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MEAGER-NOWHERE DENSE GAMES (III):
 
REMAINDER STRATEGIES.
 

MARION SCHEEPERS 

ABSTRACT. Player ONE chooses a meager set and T­
WO, a nowhere dense set per inning. They play w in­
nings. ONE's consecutive choices must form a (weakly) 
increasing sequence. TWO wins if the union of the chosen 
nowhere dense sets covers the union of the chosen meager 
sets. A strategy of TWO which depends on knowing only 
the uncovered part of the most recently chosen meager 
set is said to be a remainder strategy. TWO has a win­
ning remainder strategy for this game played on the real 
line with its usual topology. 

1. INTR.ODUCTION 

A variety of topological games from the class of meager­
nowhere dense games were introduced in the papers [B-J-S], 
[81] and [82]. The existence of winning strategies which use 
only the most recent move of either player (so-called coding 
strategies) and the existence of winning strategies which use 
only a bounded number of moves of the opponent as informa­
tion (so-called k-tactics) are studied there and in [K] and [83]. 
These studies are continued here for yet another fairly natural 
type of strategy, the so-called remainder strategy. 

The symbol J.. denotes the ideal of nowhere dense subsets of 
the real line (with its usual topology), while the symbol "c" 
is used exclusively to denote " is a proper subset of ". Let 
(S, T) be a Tt-space without isolated points, and let J be its 
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ideal of nowhere dense subsets. The symbol (J) denotes the 
collection of meager subsets of the space. For Y a subset of S, 
the symbol Jry denotes the set {T E J : T ~ Y}. 

The game WMEG(J) (defined in [82]) proceeds as follows: 
In the first inning ONE chooses a meager set M l , and TWO re­
sponds with a nowhere dense set N l • In the second inning ONE 
chooses a meager set M2 , subject to the rule that Ml ~ M2 ; 

TWO responds with a nowhere dense set N2 , and so on. The 
players play an inning for each positive integer, thus construct­
ing a play (Ml , N l , ... , M k, Nk, ... ) of W M EG(J). TWO wins 
such a play if U~l M k = U~l N k • A strategy of TWO of the 
form Nl = F(Ml ) and Nk+l = F(Mk +l \(Uj=l Nj )) for all k is 
said to be a remainder strategy. 

It is clear that TWO has a winning remainder strategy in 
W M EG(J) if J = (J). The situation when J C (J) ~ P(S), 
studied in Section 2, is not so easy. We prove among other 
things Theorem 1, which implies that TWO has a winning 
remainder strategy in W M EG(J..). 

The game WMG(J) proceeds just like WMEG(J); orlly 
now the winning condition for TWO is relaxed so that TWO 
wins if U~=l M n ~ U~=l Nn • In Section 3 we study remainder 
strategies for this game. In Section 4 we discuss the game 
SMG(J). In Section 5 we attend to the version VSG(J). 

For convenience we also consider the "random equal game on 
J", denoted REG(J). It is played as follows: (Ml , N l , •.. , Mk' 
N k , ••• ) is a play of REG(J) if M k E (J) and N k E J for 
each k. TWO is declared the winner of this play if U~lMk = 
U~lNk. We shall use the fact that TWO has a winning perfect 
information strategy in REG(J). 

Theorem 8 is due to Winfried Just, while Theorem 14 is due 
to Fred Galvin. I thank Professors Galvin and Just for kind­
ly permitting me to present their results here and for fruitful 
conversations and correspondence. 
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2.	 THE WEAKLY MONOTONIC EQUAL GAME, WMEG(J). 

When defining a remainder strategy F for TWO in W M EG(J), 
we shall take care that F(A) ~ A and F(A) =F 0if (and only if) 
A =F 0, for each A E (J). Otherwise, the strategy F is sure not 
to be a winning remainder strategy for TWO in WM EG(J). 
We shall also use the fact that if (M1 , N1 , ••• ,Mk , Nk , ••• ) is a 
play of WMEG(J), then Mk\Mk+l = Nk for each k, without 
further mention. 

Theorem 1. If (\IX E (J)\J)(cof((J), c) ~ IJrxl), then T­
WO has a winning remainder strategy in WM EG(J). 

Theorem 1 follows from the next two lemmas. 

