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1. INTRODUCTION.

Let X be a CW-complex, and let {e);A} be the cells of X.
We characterize certain covering properties of the collection
{ex; A} by means of k-networks, etc.

First of all, we shall give some main definitions used in this

paper.

Let X be a space, and let C be a cover of X. Then X is
determined byC [5] (or X has the weak topology with respect to
C in the usual sense), if F' C X is closed in X if and only if FNC
is closed in C for every C € C. Here, we can replace “closed”
by “open”. Every space is determined by an open cover. X is
is dominated by C [6] (or X has the weak topology with respect
to C in the sense of [9]), if the union of any subcollection C’ of
C is closed in X, and the union is determined by C’. Clearly, if
X is dominated by C, then X is determined by C. If the cover
C is increasing, countable and closed, then the converse holds.

Let X be a space, and let P be a cover of X. Then P is a
k-network if whenever K C U with K compact and U open in
X, then K C UP' C U for some finite P’ C P. If we replace
“compact” by “single point”, then such a cover is called “net(or
network)”. k-networks have played a role in Ro-spaces [6] (i.e.,
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regular spaces with a countable k-network) and R-spaces [10]
(i.e., regular spaces with a o-locally finite k-network).

We assume that all spaces are T3 in this paper.

Let A = {A,;a € A} be a collection of subsets of a space X.
Then A is closure-preserving if U{Aq4; @ € B} = U{Aq4;a €
B} for any B C A. A is hereditarily closure-preserving if
U{Ba;a € B} = U{B,;a € B} whenever BC Aand B, C A,
for each a € B. Every space is dominated by a hereditar-
ily closure-preserving closed cover. A o-hereditarily closure-
preserving collection is the union of countably many heredi-
tarily closure-preserving collections, etc. We shall use “o-CP
(resp. o-HCP)” instead of “o-closure-preserving (resp. o-
hereditarily closure-preserving ”. A is point-finite (resp. point-
countable) if every £ € X is in at most finitely (resp. count-
ably) many element of A.

The concept of CW-complexes due to J.H. Whitehead [18]
is well-known. A space X is a CW-complex, if it is a complex
with cells {ey; A} satisfying (a) and (b) below.

(a) Each cell ey is contained in a finite subcomplex of X.

(b) X is determined by the closed cover {€; A} of X.

We note that every €, is not a subcomplex. A Whitehead
complex due to C.H. Dowker [3] is a CW-complex such that
each closure of cell is a subcomplex.

As is well-known, every CW-complex X is dominated by the
cover of all finite subcomplexes of X, hence X is dominated
by a cover of compact metric subsets of X.

Let {ex;A} be the cells of a CW-complex X. We shall say
that {ey; A} is (0—) locally finite; (6—) HCP, etc., if so is re-
spectively the collection {e); A} of subsets of X. We note that
the collection {ex; A} is (6—) locally finite; (6—)C P;(c—)HCP
if and only if so is respectively {€x; A}.

Now let X be a CW-complex with cells {ey;A}. Then the
following hold. (a) is well-known, and (b) is due to [2]. (c) is
shown in this paper.
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(a) X is a paracompact, and o-space ( i.e., X has a o-locally
finite net).

(b) X is an M,;-space (in the sense of [2]), hence X has a
o-CP k-network.

(¢) X has a point-countable k-network.

However, every CW-complex is not a metric space (not even
a Fréchet space, nor an R-space). We have the following char-
acterizations of X. Recall that a space if Fréchet (= Fréchet-
Uryshon), if whenever z € A, there exists a sequence in A
converging to the point z. (A) is well-known, and (B) is due
to [17]. (C) ~ (F) is proved in this paper.
(A) X is a metric space if and only if {ey; A} is locally finite.
(B) X is a Fréchet space if and only if {ex; A} is HCP.
(C) X is an R—space if and only if {es; A} is o-locally finite.
(D) X has a o-HCP k-network if and only if {ex; A} is o-
HCP.
(E) X is a symmetric space (in the sense of [1]) if and only
if {€); A} is point-finite.
(F) X has a point-countable closed k-network if and only if
{€x; A} is point-countable.

