tau$ . A subspace of a LOTS is a GO-space.



#### Diagram 1.

A topology  $\tau$  on a set X is *metrizable* if there is a metric on X giving the same open sets. As an example, consider the metric space  $(\Re, d)$  on the real line illustrated in Diagram 1. In the diagram the segments A, B, C, D represent respectively the subintervals of the real line  $(-\infty, 0], (0, 1], (1, 2], (2, \infty)$ .

182

The metric is not the usual one for the real line, but the one induced by the distance in the plane. So, for example, the distance between the points  $\epsilon$  and  $2 + \epsilon$  is  $2\epsilon$  (if  $0 < \epsilon < 1$ ). Of course, this generalized order space (in which  $L = \{0, 1, 2\}$  and  $R = \emptyset$ ) is equivalent to that induced by the usual metric on  $\Re$ by the subspace  $(-\infty, 0] \cup (1, 2] \cup (3, 4] \cup (5, \infty)$ . In general, the structure of a GO-space is rather more complex.

During the last twenty years or so several papers have been written on the theory of LOTS and GO-spaces, and in particular about the metrization problem for such spaces. The first result in this direction was by V.V. Fedorčuk [7] who proved that a LOTS with a  $\sigma$ -locally countable base is metrizable. Then G. Creede [4] proved that a semi-stratifiable LOTS is metrizable. Shortly afterwards, D.J. Lutzer [9] generalized Creede's result by showing that a LOTS is metrizable if and only if it has a  $G_{\delta}$ -diagonal, in other words if  $\Delta = \{(x, x) : x \in X\}$  is a  $G_{\delta}$ -set in the product space  $X \times X$ ; of course, any metric space has a  $G_{\delta}$ -diagonal. Also, M.J. Faber [5] used some classical theorems of R.H. Bing to obtain metrization theorems for LOTS.

D.J.Lutzer [10] was the first to consider subspaces of LOTS, i.e.GO-spaces, and he established the following sufficient condition for a subspace of a LOTS to be metrizable.

**Theorem 1.1.** Let  $(Y, \leq, \lambda)$  be a LOTS and let  $\tau$  be the relative topology on a p-embedded subspace X. If  $(X, \tau)$  has a  $G_{\delta}$ -diagonal, then  $(X, \tau)$  is metrizable.

Recall that the space X is a p-embedded subspace of Y if there is a sequence  $\langle \mathcal{U}(n) : n < \omega \rangle$  of covers of X by open subsets of Y such that, for each  $x \in X$ ,

$$\bigcap_{n<\omega}St(x,\mathcal{U}(n))\subseteq X,$$

where  $St(x, \mathcal{U}(n)) = \bigcup \{ U \in \mathcal{U}(n) : x \in U \}.$ 

M.J. Faber [5], [6], J.M. van Wouwe [12], [13], and H. Bennett & D.J. Lutzer [1] obtained various necessary and sufficient conditions for a GO-space to be metrizable, and H. Bennett in

[2] used some of these results to give another proof of an observation of S. Purisch ([11] Propositions 2.4 and 2.5) that there is a metric  $\rho$  on the GO-space  $(X, \leq, \tau)$  which is compatible with the topology  $\tau$  and respects the order in the sense that

(1) 
$$x \leq y \leq z \Rightarrow \rho(x,y) \leq \rho(x,z).$$

(Note that the metric on  $\Re$  described in diagram 1 does not respect the order.) More recently, H. Bennett [3] improved Lutzer's theorem by proving that a LOTS with an  $S_{\delta}$ -diagonal is metrizable.

In this paper we settle a question raised by D.J. Lutzer in [10]. After the statement of Theorem 1.1 in [10], Lutzer remarked that he did not know of any class of GO-spaces larger than the *p*-embedded subspaces of LOTS for which the  $G_{\delta}$ -metrization theorem is true. We show that there is no larger class. In other words, if  $(X, \leq, \tau)$  is a metrizable GO-space, there is some LOTS Y such that X is a *p*-embedded induced subspace. In fact, there is a metrizable LOTS Y. We prove the following theorem.

**Theorem 1.2.** If  $(X, \leq_X, \tau)$  is a metrizable generalized order space with metric d, then there is a metrizable LOTS  $(Y, \leq_Y, \lambda)$ with metric d<sup>\*</sup> such that (i)  $\leq_X = \leq_Y |X \times X, (ii) d^*$  is equivalent to d on X (equal to d on X if d is bounded), and (iii) X is a p-embedded closed subspace of Y.

As a corollary of Theorems 1.1 and 1.2 we have a necessary and sufficient condition for a GO-space to be metrizable.