Lemma 2. If coj( (J), c) is infinite and (\IX E (J) \J) 
(coj((J),C) ~ IJfxl), then TWO has a winning remainder 
strategy in W M EG(J). 

Proof: Let A c (J) \J be a cofinal family of minimal cardinal­
ity. Then IAI ~ IP(X)I for each X E (J)\J. 

For each Y E J such that IAI ~ IP(Y) I the set Y is infinite: 
Write Y = U::1 Yn where {Yn : n E N} is a pairwise disjoint 
collection such that IYnl = IYI for each n. Choose for each n a 
surjection \11~ : P(Yn )\{0, Yn } ~ <wA. 

If for X E (J) \ J there is no Y E Jrx such that IAI ~ 

IP(Y)I, then IYI < IXI for each Y E Jfx: we fix a decomposi­
tion X = U~=l X n where {Xn : n E N} is a disjoint collection 
of sets from (J) \J. For each such X n we further fix a repre­
sentation X n = U:=l Xn,m where Xn,l ~ X n,2 ~ ••• are from 
J, and a surjection e: :J fX n ~ <wA. 

Let U and V be sets in (J) such that we have chosen a 
decomposition U = U~=l Un as above. The notation U ~* V 
denotes that there is an m such that Un ~ V for each n ~ m; 
we say that m witnesses that U ~* V. 

Fix a well-ordering --< of (J). For X E (J) we define: 

(1)	 8(X): the --<-first element A of A such that X ~ A, 
(2)	 ~(X): the -<-first element Z of (J) \J such that Z ~* X 

whenever this is defined, and the empty set otherwise, 
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(3)	 k(X): the smallest natural nUlIlber which witnesses that 
4l(X) ~* X whenever 4l(X) =f. 0, and 0 otherwise, 

(4) f(X): the ~-first Y E J such that IJrxl ~ 11'(Y)1 and 
Y ~* X whenever this is defined, and the empty set 
otherwise, and 

(5)	 m(X): the smallest natural number which witnesses 
that r(X) ~* X whenever r(X) =f. 0, and 0 otherwise. 

Let G be a winning perfect information strategy for TWO in 
REG(J). We are now ready to define TWO's remainder strat ­
egy F : (J) ~ J. Let B E (J) be given. 
B E J: Then we define F(B) = B. 
B ¢ J: Then k(B) ~ 1. We distinguish between two cases: 
Case 1: r(B) =f. 0. Then m(B) ~ 1. 
Write Y for r(B) and n for m(B). For 1 ::; j ::; n define Uj so 
that 

uo_{ \I1;(Yj\B) ifYj\Bfj.{0,Yj} 
J - 0 otherwise 

Let T be Ul ~ • · · ~ Un ~ (8(B)}, the concatenation of these 
finite sequences, and choose V E P(Yn+1 )\{0, Yn+1 } so that 
\I1~+l(V) = T. Then define F(B) = B n [Yl U ... U Yn U V U 
((U{G(u): U ~ T})\Y)]. 
Case 2: r(B) = 0. 
Write X for 4l(B) and n for k(B). For 1 ::; j ~ n define Uj so 
that 

Uo _ {ef(Xj\B) if Xj\B E J
 
J - 0 otherwise
 

Let T be Ul ~ ••• ~ Un ~ (8(B)}, and choose V E J rX n +1 

such that e:+1(V) = T. Then define F(B) = B n [X1tn+1 U 
· · · U Xntn+1 U V U «U{G(u) : (j ~ T} )\X)]. 

This defines F(B). From its definition it is clear that F(B) ~ 

B for each B E (J). To see that F is a winning remainder strat ­
egy for TWO in W M EG(J), consider a play (Mt , Nt, ... , Mk' 
Nk , • •• ) during which TWO followed the strategy F. To facil­
itate the exposition we write: 

(1)	 B1 for M 1 and Bj+1 for M j + 1\ U1=1 Ni , 
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(2) yj for r(Bj ), 

(3) X j for 4.'(Bj ), 

(4) Aj for 8(Bj ), 
(5) kj for k(Bj ) and 
(6) mj for m(Bj). 

We must show that U~IBj ~ U~INj. We may assume that 
B j f/. J for each j. 