Results. Recall that a cover C of X is star-countable if
each member of C meets only countably many members. The
following lemma follows from the proof of Theorem 1 in [15].

Lemma 1. Let X be determined by a star-countable cover C.
Then X is the topological sum of {X,;a € A} such that each
X, is determined by a countable subcollection A, of C, and

C=U{As;a € A}.

Lemma 2. Let X be dominated by a cover C = {X,;a € A}
of compact metric subsets. Suppose that X has a o-HCP (resp.
o-locally finite) closed k-network F = U{F,;n € N} with F, C
Fuos1- Then X has a o-HCP (resp. o-locally finite) k-network

consisting of a compact metric subsets.
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Proof: Let p € X, and let A be a sequence in X converging to
the point p with A & p. Let 4, = {F € F; F N A is infinite}.
Since each F,, is HCP, F4 N F, is at most finite. Then F, is
at most countable. Let A = {A,;n € N} be the collection of
all finite unions of elements of F4 such that each A — A,, is at
most finite (A is not empty, for F is a k-network). For each
n € N, let B, = N{A;;i < n}. Then some B is contained
in a finite union of elements of C, thus B; is compact metric.
Indeed, suppose that any B, is not contained in any finite
union of elements of C. Then there exist a sequence B =
{za;n € N} in X and a subcollection {X,(n);n € N} of C
such that z, € (B, N Xa@)) — U{Xa(j); 7 < n—1}. Since each
BN Xq(n) is finite, B is discrete in X. But each neighborhood
of the point p contains some By, because F is a k-network for
X, and the sequence A converges to p not in A. Then, since
z, € B, for each n € N, B has an accumulation point in
X. This is a contradiction. Then some Bj is compact metric.
Thus each neighborhood of the point p contains some compact
metric subset B,,. But A — B,, is at most finite, and B,, can
be expressed as a union of finitely many closed sets F,, such
that each F,,, is an intersection of finitely many elements of
F. Consequently, each neighborhood U of the point p contains
some finite intersection Fy of elements of F such that Fy is
compact metric, and Fy contains a subsequence of the sequence
A, hence the point p.

Now, for each m,n € N, let F,, = {FiNF;N...NF,; F; €
Fa,i < m}. Since each F, is HCP, it is routinely verified that
each F,,, is HCP. Let K = U{F,m;m,n € N}, and let £ =
{{z};{z} € F}. Let P = {K € K; K is compact metric } U L.
Then P is a o-HCP. Moreover, P satisfies (a) and (b) below.
Indeed, since F, C F,4; for each n € N, the above argument
suggests that (a) holds in general. For (b), if the point z is
isolated in X,z € {z} C U with {z} € P. If z is not isolated
in X, X — {z} is not closed in X. Since X is determined by
metric subsets, there exists a sequence C' converging to the

point z with C' # z. Then (b) holds by (a).
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(a) Let z € X, and let C be a sequence converging to the
point z with C' Z z. Then for each neighborhood U of z, there
exists P € P such that P C U, and P contains a subsequence
of C, hence the point z.

(b) Let £ € X. Then for each neighborhood U of z, there
exists P € P such that z € P C U.

We shall show that P is a k-network for X. Let K be com-
pact, and U be a neighborhood of K. Let P = U{P,; n € N},
where each P, is HCP with P, C P,4;. For each n € N, let
U, = U{P € P,; P C U}. Then K C U, for some m € N.
Indeed, suppose that K ¢ U, for any n € N. Then there exists
a sequence L = {z,;n € N} in K with z, € U,. But by (b),
K c U{U,;n € N} with U, C U,4,. Then L is infinite. But X
has a 0-CP closed net. Then each point of K is a Gs-set in X,
hence in K. Thus the compact set K is sequentially compact.
Thus there exists a subsequence M of L converging to a point
g not in M. Since ¢ € K C U, by (a) some U,, contains a
subsequence of M. This is a contradiction. Hence K C Uy,
for some m € N. But P,, is HCP and K is compact. Then
K is covered by some finite subcollection of P,,. This shows
that P is a k-network for X. Hence P is a o-HCP k-network
of compact metric subsets.