**Theorem 1.3.** A GO-space is metrizable if and only if it is a p-embedded closed subspace of a metrizable LOTS.

### 2. Arc-connected extension of a metric space

In order to prove Theorem 1.2 we need a result about arcconnected metric spaces. A topological space  $(X, \tau)$  is arcconnected if for any two distinct points  $a, b \in X$  there is a homeomorphic map  $f : [0,1] \to X$  such that f(0) = a

184

and f(1) = b. The following theorem shows that a metric space can be isometrically embedded in an arc-connected metric space. In fact, for our application we shall require the result for pseudo-metric spaces, i.e. when the metric  $d: X \times X \Rightarrow \Re$ is non-negative, symmetric and satisfies the triangle inequality, but we do not insist that  $d(x, y) = 0 \Rightarrow x = y$ . Of course, if (X,d) is a pseudo-metric space and we define an equivalence relation  $\sim$  on X by  $x \sim y \iff d(x,y) = 0$ , then  $X/\sim$  is a metric space with the induced metric. Theorem 2.1 is proven in ([8, page 81) for bounded metric spaces (which is the essential content). We give the details of the proof since we require the result for pseudo-metrics and we continue to use the notation introduced in the proof.

**Theorem 2.1.** If (X, d) is a (pseudo-) metric space, then there is an arc-connected (pseudo-) metric space  $(X^*, d^*)$  such that (X, d) can be isometrically embedded into  $(X^*, d^*)$ .

**Proof:** Let < be a linear ordering of X. For distinct elements  $a, a' \in X$  with a < a' we introduce a copy of the open unit interval  $I(a, a') = \{x_{\lambda}(a, a') : 0 < \lambda < 1\}$ ; we also define  $x_0(a, a') = a$  and  $x_1(a, a') = a'$ . We assume that  $I(a, a') \cap I(b, b') = \emptyset$  if  $(a, a') \neq (b, b')$ , and define  $X^* = X \cup \bigcup \{I(a, b) : a, a' \in X, a < a'\}$ . We define a (pseudo-)metric  $d^*$  on  $X^*$  by setting, for  $x = x_{\lambda}(a, a')$  and  $y = x_{\mu}(b, b')$ ,

$$d^*(x,y) = \begin{cases} |\lambda - \mu| d(a,a') & \text{if } (b,b') = (a,a') \\ \lambda' \mu' d(a,b) + \lambda' \mu d(a,b') + \lambda \mu' d(a',b) \\ + \lambda \mu d(a',b') & \text{if}(b,b') \neq (a,a') \end{cases}$$

where we have written  $\lambda' = 1 - \lambda$ ,  $\mu' = 1 - \mu$ .

It is easy to check that  $d^*$  is unambiguously defined. For example, using the second line of the definition to compute the distance  $d^*(x_\lambda(a,a'),a) = d^*(x_\lambda(a,a'),x_1(c,a))$ , where  $c \neq a$ , we get (since  $\mu = 1, \mu' = 0$ )

$$\lambda' d(a,a) + \lambda d(a',a) = \lambda d(a,a'),$$

and this is the same as the value that we obtain using the first line.

Note that, if  $b \in X$ , then

 $d^*(x_\lambda(a,a'),b) = \lambda' d(a,b) + \lambda d(a',b).$ 

Also, if  $(a, a') \neq (b, b')$  then

$$d^*(x_{\lambda}(a, a'), x_{\mu}(b, b')) = \lambda' d^*(a, x_{\mu}(b, b')) + \lambda d^*(a', x_{\mu}(b, b'))$$

$$(2) \qquad = \mu d^*(x_{\lambda}(a, a'), b') + \mu' d^*(x_{\lambda}(a, a'), b).$$

To show that  $d^*$  is a (pseudo-) metric is a little tedious. It is obvious that  $d^*$  is symmetric. Also, if d is a metric, then  $d^*(x,y) = 0 \iff x = y$ . We have to check that the triangle inequality holds.

**Case 1:** If  $x = x_{\lambda}(a, a')$ ,  $y = x_{\mu}(a, a')$ ,  $z = x_{\nu}(a, a')$ , it is obvious that  $d^{*}(x, z) \leq d^{*}(x, y) + d^{*}(y, z)$ .