Suppose that yj+l =F 0 for some j. Then Nj+1 , defined 
by Case 1, is of the form Bj +! n [YI+! u ... u Y~;:l u Vi+! u 
((U{G(u) : u ~ Tj+l})\yj+l)] where Vi+l and Tj+l have the 
obvious meanings. Thus yj+l ~* Bj+2 is a candidate for yi+2, 
and yi+2 =F 0, so that Nj+2 is also defined by Case 1. 

We conclude that if yj =F 0 for some j, then yi =F 0 and 
yi+l ~ yi for each i ~ j. Since -< is a well-order, there is a 
fixed k such that yi = yk for all i ~ k. Let Y be this com­
mon value of yi, i ~ k. An inductive computation shows that 
(Ak 

, ••• ,Aj) ~ Ti for each j ~ k. But then B j n [(G(Ak ) u· · ·U 
G(Ak

, ••• , Ai))\y] ~ N j for each j ~ k, so that U~kBi\Y ~ 
U~kNj. It is also clear that Y n (U~IBj) ~ U~kNj. The 
monotonicity of the sequence of Mj-s implies that TWO has 
won this play. 

The other case to consider is that yj+l = 0 for all j. In this 
case, X i +1 =F 0 for each j. Then Nj +1, defined by Case 2, is of 
the form: 

B· n[Xi +1 U···UXi+1 UV· U3+1 l,kJ +1 kJ +1 ,kj+l 3+1 

((U{G(O"): 0" ~ Tj+l})\Xj +1 
)], 

where Vi+l and Tj+l have the obvious meaning. Now Xi+ 1 ~* 
Bj+2 , and Xj+l is a candidate for Xj+2. It follows that Xi+2~ 

Xj+l for each j < w. Since -< is a well-order we once again 
fix k such that Xi = X k for all j ~ k. Let X denote X k • As 
before, (Ak, ... , Ai) ~ Ti for each such j, and it follows that 
TWO also won these plays. 0 

Lemma 3. If (J) = 1'(5), then TWO has a winning remain­
der strategy in W M EG(J). 
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Proof: Let -< be a well-order of 1'(S), and write S = U~=lSn 

such that Sn E J\{0} for each n, and the Sn-s are pairwise dis­
joint. For each countably infinite Y E J write Y = U~=l Yn so 
that {Yn : n E N} is a pairwise disjoint collection of nonempty 
finite sets. For X and Y in (J) write Y ~. X if Y\X is finite. 

For each X E (J) \ J, either there is an infinite Y E J rx, or 
else X is countably infinite. 

In the first of these cases, let ~(X) be the -<-first countably 
infinite element Y of J such that Y ~. X, and let m(X) be 
the smallest n such that Ym ~ X for all m ~ n. 

In the second case, let ~(X) be the -<-least element Y of 
(J) \J such that Y ~. X, and let m(X) be the minimal n such 
that ~(X) n Sm ~ X for all m ~ n. Also write ~(X)j for 
~(X) n Sj for each j, in this case. 

Then define F(X) so that 

(1) F(X) = X if X E J, and 
(2) F(X) =Xn[(SlU···USm(X))\~(X))U(~(X)lU···U 

4>(X)m(X)]
 

Then F is a winning remainder strategy for TWO. D
 

Corollary 4. Player TWO has a winning remainder strategy 
in WMEG(J.). 

We shall later see that the sufficient condition for the exis­
tence of a winning coding strategy given in Theorem 1 is to 
some extent necessary (Theorems 8 and 14). However, this 
condition is not absolutely necessary. First, note that for any 
decomposition S = U.7=l Sk, the following statements are equiv­
alent: 

(1) TWO has a winning remainder strategy in W M EG( J), 
(2) For each j, TWO has a winning remainder strategy in 

WMEG(Jrsj ). 

Now let S be the disjoint union of the real line and a count­
able set S·. Define X E J if X n S· is finite and X n R. E J... 
Then S· E (J), and Jrs. is a countable set, while coj((J),C) 
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is uncountable. According to Corollary 4 and Lemma 3, TWO 
has a winning remainder strategy in WMEG(J). 

Let A be an infinite cardinal of countable cofinality. For 
K, ~ A, declare a subset of K, to be open if it is either empty, 
or else has a complement of cardinality less than A. With this 
topology, J = [IC]<A. 

Corollary 5. Let A be a cardinal of countable cofinality, and 
let K, > A be a cardinal number. If cof([K,]~, c) ~ A<~, then 
TWO has a winning remainder strategy in W M EG([K,]<~). 