For the parenthetic part, let each F, be a locally finite col-
lection which is closed under finite intersections. Let K be a
compact subset of X, and let Fx = {F € F; FN K # 0}.
Then Fk is at most countable. Thus by a similar way as in
the first half of the above proof, we can show that {F € F; F
is compact metric } is a o-locally finite k-network for X. Thus
the parenthetic part holds.

We recall the following basic properties of a CW-complex;
see [18], etc.

Lemma 3. Let X be a CW-complezx with cells {ex; A}.

(1) Let each X (A € A) be a subcomplezr, and let C =
U{Xx; X € A}. Then C is a CW-complez with cells {es;ex C
C}.
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(2) Each compact subset K of X meets only finitely many
ex, hence K is contained in a finite union of e, ’s.

The following lemma is easily proved.

Lemma 4. Let F = {X); A € A} be a closed cover of a space
X. For each A € A, let Py be a k-network for X,. If each

compact subset of X is contained in a finite union of elements

of F, then U{Py; X € A} is a k-network for X.

Theorem 5. Let X be a CW-complex with cells {ex;A}. Then
the following are equivalent.

(a) {ex; A} is o-discrete.

(b) {ex;A} is o-locally finite.

(c) {ex;A} is o-locally countable.

(d) {ex;A} is locally countable.

(e) X is an R-space.

Proof: The implication (a) = (b) = (c) is clear.

(c) = (d). X is determined by a star-countable cover {€y; A}.
Then if follows from Lemma 1 that {€,; A}. is locally countable,
hence so is {ex; A}.

(d) = (e). X is determined by a star-countable cover {€,; A}.
Then by Lemma 1, X is the topological sum of space X,(a €
A), where each X, is covered by a countable subcollection of
{éx; A}. Then each X, is an No-space by Lemmas 3(2) & 4.
Thus X is an R-space by Lemma 4.

(e) = (a). X is dominated by compact metric subsets. Then
by Lemma 2, X has a o-locally finite k-network P consisting of
compact metric subsets. Since P is star-countable, by Lemma
1, X is the topological sum of o-compact spaces X,(a € A).
Since each e, is connected, it is contained in some X,. But by
Lemma 3(2), each o-compact space X, is a countable union of
cells e). Then we see that {e; A}.is a o-discrete.

In the proof of (e) = (a) of the previous theorem, the X,
are CW-complexes in X. Indeed, if ey C X,, then &, C X,.
Then the X, are subcomplexes of X, hence CW-complexes.
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Then we have the following corollary in view of the proof of
the previous theorem.

Corollary 6. A CW-complez is an R-space if and only if it is
the topological sum of countable CW-complezes.

Theorem 7. Let X be a CW-complez with cells {ex;A}. Then
{ex; A} is 0-HCP if and only if X has a o-HCP k-network.

Proof: “If”: We recall that, among regular spaces, if A is
HCP, then so is {A4; A € A} (see [8; Lemma 5.5], etc.). Then
we can assume that X has a o-HCP closed k-network. But X
is dominated by a cover of compact metric subsets. Thus, by
Lemma 2, X has a 0-HCP k-network P = U{P,;n € N},P, C
Phr+1, consisting of compact metric subsets. Fore each n € N,
let X, = UP,, and let C, = U{C; C is a finite subcomplex
with C C X,}. Then each C, is a CW-complex with cells
{ex;ex C C,} by Lemma 3(1). On the other hand, each X,
has a HCP cover P, of closed metric subsets. Hence each
X, is Fréchet, then so is each CW-complex C,. Thus each
{ex;ex € Cr} is HCP by (B) in Introduction. But, each finite
subcomplex is contained in some X,,, because P is a k-network
for X. Then each cell ey in X is contained in some C,. Hence
{ex; A}. is o-HCP.

“Only if”: Since {€);A}.1s 0-HCP, put {€y;A}. = U{F;n €
N}, where each F, is HCP with F, C F,,,. Each X, = UF,
has a HCP cover of compact metric subsets. Since F,, is HCP,
each compact subset of X, is contained in a finite union of
elements of F,,. Hence each X, has a o-HCP k-network by
Lemma 4. But, by Lemma 3(2), each compact subset of X is
contained in some X,. Hence X has a o-HCP k-network by
Lemma 4.