**Case 2:** Let  $x = x_{\lambda}(a, a')$ ,  $y = x_{\mu}(b, b')$ ,  $z = x_{\nu}(c, c')$ , where (a, a'), (b, b') and (c, c') are all different. We have

$$\begin{aligned} d^*(x,y) &= (\lambda'\mu'd(a,b) + \lambda'\mu d(a,b') + \lambda\mu'd(a',b) \\ &+ \lambda\mu d(a',b'))(\nu + \nu') \\ &\leq \lambda'\mu'\nu'(d(a,c) + d(b,c)) + \lambda'\mu'\nu(d(a,c') + d(b,c')) \\ &+ \lambda'\mu\nu'(d(a,c) + d(b',c)) + \lambda'\mu\nu(d(a,c') + d(b',c')) \\ &+ \lambda\mu'\nu'(d(a',c) + d(b,c)) + \lambda\mu'\nu(d(a',c') + d(b,c')) \\ &+ \lambda\mu\nu'(d(a',c) + d(b',c)) + \lambda\mu\nu(d(a',c') + d(b',c')) \\ &= (\lambda'\nu'd(a,c) + \lambda\nu'd(a',c) + \lambda'\nu d(a,c') + \lambda\nu d(a',c')) \\ &+ (\mu'\nu'd(b,c) + \mu\nu'd(b',c) + \mu'\nu d(b,c') + \mu\nu d(b',c')) \\ &= d^*(x,z) + d^*(y,z). \end{aligned}$$

**Case 3:** Let  $x = x_{\lambda}(a, a')$ ,  $y = x_{\mu}(a, a')$ ,  $z = x_{\nu}(c, c')$ , where (a, a') and (c, c') are different. We need to verify that the following two inequalities hold:

(3)  $d^*(x,y) \le d^*(x,z) + d^*(y,z)$ 

(4) 
$$d^*(y,z) \leq d^*(x,y) + d^*(x,z).$$

186

First we show that (3) and (4) hold in the special case when  $\lambda = 0, \mu = 1$ , i.e. when x = a, y = a'. For these special values we have

$$\begin{aligned} d(a,a') &\leq \nu(d(a,c') + d(a',c')) + \nu'(d(a,c) + d(a',c)) \\ &= d^*(a,z) + d^*(a',z), \end{aligned}$$

and

$$d^{*}(a',z) = \nu'd(a',c) + \nu d(a',c')$$
  

$$\leq \nu'(d(a,a') + d(a,c)) + \nu(d(a,a') + d(a,c'))$$
  

$$= d(a,a') + d^{*}(a,z).$$

(3) and (4) follow from these special cases. For (3) we may assume that  $\lambda < \mu$ . Then, since  $\mu - \lambda \leq \min\{\mu + \lambda, \mu' + \lambda'\}$ , it follows that

$$\begin{aligned} d^*(x,y) &= (\mu - \lambda)d(a,a') \leq (\mu - \lambda)(d^*(a,z) + d^*(a',z)) \\ &\leq (\mu' + \lambda')d^*(a,z) + (\mu + \lambda)d^*(a',z) \\ &= (\mu' + \lambda')(\nu'd(a,c) + \nu d(a,c')) + (\mu + \lambda)(\nu'd(a',c) \\ &+ \nu d(a',c')) \\ &= (\lambda'\nu'd(a,c) + \lambda\nu'd(a',c) + \lambda'\nu d(a,c') + \lambda\nu d(a',c')) \\ &+ (\mu'\nu'd(a,c) + \mu\nu'd(a',c) + \mu'\nu d(a,c') + \mu\nu d(a',c')) \\ &= d^*(x,z) + d^*(y,z). \end{aligned}$$

This proves (3). We prove (4) under the same assumption that  $\lambda < \mu$  (the case when  $\mu < \lambda$  is similar). By (2), we have

$$d^{*}(y,z) = \mu' d^{*}(a,z) + \mu d^{*}(a',z)$$
  
=  $(\mu - \lambda)d^{*}(a',z) + \lambda d^{*}(a',z) + \mu' d^{*}(a,z)$   
 $\leq (\mu - \lambda)(d^{*}(a,a') + d^{*}(a,z)) + \lambda d^{*}(a',z) + \mu' d^{*}(a,z)$   
=  $(\mu - \lambda)d^{*}(a,a') + \lambda' d^{*}(a,z) + \lambda d^{*}(a',z)$   
=  $d^{*}(x,y) + d^{*}(x,z).$ 

Clearly the space  $(X^*, d^*)$  is an arc-connected isometric extension of (X, d). For example, if  $x = x_{\lambda}(a, a')$ ,  $y = x_{\mu}(b, b')$ , where  $(a, a') \neq (b, b')$  and a < b, then there is a homeomorphic map  $f : [0,1] \to \{x_{\nu}(a,a') : \nu \leq \lambda\} \cup I(a,b) \cup \{x_{\nu}(b,b') : \nu \leq \mu\}$ with f(0) = x, f(1) = y.