Recall (from [82]) that G is a coding strategy for TWO if: 
N I = G(0, M I ) and Nk+I = G(Nk , Mk+I ) for each k. 

If F is a winning remainder strategy for TWO in W M EG(J), 
then the function G which is defined so that G(W, B) = W u 
F(B\W) is a winning coding strategy for TWO in W M EG(J). 
Thus, Corollary 4 solves Problem 2 of [52] positively. Also, 
Theorem 6 of [52] implies that TWO does not have a winning 
coding strategy in W M EG([w}]<No). 

Let A be a subset of (J). The game W M EG(A, J) is played 
like W M EG(J), except that ONE is confined to choosing mea­
ger sets which are in A only. Thus, W M EG(J) is the special 
case of WMEG(A,J) for which A = (J). 

For cofinal families A c (J) which have the special property 
that A =F B ¢:> A~B f/. J, there is an equivalence between the 
existence of winning coding strategies and winning remainder 
strategies in W M EG(A, J). 

Proposition 6. Let A C (J) be a cofinal family such that for 
A and B elements of A, A =F B <=> A~B fj. J. Then the 
following statements are equivalent: 

(1) TWO has a winning coding strategy in W M EG( A, J). 
(2) TWO has a winning remainder strategy in W M EG(A, J). 

Proof: We must verify that 1 implies 2. Thus, let F be a 
winning coding strategy for TWO in W M EG(A, J). We de­
fine a remainder strategy G. Let X be given. If X E A we 
define G(X) = F(0, X). If X fj. A but there is an A E A 
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such that X C A and A\X E J, then by the property of 
A there is a unique such A and we set T = A\X(E J). In 
this case define G(X) = F(T, A). In all other cases we put 
G(X) = 0. Then G is a winning remainder strategy for TWO 
in W M EG(A, J). 0 

It is not always the case that there is a cofinal A c (J) 
which satisfies the hypothesis of Proposition 6. For example, 
let J C P(W2) be defined so that X E J if, and only if, X n w 
is finite and X n (W2\W) has cardinality at most Nt. Let {So: 
a < W2} be a cofinal family. Choose a =F f3 E W2 such that: 

(1) w C (So n S(3) and 
(2) SOL =F S{3. 

Then SOLf),.S{3 E J. 
Proposition 6 together with the proof of Theorem 6 of [82] 

show that if A is any stationary subset of Wt, then TWO does 
not have a winning remainder strategy in W M EG(A, [Wt]<No). 
This result is strengthened in Theorem 8 below. 

Though there may be cofinal families A such that TWO 
does not have a winning remainder strategy in W M EG(A, J), 
there may for this very same J also be cofinal families B C (J) 
such that TWO does have a winning remainder strategy in 
WMEG(B,J). 

Theorem 7. Let A be an infinite cardinal number of countable 
cofinality. If K > A is a cardinal for which COf([K]A, C) = K, 
then there is a cofinal family A C [K]A such that TWO has a 
winning remainder strategy in W M EG(A, [K]<A). 

Proof: Let (BOL : a < K) bijectively enumerate a cofinal sub­
family of [K]A. Write K= UOL<ICSo where {SOL: 0' < K} C [K],\ is 
a pairwise disjoint family. 

Define: Ao = {a} U (UxeBaSx) for each 0' < K, and put 
A = {Ao : a < K}. Then A is a cofinal subset of [K]A. Also let 
\II : A --+ K be such that \II (Ao ) = 0' for each 0' E K. 

Choose a sequence At < A2 < ... < An < ... of cardinal 
numbers converging to A. For each A E A we write A = 
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U~=IAn where Al C A2 C ... are such that IAnl = An for each 
n. 

Now define TWO's remainder strategy F as follows: 

(1)	 F(A) = {\I1(A)} U Al for A E A, 
(2)	 F(A) = {\I1(B)} U (U( {cm+l : \I1(C) E r(A)}) n B) U 

Bm+l if A f/. A but A C Band IB\AI < Afor some B E 
A. Observe that this B is unique. In this definition, 
r(A) = B\A, and m is minimal such that Ir(A)1 :5 Am. 

A

(3) F(A) = 0 in all other cases. 