For a > w, let S, be the quotient space obtained from the
topological sum of a convergent sequences by identifying all
the limit points. The following lemma is due to [14; Lemma
2.2].
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Lemma 8. Let X be a CW-complezx with cells {ex; A}. Then
{€x; A} is point-finite (resp. point-countable) if and only if X
contains no closed copy of S, (resp. S.,).

A space X is symmetric [1], if there exists a real valued, non-
negative function d defined on X x X satisfying the following
conditions:

d(z,y) =04 z =y,d(z,y) = d(y,z), and F C X is closed
in X & d(z,F) > 0for any z ¢ F. If X is a o-space (in
particular, CW-complex), “X is symmetric” is equivalent to
“X satisfies the weak first axiom of countability in the sense
of [1] (or X is g-first countable in the sense of [11])”; see [1].

Theorem 9. Let X be a CW-complez with cells {ey; A}.
(1) {&x;A} is point-finite if and only if X is symmetric.
(2) {€x; A} is point-countable if and only if X has a point-
countable closed k-network.

Proof: (1) For the “if” part, we note that a symmetric space
X with symmetric d contains no closed copy of S,. Indeed,
suppose X contains a closed copy U{C,;n € N} U {00} of
S,, where each C, is a sequence converging to oo. For each
m € N, F, = U{C, : n > m} U {oo} is closed in X, but
F,. —{oc} is not closed in X. Then there exists a sequence A =
{zk;k € N} in X such that zx € Cn(k), and d(zk,00) < 1/k.
Then the sequence A converges to oco. This is a contradiction.
Then X contains no closed copy of S,,. Thus this part follows
from Lemma 8. For the “only” part, note that X is determined
by a point-finite cover {€,; A} of metric subsets. Then X is a
symmetric space [12; Theorem 3.3].

(2) For the “if” part, we note that a space with a point-
countable closed k-network contains no closed copy of S, in
view of [13; Proposition 1]. Thus this part follows from Lemma
8 . For the “only if ” part, X is covered by a point-countable
closed cover {€j; A} of metric subsets. Then, by Lemma 3(2)
and Lemma 4, X has a point-countable closed k-network.
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Remark 10. (1) 1In (1) of the previous theorem, unlike
(2), we can not replace “X is symmetric” by “X has a point-
finite closed k-network”. Indeed, an infinite convergent se-
quence together with the limit point has no point-finite closed
k-networks, then neither does a finite CW-complex I, where [
is the closed unit interval [0,1].

(2) In (2) of the previous theorem, we can not omit the
closedness of the k-network. Indeed, any CW-complex with
cells {e); A} has a point-countable k-network {V,\ Ney;n, A},
where {V,,;n} is a countable base for €,.

A space X is g-metrizable [11] if X is a regular space having
a o-locally finite weak base. For the definition of weak base,
see [1; p. 129]. A Fréchet, g-metrizable space is metrizable
[11]. Combining [ 4; Theorem 2.4] with [1; Theorem 2.8], we
see that every g-metrizable space is precisely a symmetric, N-
space. Thus we have the following corollary by Theorems 5

and 9(1).

Corollary 11. Let X be a CW-complez with cells {e);A\}. Then
{€x; A} is point-finite and locally countable if and only if X if
g-metrizable.

We shall give some examples and a question.

Example 12. Let X be a CW-complezx with cells {ex; A}.

(1)  The property “{éx;A} is HCP” need not imply that
X has a point-countable closed K -network, and not imply that
{€x; A} is point-countable.

(2) The property “{ex; A} is CP” need not imply that X
has a CP or o-HCP k-network, and not imply that {ex; )} is
o-HCP. .

(8) The property “X is a symmetric space with a o-CP k-
network” need not tmply that X has a o-HCP k-network, not
imply that {ex; A} is o-CP.
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Proof: (1) Let X be the quotient space obtained from the
topological sum of uncountable many closed unit intervals by
identifying all zero points. Then X is a CW-complex having
the obvious cells {e); A} such that {€); A} is HCP, but is not
point-countable at the point 0. Then by Theorem 9(2), X has
no point-countable closed k-networks.