We call the (pseudo-)metric space  $(X^*, d^*)$  constructed in the theorem the *arc-connected extension* of (X, d). It should be noted that the linear ordering imposed upon X in the proof was no more than a notational convenience, the construction of  $(X^*, d^*)$  does not depend upon this ordering. In the case when (X, d) is a pseudo-metric space, then so also is  $(X^*, d^*)$ . But in this case it is clear from our definitions that, if  $a, a', b, b' \in X$ ,  $a \neq a', b \neq b'$ , then:

- (1) If d(a, a') = 0 and  $x, y \in I(a, a')$ , then  $d^*(x, y) = 0$ .
- (2) If d(a, a') = d(a, b) = d(a', b') = 0,  $x \in I(a, a')$ ,  $y \in I(b, b')$ , then  $d^*(x, y) = 0$ .
- (3) If d(a, a') = 0,  $x \in I(a, a')$ ,  $y \in I(b, b')$  and  $d^*(a, y) > 0$ , then  $d^*(x, y) > 0$ .

**Corollary 2.2.** If  $(X^*, d^*)$  is the arc-connected extension of the pseudo-metric space (X, d), and if  $d(a, a') \neq 0$  and  $x \in I(a, a')$ , then there is r > 0 such that  $B^*(x, r) = \{y \in X^* : d^*(x, y) < r\} \subseteq I(a, a')$ .

Proof: Let  $x = x_{\lambda}(a, a')$ , where  $0 < \lambda < 1$ . Choose r so that  $0 < r < r' < \min\{\lambda d(a, a'), \lambda' d(a, a')\}$ . Then  $d^*(a, x) > r$ ,  $d^*(a', x) > r$ . Also, if  $y = x_{\mu}(b, b')$ , where  $(b, b') \neq (a, a')$ , then

$$d^{*}(x,y) = \lambda' \mu' d(a,b) + \lambda' \mu d(a,b') + \lambda \mu' d(a',b) + \lambda \mu d(a',b')$$
  

$$\geq (\mu'(d(a,b) + d(a',b)) + \mu(d(a,b') + d(a',b')) r'/d(a,a') \geq r' > r,$$

and the result follows.  $\Box$ 

From Corollary 2.2 we immediately obtain the following fact.

**Corollary 2.3.** Let (X, d) be a pseudo-metric space with arcconnected extension  $(X^*, d^*)$ . Let  $X' \subseteq X$  be a set such that  $\{a, a'\} \cap X' \neq \emptyset$  whenever  $a \neq a'$  and d(a, a') = 0, and let  $\hat{X} = \bigcup \{I(a, a') : a \neq a' \in X, d(a, a') = 0\}$ . Then  $d^*(x, y) > 0$  for  $x \neq y$  and  $x, y \in X^{**} = X^* \setminus (X' \cup \hat{X})$ , i.e the subspace  $X^{**}$  is a metric space.

We conclude this section with the observation that the arcconnected extension of a metric space reflects completeness.

**Theorem 2.4.** A metric space is complete if and only if its arc-connected extension is complete.

**Proof:** Let  $(X^*, d^*)$  be the arc-connected extension of the metric space (X, d). Suppose  $X^*$  is complete. Then, if  $(a_n)$  is a Cauchy sequence in X, there is  $x \in X^*$  such that  $a_n$  converges to x. By Corollary 2.2 it follows that  $x \in X$ , and so X is complete.

Now suppose that X is complete. Let  $(y_n)$  be a Cauchy sequence in  $X^*$ ,  $y_n = x_{\lambda_n}(a_n, b_n)$ . We need to show that some subsequence of  $(y_n)$  converges. Suppose  $\liminf \lambda_n = 0$ ; we can assume that  $\lambda_n \to 0$ . Since  $d^*(a_n, y_n) \to 0$  it follows from the triangle inequality that  $(a_n)$  is also Cauchy and so converges to some  $a \in X$ . Since  $d^*(a_n, a)$  and  $d^*(a_n, y_n)$  both converge to 0, it follows that  $y_n \to a$ . A similar argument applies if  $\limsup \lambda_n = 1$ . Thus we may assume that (some subsequence)  $\lambda_n \to p$  where 0 . By Corollary 2.2 it follows that the $pairs <math>(a_n, b_n)$  are eventually constant, say equal to (a, b). Then  $y_n \to x_p(a, b)$ .  $\Box$ 

#### 3. PROOF OF THEOREM 1.2

Let  $(X, \leq, \tau)$  be a metrizable GO-space. We may assume that the metric d on X which is compatible with  $\tau$  is bounded. Let  $L = \{x \in X : X(\leq x) \text{ is open}\} \setminus \{\max X\}, R = \{x \in X : X(\geq x) \text{ is open}\} \setminus \{\min X\}.$ 

If the element  $x \in X$  has an immediate successor in the ordering on X, we denote its successor by  $x^+$ ; similarly if there is an immediate predecessor we denote it by  $x^-$ . If  $x \in L$  has no immediate successor in  $(X, \leq)$ , then we extend the order by introducing a new element  $x^+$  which is the immediate successor of x in the extended order. Similarly, for each element of R

which has no immediate predecessor in the order on X, we introduce one which we denote by  $x^-$ . Let  $(X', \leq)$  be the extended ordered set which includes these additional elements  $x^+$  or  $x^-$  for appropriate elements  $x \in L \cup R$ . Thus each element of L has an immediate successor and each element of R has an immediate predecessor in this extended order.