Observe that IF(A)I < A for each A, so that F is a legiti­
mate strategy for TWO. To see that F is a winning remainder 
strategy for TWO, consider a play (M1 , N1 , ••• , Mk , Nk , ••• ) of 
WMEG(A, [K]<A) during which TWO used F. 

Write Mi = Aaa for each i. By the rules of the game we have: 
01 ~ A02 ~ Also, N1 = {01} U A~l and nl is minimal 

such that IN1 1 ~ AnI. An inductive computation shows that 
N k+1 = F(Mk+l \(U.1=lNj)) is the set 

([{ak+d U (U{A~"+I : 1 E Nk}) n AQ+k+d U A::tl1 

from which it follows that: 

(1)	 N 1 ~ N2 ~ ••• ~ Nk ~ ••• , 

(2)	 nl < n2 < · · · < nk < · · · , 
(3)	 OJ E Nk whenever j ~ k, and thus 
(4)	 A~J ~ Nk for j ~ k and p ~ nk-l. 

The result follows from these remarks. 0 

3. THE WEAKLY MONOTONIC GAME W MG(J). 

It is clear that if TWO has a winning remainder strategy in 
WMEG(J), then TWO has a winning remainder strategy in 
WMG(J). 

Problem 1. Is it true that if TWO has a winning remainder 
strategy in W MG(J), then TWO has a winning remainder 
strategy in W M EG( J) ? 
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As with WM EG(J), a winning remainder strategy for TWO 
in WMG(J) gives rise to the existence of a winning coding 
strategy for TWO. In general, the statement that TWO has 
a winning remainder strategy in WMG(J) is stronger than 
the statement that TWO has a winning coding strategy. To 
see this, recall that TWO has a winning coding strategy in 
W MG([WI]<NO) (see Theorem 2 of [82]) while, according to 
the next theorem, TWO does not have a winning remainder 
strategy in W MG([Wl]<No). 

Theorem 8 (Jllst) If K ~ Nl , then TWO does not have a 
winning remainder strategy in WMG([K]<No). 

Proof: Let F be a remainder strategy for TWO. For each 0 < 
WI we put 

~(o) = sup(U{F(o\T) : T E [O]<NO} U 0). 

Then ~(o) ~ 0 for each such o. Choose a closed, unbounded 
set C C WI such that: 

(1) ~C·y) < 0 whenever I < 0 are elements of C, and 
(2) each element of C is a limit ordinal. 

Then, by repeated use of Fodor's pressing down lemma, we 
inductively define a sequence ((cPl' Sl, TI ), · • • , (cPn, Sn, Tn), · · · ) 
such that: 

(1) C ::> SI :::> • • • :::> Sn ::> .•• are stationary subsets of WI, 
(2) F(o) n 0 = Tl for each Q' E SI' and 
(3) F(o\(TI U·· ·UTn )) = Tn+l for each n and each Q' E Sn. 

Put ~ = sup(U~=ITn) + w. Choose On E Sn so that ~ ~ 
o} < 02 < ... < On < .... By the construction we have: 
F(OI) ne = T} and F(On+l \(Tl U··· UTn )) ne = Tn+l for each 
n. 

Then (U~=ITn) nee e= (U~=10n) n~, and TWO lost this 
play of W MG([Wl]<No). 0 

For a cofinal family A ~ (J), W MG(A, J) proceeds just 
like W MG(J), except that ONE must now choose meager sets 
from A only. The proof of Theorem 8 shows that for every 



225 · .. REMAINDER STATEGIES ... 

stationary set A ~ Wt TWO does not have a winning remainder 
strategy in WMG(A, [Wt]<No). This should be contrasted with 
Theorem 7, which implies that there are many uncountable 
cardinals '" such that for some cofinal family A c ['"]No, TWO 
has a winning remainder strategy in WMG(A, [",]<NO). 

4. THE STRONGLY MONOTONIC GAME SMG(J). 

A sequence (Mt , Nt, ... ,Mk , Nk , ••• ) is a play of the strongly 
monotonic game if: Mk U Nk ~ Mk+t E (J), and Nk E J for 
each k. Player TWO wins such a play if Ui=tMj = Ui=tNj. 
These rules give TWO more control over how ONE's meager 
sets increase as the game progresses. This game was studied 
in [B-J-S] and [SI]. It is clear that if TWO has a winning 
remainder strategy in W MG(J), then TWO has a winning 
remainder strategy in SMG(J). The converse is also true: 

Lemma 9. If TWO has a winning remainder strategy in SMG(J), 
then TWO has a winning remainder strategy in W MG(J). 