(2) Let X be CW-complex obtained from the topological
sum of uncountably many triangles T = Aaybyc) by identify-
ing all of segments aby with the closed unit interval I. Obvious-
ly, the set I has no CP-networks, hence has no CP k-networks.
Then X has no CP k-networks. The collection {Ty; )} is CP,
but it is not o-HCP. Indeed, suppose that {T); A} is o-HCP.
Then some countable {T),; n € N} C {T);A} is HCP. Let
Y = U{T),; n € N}. Then Y is Fréchet. For each n € N,
let L, be a segment from a point 1/n € I to the vertex c, of
T\.Let A=U{L,;n € N} —{1/n;ne N}. Then0 € AinY.
But there exist no sequences in A converging to the point 0.
Hence Y is not Fréchet. This is a contradiction. Then {T); A}
is not o-HCP, hence neither does the obvious cells of X. Thus
by Theorem 7, X has no o-HCP k-networks.

(3) Let I be the closed unit interval. For each a € I, let
So be a 2-sphere. Let X be the quotient space obtained from
the topological sum of {I, S,;a € I} by identifying each o € I
with a point p, of S,. Then X is a CW-complex with the cells
A = {{0},{1},(0,1),T,; ¢ € 1}, where T, = S, — {pa}- Since
{T;T € A} is point-finite, X is symmetric by Theorem 9(1).
Also, since X is a CW-complex, X has a 0-CP k-network by
(b) in Introduction. But A is not o-CP. Indeed, suppose that
A is 0-CP. Then {T,;a € I} is a o-CP closed collection. Then
I = U{T,;a € I} N1 is a countable union of discrete closed
subsets of I . Hence the compact set I is at most countable.
This is a contradiction. Thus the cells A is not o-CP. Then X
has no o-HCP k-networks by Theorem 7.

In view of Theorem 7 and Example 12(2) & (3), we have the
following question.
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Question 13. Let X be a CW-complex with the cells {ey; A}.
Characterize “{e);A} is CP (or ¢-CP)” by means of a nice
topological property of X.

Finally, we shall consider spaces dominated by compact met-
ric subsets.

Let X be a space. Suppose that X is dominated by a
cover {X ;A < a}. For each A < a, let E; = Xy, E\, =
Ey — U{X,;u < A}. We will use this notation. The following
property (*) is due to [16].

(*) Let £ € X. For each A < a, let A, be any subset of E)
such that {z}UA, is closed in X. Then S = {z} U{A,; A < o}
is closed in X. In particular, if each A, is finite, then S is closed
and discrete in X.

Lemma 14. Let X be domintaed by a cover {X,;A < a}.
Then the following hold.

(1) X is determined by {Ej; \}.

(2) Each compact subset of X meets only finitely many E,.

(8) Let each Ey be Fréchet. If X contains no closed copy
of S.(resp. S.,). then {Ex;)\} is point-finite (reap. point-
countable).

(4) Let F be a closed subset of X. If F is first countable (re-
sp. Fréchet), then {Ey; E\ C F} is locally finite (resp. HCP)
in X.

Proof: (1) is due to [16]. (2) and (3) follow from the property
(). For (4), note that F is dominated by {X, N F;A}. When
F is first countable for z € F, let {V,,;;n € N} be a decreasing
local base at z in F. In view of (*), some V], meets only finitely
many Fy = EyN F. This implies that {Ey; Ex C F} is locally
finite in X. When F is Frécht, {F);A} is HCP in F in view of
Lemma 1.1 in [17]. Hence {E\; Ex C F} is HCP in X.

Concerning spaces dominated by compact metric subsets,
similarly to CW-complexes the following analogue can be proved
by means of Lemmas 2, 4, and 14.
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Theorem 15. Let X be a space dominated by a cover {X»x; A}
with each E) compact metric. Then it is possible to replace

{ex; A} (or {&r;A}) by {Ex; A} (or {Ex;)}) in (A) ~ (F) in

Introduction.
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