We define a symmetric non-negative real function  $d': X' \times X' \to \Re$  as follows: for  $x, y \in X'$ ,

$$d'(x,y) = \begin{cases} d(x,y) & \text{if } x, y \in X; \\ \inf & \sup & d(x,u) & \text{if } x \in X, a \in L, \\ v \in X(>a) & a < u < v & y = a^+ \notin X; \\ \inf & \sup & d(x,u) & \text{if } x \in X, a \in R, \\ v \in X(a) & a < u < v & x = a^+ \notin X, \\ w \in X(>b) & b < t < w & y = b^+ \notin X. \end{cases}$$

There are similar definitions for  $d'(a^+, b^-)$  and  $d'(a^-, b^-)$  obtained by modifying the last line of the above in an obvious manner.

We first observe that

(5) 
$$d'(x,y) > 0 \text{ if } x \in X, y \in X' \setminus X.$$

We only prove this for the case when  $y = a^+$  for some  $a \in L$ which has no immediate successor in X; the case when  $y = a^$ for some  $a \in R$  is similar. Suppose x < a. Since  $X(\leq a)$  is open and the metric d is compatible with  $\tau$ , there is r > 0such that  $B_X(x,r) = \{y \in X : d(x,y) < r\} \subseteq X(\leq a)$ . Thus  $d(x,u) \ge r$  for all  $u \in X(>a)$  and since  $X(>a) \ne \emptyset$  it follows that  $d'(x,y) \ge r$ . Now suppose that x > a. Since X(>a) has no first element in the ordering of X, there is some  $v \in X$  such that a < v < x. Then X(>v) is an open neighbourhood of x and so there is some r > 0 such that  $B_X(x,r) \subseteq X(>v)$ . This implies that  $d'(x,y) \ge r$  and (5) follows. We now verify that d' is a pseudo-metric on X'. Since d' is symmetric by definition, we need only check that the triangle inequality

(6) 
$$d'(x,z) \leq d'(x,y) + d'(y,z),$$

holds for distinct  $x, y, z \in X'$ . There are several different cases that need to be considered, but these are all rather similar, and to avoid trivial repetition when we consider a point, say x, in  $X' \setminus X$  we assume  $x = a^+$  for some  $a \in L$ .

Case 1.  $x, z \in X, y \in X' \setminus X$ .

Assume  $y = a^+$  for some  $a \in L$ . Then, for a < u < v,  $u, v \in X$ , we have

$$\begin{array}{rcl} d'(x,z) &=& d(x,z) \leq d(x,u) + d(u,z) \\ &\leq& \sup\{d(x,u): a < u < v\} + \sup\{d(u,z): a < u < v\} \end{array}$$

and hence (6) holds.

Case 2.  $x, y \in X, z \in X' \setminus X$ .

Assume  $z = a^+$  for some  $a \in L$ . For  $a < u < v, u, v \in X$  we have

$$d(x,u) \le d(x,y) + d(y,u)$$

and so, taking the supremum of both sides for u < v, we have  $\sup\{d(x,u): a < u < v\} \le d(x,y) + \sup\{d(y,u): a < u < v\}.$ Finally taking the infimum of both sides of this for v > a we get (6).

Case 3.  $x \in X$ ;  $y, z \in X' \setminus X$ .

Assume  $y = a^+$ ,  $z = b^+$  for some  $a, b \in L$ . For a < u < v, b < u' < v' and  $u, v, u', v' \in X$  we have

$$\begin{array}{rcl} d(x,u') &\leq & d(x,u) + d(u,u') \\ &\leq & \sup\{d(x,u): a < u < v\} \\ &+ \sup\{d(u,u'): a < u < v\}, \end{array}$$

and hence

$$\sup\{d(x,u') : b < u' < v'\} \leq \sup\{d(x,u) : a < u < v\} \\ + \sup\{d(u,u') : a < u < v, b < u' < v'\}.$$

Taking the infimum over v > a and v' > b, (6) follows. Case 4.  $x, z \in X' \setminus X, y \in X$ . This is similar to Case 3. Case 5.  $x, y, z \in X' \setminus X$ .