Proof: Let F be a winning remainder strategy for TWO in 
SMG(J). We show that it is also a winning remainder strategy 
for TWO in WMG(J). 

Let (Mt,Nt, ... ,Mk,Nk, ... ) be a play of WMG(J) dur­
ing which TWO used F as a remainder strategy. Put M; = 
Mt and Mk+t = Mk+1 U (Nt U · .. U Nk ) for each k. Then 
(Mi, Nt, ... , M;, Nk, ... ) is a play of SMG(J) during which 
TWO used the winning remainder strategy F. It follows that 
U~lMk ~ U~lNk, so that TWO won the F-play of W MG(J). 0 

The additional strategic value to TWO of the rules of the 
strongly monotonic game is revealed by considering the games 
SMG(A, J) for cofinal A ~ (J). 

Lemma 10. If TWO has a winning coding strategy in W MG(J) 
and if A c (J) is a cofinal family such that A~B t/. J when­
ever A # B are in A, then TWO has a winning remainder 
strategy in SMG(A, J). 
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Proof: One can show that if TWO has a winning coding s­
trategy in W MG(J), then TWO has a winning coding strat­
egy F which has the property that N ~ F(N, M) for all 
(N, M) E J x (J) - see [84]. Let F be such a winning coding 
strategy for TWO in W MG(J). Also let A be a cofinal family 
as in the hypotheses. If B is not in A, but there is an A E A 
such that B C A and A\B E J, then there is a unique such A. 
Let \II(B) E A denote such an A when this happens. 

Define a remainder strategy G for TWO as follows. Let 
B E (J) be given: 

F(0, B) if B E A 
G(B) = F(\II(B)\B, \II(B)) if B fj. A, but \I1(B) is defined

{ o otherwise 

Then G is a winning remainder strategy for TWO. 0 

Corollary 11. Let A be a cardinal number of countable cofi­
nality. For each K ~ A, there is a cofinal family A C [K]" such 
that TWO has a winning remainder strategy in SMG(A, J). 

Proof: Write K, = Ua<ItSa where {Sa : 0 < K,} is a disjoint 
collection of sets, each of cardinality A. For each A E [K,]'\, put 
A* = UaEASa. Then A = {A*: A E [K,]'\} is a cofinal subset 
of [K,]<'\ which has the properties required in Theorem 10. The 
result now follows from that theorem and the fact that TWO 
has a winning coding strategy in W MG([K]<") - see [54]. 

Corollary 12. There is a cofinal A C [WI]No such that TWO 
has a winning remainder strategy in S M G(A, [WI] <NO), but no 
winning remainder strategy in W M G(A, [WI] <NO). 

Proof: Put A = {o < WI : cof(o) =W}. 0 

5. THE VERY STRONG GAME, V SG(J). 

Moves by player TWO in the game VSG( J) (introduced 
in [B-J-8]) consist of pairs of the form (S, T) E (J) x J, while 
those of ONE are elements of (J). A sequence (01 , (81, T1 ), O2 , 
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(S2,T2), ... ) is a play of VSG(J) if: On+l ;2 Sn U Tn' and 
On, Sn E (J) and Tn E J for each n .. 

TWO wins such a play if U~=l On ~ U~=l Tn. A strategy F 
is a remainder strategy for TWO in VSG(J) if 

(Sn+l, Tn+1 ) = F(On+l \(Uj=lTn)) 

for each n. 
For X E (J) we write F(X) = (F1(X), F2(X)) when F is a 

remainder strategy for TWO in VSG(J). When F is a winning 
remainder strategy for TWO, we may assume that it has the 
following properties: 

(1)	 F1(X)nF2(X) = 0; for G is a winning remainder strat ­
egy if G1(X) = F1(X)\F2(X) and G2(X) = F2(X) for 
each X. 

(2)	 X\F2 (X) ~ F1(X); for G is a winning remainder strate­
gy if G1(X) = (XUF1(X))\F2 (X) and G2 (X) = F2 (X) 
for each X. 