Assume  $x = a^+$ ,  $y = b^+$ ,  $z = c^+$  for some  $a, b, c \in L$ . Let a < u < v, b < u' < v', c < u'' < v''. We have

$$\begin{array}{rcl} d(u,u'') &\leq & d(u,u') + d(u',u'') \\ &\leq & \sup\{d(u,u'): a < u < v, b < u' < v'\} \\ &+ & \sup\{d(u',u''): b < u' < v', c < u'' < v''\}, \end{array}$$

and therefore,

$$\sup\{d(u, u'') : a < u < v, c < u'' < v''\} \\ \leq \sup\{d(u, u') : a < u < v, b < u' < v'\} \\ + \sup\{d(u', u'') : b < u' < v', c < u'' < v''\}.$$

Taking the infimums of the terms on the left and right sides of this inequality gives (6).

This proves that d' is a pseudo-metric on X'. Unfortunately, it need not be a metric. To see this consider again the example illustrated in Diagram 1. In that example,  $L = \{0, 1, 2\}, R = \emptyset$ , and we have to adjoin the additional points  $0^+$ ,  $1^+$  and  $2^+$ . The distance between the distinct points  $0^+$  and  $2^+$  is  $d'(0^+, 2^+) = \inf_{0 < \epsilon < 1} \sup\{d(\xi, 2 + \eta) : 0 < \xi < \epsilon, 0 < \eta < \epsilon\} = 0$ . However, by (5), the set  $Z = \{x \in X' : (\exists y \neq x)d'(x, y) = 0\} \subseteq X' \setminus X$ .

By Theorem 2.1 there is an arc-connected extension  $(X^*, d^*)$ of the pseudo-metric space (X', d'). Also, by Corollary 2.3 the subspace  $X^{**}$  is a metric space, where  $X^{**} = X^* \setminus \hat{X}$  and  $\hat{X} = \bigcup \{I(a, a') \cup \{a, a'\} : a \neq a' \in X', d'(a, a') = 0\}$ . Here we use the same notation as in the proof of Theorem 2.1 so that  $I(a, a') = \{x_{\lambda}(a, a') : 0 < \lambda < 1\}$  for points  $a, a' \in X'$  with a < a'.

We now show that (5) extends to the following:

(7) 
$$d^*(x,y) > 0 \text{ if } x = x_\lambda(a,a'), a \in X, 0 \le \lambda < 1$$
  
and  $y \in X^* \setminus \{x\}.$ 

For, let  $y = x_{\mu}(b, b')$ , where  $b, b' \in X'$  and  $0 \leq \mu \leq 1$ . If (b, b') = (a, a'), then  $\mu \neq \lambda$  and  $d^*(x, y) = |\lambda - \mu| d'(a, a') > 0$  by (5). Also, if  $(b, b') \neq (a, a')$ , then  $d^*(x, y) \geq \lambda'(\mu' d(a, b) + \mu d(a, b')) > 0$  again by (5).

It follows from (7) that  $Y = X \cup L^* \cup R^*$  is disjoint from  $\hat{X}$ , where  $L^* = \bigcup \{I(x, x^+) : x \in L\}, R^* = \bigcup \{I(x^-, x) : x \in R\}$ . Hence the restriction of  $X^{**}$  to Y is also a metric space.

We define a linear ordering  $\leq_Y$  of Y as follows:

$$x \leq_Y y \iff \begin{cases} x \leq y & \text{when } x, y \in X \\ x \leq a & \text{when } x \in X, a \in L \text{ and } y \in I(a, a^+) \\ x \leq a & \text{when } x \in X, a \in R \text{ and } y \in I(a^-, a) \\ a \leq y & \text{when } y \in X, a \in L \text{ and } x \in I(a, a^+) \\ a \leq y & \text{when } y \in X, a \in R \text{ and } x \in I(a, a^+) \\ a \leq b & \text{when } a, b \in L \cup R, x \in I(a, a^+) \text{ or } \\ I(a^-, a), \text{ and } y \in I(b, b^+) \text{ or } I(b^-, b) \\ \lambda < \mu & \text{when } a \in L, x = x_\lambda(a, a^+), \\ y = x_\mu(a, a^+) \text{ or } a \in R, x = x_\lambda(a^-, a), \\ y = x_\mu(a^-, a) \end{cases}$$

It is easy to check that  $\leq_Y$  is a linear order which extends the order on X, and also that, for  $a \in L$  and  $b \in R$ ,  $I(a, a^+)$  and  $I(b^-, b)$  are intervals in  $(Y, \leq_Y)$ . (As observed by the referee, the order on Y is more easily visualized if we identify Y with  $[X \times \{0\}] \cup [L \times (0, 1)] \cup [R \times (-1, 0)]$ , and then  $\leq_Y$  is just the order inherited from the lexicographic order on  $X \times (-1, 1)$ .)