Lemma 13. If J c (J) C 7'(S) and if F is a winning re­
mainder strategy for TWO in the game VSG(J), then: For 
each xES there exist a Cx E (J) and a Dx E J such that: 

(1)	 Cx n Dx = 0 and 
(2)	 x E F2(B) for each B E (J) such that Cx ~ Band 

D x n B = 0. 

Proof: Let F be a remainder strategy of TWO, but assume the 
negation of the conclusion of the lemma. We also assume that 
for each X E (J), X\F2(X) ~ F l (X) and F l (X) n F2(X) = 0. 

Choose an xES witnessing this negation. Then there is for 
each C E (J) and for each D E J with x E C and C n D = 0 
aBE (J) such that B n D = 0, C ~ B and x f/. F2(B). We 
now construct a sequence ((Bk , Ck , Dk , M k , Sk, Nk ) : kEN} as 
follows: 

Put C1 = {x} and D l = 0. Choose B l E (J) such that 
Cl ~ Bl and x t/. F2 (Bl ). Put M l = Bl and (81 , Nl ) = F(Ml ). 
This defines (Bl,Cl,Dl,Ml,SI,Nl). 
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Put C2 = St and D2 = Nt. Choose B2 E (J) such that 
C2 ~ .B2 , D2 nB2 = 0, and x ¢ F2(B2 ). Put M2 = B2 UD2 and 
(S2' N 2 ) = F(M2\Nt ). This defines (B2 , C2 , D 2 , M 2 , S2' N2 ). 

Put D3 = (Nt U N 2 ) and C3 = S2 \D3 • Choose B3 E 
(J) such that C3 ~ B3 , D3 n B3 = 0, and x f/. F2(B3 ). 

Put M 3 = B3 U D3 and (S3,N3 ) = F(M3\D3 ). This de­
fines (B3 , C3 , D3 , M3 , S3, N 3 ). Continuing like this we construc­
t (Bl,Cl,Dl,Ml,SI,Nl), ... , (Bk,Ck, Dk,Mk,Sk,Nk), ... , so 
that: 

(1)	 Dj +t = (N1 U · · · U Nj ) E J, 
(2)	 Cj+l = Sj\Dj+l E (J) and x E Cj+t for all j, 
(3)	 Cj ~ Bj , while x f/. F2(Bj ) and Bj n Dj = 0, and 
(4) M j = B j U D j and 
(5)	 (Sj,Nj ) = F(Mj\Dj ) for all j, and 
(6)	 (Bt , C t , D t , Mt , St, Nt) and (B2 , C2 , D2 , M 2 , S2, N2 ) are 

as above. 

Then (Ml , (SI, Nl ), ... ,Mk, (Sk, Nk), .. . ) is a play of VSG(J) 
during which player TWO used the remainder strategy F and 
lost. 0 

Theorem 14 (Galvin) For K, > Nt, TWO does not have a 
winning remainder strategy in VSG([K,]<No). 

Proof: Let F be a remainder strategy for TWO. If it were 
winning, choose for each x E K, a Dx E [K,]<No and a Cx E [K,]~No 

such that: 

(1)	 Cx n Dx = 0, 
(2)	 x E Cx and 
(3)	 x E F2 (B) for each B E [IC]~No such that B n Dx = 0 

and Cx ~ B. 
Now (Dx : x E IC) is a family of finite sets. By the ~­

system lemma we find an S E [IC]" and a finite set R such that 
(Dx : xES) is a ~-system with root R. For xES define: 

f(x) = {y E S : Dy n ex =f 0}. 

Then f(x) is a countable set and x ¢ f(x) for each xES. 
By Hajnal's set-mapping theorem (see §44 of [E-H-M-R]) we 
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find T E [8]1( such that Cz n Dy = 0 for all x, yET. Let 
K E [T]No be given, and put B = UzeKCz. Then ]( ~ F2 (B), 
a contradiction. D 

Using similar ideas but with the appropriate cardinality as­
sumption to ensure that the corresponding versions of the ~­
system lemma and the set-mapping theorems are true, one 
obtains also: 

Theorem 15. Let A be a cardinal of countable cofinality. If 
K > 2"\, then TWO does not have a winning remainder strategy 
in V8G([K]<.,\). 