To complete the proof of the theorem we need to show two things: (A) the metric  $d^*$  is compatible with the linear order topology on Y; (B) X is a p-embedded, closed subspace of Y.

**Proof of** (A): We first show that the linear order topology on Y is contained in the metric topology defined by the metric  $d^*$ . Let  $z \in Y$  and let J be an open interval in the order topology on Y which contains z. We have to show that there is r > 0 such that the open ball  $B_Y(z,r) = \{y \in Y : d_Y^*(y,z) < r\}$  is contained in J.

If  $z \in L^*$ , then there is  $a \in X$  such that  $z \in I(a, a^+)$ . By

Corollary 2.2 there is r' > 0 such that  $B_Y(z,r') \subseteq I(a,a^+)$ and hence there is r > 0 such that  $B_Y(z,r) \subseteq J$ . Similarly if  $z \in R^*$ . Thus we may assume that  $z \in X$ . We need to consider several different cases.

Suppose that  $z \in L \setminus R$ . Since J is an open interval of Y, we may assume that  $J \cap Y(>z) \subseteq I(z, z^+)$  so that  $J \cap X \subseteq X(\le z)$ is an open neighbourhood of z in X. Since  $z \notin R$ ,  $\{z\}$  is not open in X and so there is some element  $b \in X(< z)$  such that  $(b, z) \cap X \subseteq J$ . Thus we may assume that J = (b, c), where  $b \in X$  and  $b < z < c \in I(z, z^+)$ . Since the metric d is compatible with the topology  $\tau$  on X, there is  $r_1 > 0$ such that  $B_X(z, r_1) \subseteq J \cap X$ . Also, there is  $r_2 > 0$  such that  $B_Y(z, r_2) \cap Y(\ge z) \subseteq J$ . We claim that  $B_Y(z, r) \subseteq J$ , where  $r = \min\{r_1, r_2\}$ . Since  $B_Y(z, r) \cap X = B_X(z, r)$  we need only show that  $B_Y(z, r) \setminus (X \cup I(z, z^+)) \subseteq J$ .

Let  $y \in B_Y(z,r) \setminus (X \cup I(z,z^+))$ . We consider only the case when  $y = x_\lambda(a,a^+)$  for some  $a \in L$  and  $0 < \lambda < 1$ ; the other case when  $y = x_\lambda(a^-,a)$  for some  $a \in R$  is similar. Clearly a < z since  $B_Y(z,r) \cap Y(\geq z) \subseteq I(z,z^+)$ . Suppose that a < b. It follows from the definition of  $d^*$  (see Proof of Theorem 2.1) that  $d^*(y,z) = \lambda'd'(a,z) + \lambda d'(a^+,z) \geq \min\{d'(a,z), d'(a^+,z)\}$ . Now  $d'(a,z) = d(a,z) \geq r$  since  $B_X(z,r) \subseteq \{x \in X : b < x \leq z\}$ . Also,

$$d'(z, a^+) = \inf_{v \in X(>a)} \sup \{ d(z, u) : a < u < v \} \ge r.$$

This is true since if b < v, then  $\sup\{d(z, u) : a < u < v\} \ge d(z, b) \ge r$ , and if  $a < v \le b$ ,  $d(z, u) \ge r$  for all  $u \in X$  such that a < u < v. Thus  $d^*(y, z) \ge r$ . This is a contradiction and hence  $b \le a$ . It follows that  $y \in J$  since  $b \le a <_Y y \le_Y z$  and b, z are elements in the interval J of Y.

The case  $z \in R \setminus L$  is similar. The case  $z \in L \cap R$  is simpler since, in this case,  $\{z\}$  is open in X, and we may assume that  $J \subseteq (z^-, z^+)$  and so there is r > 0 such that  $B_Y(z, r) \subseteq J$ .

Finally, suppose that  $z \in X \setminus (L \cup R)$ . Since neither  $X \geq z$ nor  $X \leq z$  is open, it follows that there are  $b, c \in J \cap X$  such that b < z < c. Thus we may assume that J = (b, c). Since  $(b,c) \cap X$  is an open neighbourhood of z in X, there is r > 0 such that  $B_X(z,r) \subseteq J$ . Then by a similar argument to the one above it follows that  $B_Y(z,r) \subseteq J$ .

We now prove the converse, that the metric topology on Y is contained in the linear order topology on Y. We have to show that, for any  $z \in Y$  and r > 0, there are  $b, c \in B_Y(z, r)$  such that  $b <_Y z <_Y c$  and  $x \in B_Y(z, r)$  whenever  $b <_Y x <_Y c$ .