Since for every cardinal A of countable cofinality, and for 
each cardinal K player TWO has a winning coding strategy in 
WMG([K]<.,\) (see for example [84]), Theorems 14 and 15 also 
show that the existence of a winning remainder strategy for 
TWO in VSG([K]<.,\) is a stronger statement than the existence 
of a winning coding strategy for TWO in W MG([K]<,\). 

Problem 2. Let A be an uncountable cardinal of countable co­
finality. Let K be a cardinal number such that A<'\ < CO!([K]'\, C 
) ~ 2.,\. Does TWO have a winning remainder strategy in any 
ofWM EG([K]<"\), W MG([K]<.,\) or VSG([K]<"\)? 

Theorem 16. If cof( (J), c) = Nt, then TWO has a winning 
remainder strategy in VSG(J). 

Proof: We may assume that there is for each X E (J}\J, a 
Y E (J}\J such that X n Y = 0 (else, TWO has an easy 
winning remainder strategy even in W M EG(J)). Let ~ be a 
well-ordering of 8, the underlying set of our topological space. 
Choose two WI-sequences (Co: 0 < WI) and (xo : 0 < WI) such 
that: 

(1) COt C Cr; E (J), 
(2) X Ot E Cr;, 
(3) xr; r/. Cr;, 
(4) X Ot -< xr; and 
(5) Cp\COt r/. J for all 0 < (3 < WI, and 



230 MARlON SCHEEPERS 

(6) {Ca : 0 < WI} is cofinal in (J). 
For each X E (J) we write (J(X) for min{o < WI : X ~ Ca}. 

Put X = {x a : 0 < WI}. Write n for WI\w. Let F be a 
winning perfect information strategy for TWO in REG(J), 
and let G be a winning perfect information strategy for TWO 
in REG([{xeS : 6 E fl}]<No). We may assume that if u is a 
sequence of length T of subsets of fl, at least one of which is 
infinite, then IG(u)1 ~ T. We also define: K{J = {x~ : / ~ {J} 
for each (J E n. 

We define a remainder strategy H for TWO in V SG(J). Let 
B E (J) be given. 

(1)	 If B E J: Then put H(B) = (Cfj(B)+w, {XO,Xfj(B)}) 

(2)	 If B f/. J: 
(a)	 If {n < w: X n ¢ B} = {O,l, ... ,k}: 

Let T be {Xj3(B)} together with the first ~ k + 
1 elements of {xa : 0 E fl}\B. Put S = T U 
(U{G(u): u E ~k+2{I<eS: XeS E T}}), a set in [{xeS: 
6 E fl}]<No. Let p be the cardinality of S. Then 
define  
S = {xo, ... , xp } U S U ((U{F(u) : 
u E ~P{CQ: XQE S}})\X). 

Put H(B) = (Cj3(B)+w, S). 
(b) If {n < W : X n fj. B} is not a finite initial segment 

of w: Then we put H(B) = (Cj3(B)+w, {xo, Xj3(B)}). 

To see that H is a winning remainder strategy for TWO, 
consider a play 

(01 , (SI' Tl ), ••• , On, (Sn, Tn), ... ) 

where (SI' TI ) = H(0 1 ) and (Sn+I, Tn+l ) = H( On+I \(Uj=I Sj) 
for each n. 

For convenience we put Wo = To = 0and Wn+I = WnUTn+I , 

Bn = On\Wn, f3n = f3(Bn) and On = {3n + w for each n. 
Note that if Bj is such that {n E W : X n fj. B j }(= {a, 1, ... ,kj } 

say) is a finite initial segment of w, then the same is true for 
B j+I . Thus (Sj,Tj ) is defined by Case 2(a) for each j > 1, and 
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(kj : j E N) is an increasing sequence. Further, {x{3I , • • • , x{3j} C 
Tj for thesej. This in turn implies that U~lF(C{31'... ' C{3j )\X ~ 

U~=lTn' and U~l G(I({3I' · · · ,K{3j) ~ U~=l Tn. 
But then U~=lOn ~ U~=lTn. 0 

Corollary 17. TWO has a winning remainder strategy zn 
V SG([Wl]<NO) 

Using the methods of this paper we can also show that if 
J C P(S) is a free ideal such that there is an A E (J) such 
that cof( (J), C) ~ IJ rAI, then TWO has a winning remainder 
strategy in VSG(J). 

Corollary 18. For every T I -topology on WI, without isolated 
points, TWO has a winning remainder strategy in VSG(J). 
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