If  $z \in Y \setminus X$ , say  $z \in I(a, a^+)$  for some  $a \in L$ , the result is obvious since, by Corollary 2.2 there is  $r_1$  such that  $0 < r_1 < r$  and  $B_Y(z, r_1) \subseteq I(a, a^+)$  and  $B_Y(z, r_1)$  is an interval in  $(Y, \leq_Y)$ .

Suppose  $z \in X$ . We only consider the case when  $z \in X \setminus (L \cup R)$ ; the other cases are similar. Since  $x \notin L \cup R$ , and since the metric d on X is compatible with the generalized order topology on X, it follows that there are r > 0 and  $b, c \in X$  such that b < z < c and  $\{y \in X : b \le y \le c\} \subseteq X \cap B_Y(z, r/2)$  We will show that  $d^*(y, z) < r$  holds for all  $y \in Y$  such that  $b <_Y y <_Y c$ . If  $y \in X$  this is clear. Suppose  $y \in Y \setminus X$ , say  $y = x_\lambda(a, a^+)$  for some  $a \in L$  and  $0 < \lambda < 1$ . If a < b then we get the contradiction that  $y <_Y b$ . Therefore,  $b \le a$ . Similarly, a < c. Hence  $d(a, z) \le r/2$ . If  $a^+ \in X$ , then  $b < a^+ \le c$  and so  $d(a^+, z) \le r/2$ ; on the other hand, if  $a^+ \notin X$  then  $d'(a^+, z) \le \sup\{d(z, u) : u \in X, a < u < z\} \le r/2$ . In any case,  $d^*(y, z) = \lambda' d(a, z) + \lambda d'(a^+, z) < r$ . This completes the proof of (A).

Proof of (B): Clearly  $(X, \tau)$  is a subspace of Y and it is closed since the sets  $I(a, a^+)$   $(a \in L)$  and  $I(a^-, a)$   $(a \in R)$  are open intervals of Y.

For any positive integer n let  $\mathcal{U}(n) = \{B_Y(x, \frac{1}{2n}) : x \in X\}$ . Then  $\mathcal{U}(n)$  is a cover of X by open subsets of Y. Also, for  $x \in X$ , we have  $St(x, \mathcal{U}(n)) \subseteq B_Y(x, \frac{1}{n})$ , and so  $\bigcap_{n \ge 1} St(x, \mathcal{U}(n)) \subseteq \bigcap B_Y(x, \frac{1}{n}) = \{x\} \subseteq X$ . Thus X is a p-embedded closed subset of Y. This completes the proof of the theorem.  $\Box$ 

#### References

- H. Bennett & D.J. Lutzer, Certain hereditary properties and metrizability in generalized ordered spaces, Fund. Math. 107 (1980), 71-84.
- 2. H. Bennett, A metric for metrizable GO-space, Proc. of the 1984 Topology Conference, Topology Proc. 9 (1984), 217-225. (MR 87h:54059)
- H. Bennett, LOTS with S<sub>δ</sub>-diagonals, Proc. of the 1987 Topology Conference, Topology Proc. 12 (1987), 211-216. (MR 89j:54001)
- 4. G. Creede, Semistratifiable spaces and a factorization of a metrization theorem due to Bing, Dissertation, Arizona State University, Tampe, Ariz. 1968.
- 5. M.J. Faber, Metrizability of linear ordered spaces, Topics in Topology, Proc. Colloq. Keszthely (1972), 257-265. (MR 50#1
- 6. M.J. Faber, Metrizabilicy in generalized ordered spaces, Mathematical Centre Tracts N53 (1974). (MR 54#6097)
- 7. V.V. Fedorčuk, Ordered sets and the product of topological spaces, Vestnik Moskov Univ. Ser. I Mat. Meh. 21(1966 66-71.
- 8. Sze-Tsen Hu, Theory of Retracts Wayne State University Press, Berkeley, Calif., 1965.)
- 9. D.J. Lutzer, A metrization theorem for linear ordered spaces, Proc. Amer. Math. Soc. 22 (1969),557-558.
- 10. D.J. Lutzer, On generalized ordered spaces, *Dissertations Math.* 89 (1971).
- 11. S. Purisch, The orderability and suborderability of metric spaces, Trans. Amer. Math. Soc. 226 (1977), 59-76.
- 12. J.M. van Wouwe, GO-spaces and generalizations of metrizabilicy, Mathematical Centre Tracts 104 (1979). (MR 80m:540
- 13. J.M. van Wouwe, GO-spaces and (generalized) metrizabilicy, Mathematical Centre Tracts 116 (1979). (MR 54#6097)

University of Calgary Alberta, Canada

The Capital Normal University 100037, Beijing, P. R. of China