Topology Proceedings

Web: http://topology.auburn.edu/tp/

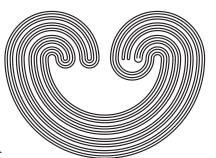
Mail: Topology Proceedings

Department of Mathematics & Statistics Auburn University, Alabama 36849, USA

E-mail: topolog@auburn.edu

ISSN: 0146-4124

COPYRIGHT ${}_{\bigodot}$ by Topology Proceedings. All rights reserved.



Topology Proceedings Vol 17, 1992

ON THE HOMOGENEITY OF INFINITE PRODUCTS

FONS van ENGELEN

ABSTRACT. We show that if X is a zero-dimensional metric space that is either first category (in itself) or contains a dense complete subspace, then the countable infinite product X^{ω} is homogeneous.

1. Introduction

Question 387 of Open Problems in Topology [6] asks for which zero-dimensional subsets X of \mathbb{R} it is true that X^{ω} is homogeneous. The main purpose of this note is to provide a proof that X^{ω} is homogeneous if either X is first category in itself (i.e. $X = \bigcup_{i < \omega} X_i$ with X_i closed and nowhere dense in X), or X contains a dense complete subspace. In fact it will be shown that for arbitrary metrizable X of covering dimension zero (so no separability required) X^{ω} is even strongly homogeneous in these cases, i.e. every non-empty clopen subset of X^{ω} is homeomorphic to X^{ω} .

After I obtained the above theorem, I learned that similar results had been announced by S. V. Medvedev in [4]. As far as I know his proofs have never been published; therefore I have organized this note in such a way that some of the other results announced in [4] follow as well.

Whether or not X^{ω} is homogeneous for all zero-dimensional (separable) metric spaces X remains an interesting open problem.

2. Preliminaries

All spaces are zero-dimensional (in the sense of dim) and metrizable.

The choice of metric will always be irrevelant, obvious, or indicated; all metrics are assumed to be bounded by 1.

For standard definitions and terminology, we refer the reader to [2], [3], and [5]. A space is called nowhere compact if no non-empty clopen subset is compact. We call a space weight-homogeneous if all non-empty open subspaces have the same weight. We write $X \approx Y$ (resp. $h: X \approx Y$) if X and Y are homeomorphic (resp. if h is a homeomorphism between X and Y). If \mathcal{U} is a family of subsets of a space, then $\operatorname{mesh}(\mathcal{U}) = \sup \{ \operatorname{diam}(U) : U \in \mathcal{U} \}$.

In our proofs, we will need a homeomorphism extension theorem (Proposition 2.3) which is a generalization of Lemma 3.2.2 of [1] to the non-separable situation.

2.1 Lemma. Suppose X is a non-compact weight-homogeneous space of weight κ . Then X can be written as the disjoint union of κ non-empty clopen subsets.

Proof: Since X is non-compact we can write X as a disjoint union $\bigcup_{j<\omega} X_j$ with X_j clopen and non-empty. Now if $\kappa=\omega$ we are done, so assume that $\kappa>\omega$. Let \mathcal{U}_i be a disjoint covering of X by clopen sets of diameter less than 1/i. Then $|\bigcup_i \mathcal{U}_i| = \kappa$. If some \mathcal{U}_i has cardinality κ , then we are done, so assume $|\mathcal{U}_i| < \kappa$ for each i. Let \mathcal{V}_k^j be a disjoint covering of X_j by clopen sets of diameter less than 1/k; since $w(X_j) = \kappa > \omega$ we must have $|\mathcal{V}_{k_j}^j| \geq |\mathcal{U}_j|$ for some k_j . Then $\bigcup_{j<\omega} \mathcal{V}_{k_j}^j$ is the required covering of X. \square

2.2 Definition: Let A be a closed nowhere dense subset of the space X, and let B be a closed nowhere dense subset of the space Y. Suppose that $h: A \to B$ is a homeomorphism, $\{U_\alpha : \alpha < \kappa\}$ is a covering of X - A by disjoint non-empty clopen subsets of X, and $\{V_\alpha : \alpha < \kappa\}$ is a covering of Y - B by disjoint non-empty clopen subsets of Y. Then $\{(U_\alpha, V_\alpha) : \alpha < \kappa\}$

 κ } is a KR-covering for (X-A,Y-B,h) if, whenever $D_{\alpha} \subset U_{\alpha}$, $R_{\alpha} \subset V_{\alpha}$, and $h_{\alpha}: D_{\alpha} \to R_{\alpha}$ is a bijection for each $\alpha < \kappa$, the combination mapping $\tilde{h} = h \cup \bigcup_{\alpha < \kappa} h_{\alpha}$ is continuous in points of A, and \tilde{h}^{-1} is continuous in points of B.

2.3 Theorem: Let X and Y be nowhere compact weight-homogeneous spaces of weight κ . Let A and B be closed nowhere dense subsets of X and Y, respectively, and suppose that $h: A \to B$ is a homeomorphism. then there exists a KR-covering $\{(U_{\alpha}, V_{\alpha}) : \alpha < \kappa\}$ for (X - A, Y - B, h).

Proof: The case where A and B are empty is trivial so assume $A \neq \emptyset \neq B$. Let \mathcal{P} be a disjoint covering of X - A by clopen subsets of X such that, for each $P \in \mathcal{P}$, diam(P) < d(P, A); then $\mathcal{P} = \bigcup_{i < \omega} \mathcal{P}_i$ where

$$\mathcal{P}_i = \{ P \in \mathcal{P} : d(P, A) \in (2^{-i-1}, 2^{-i}] \}.$$

Similarly, we let Q be a disjoint covering Y-B by clopen subsets of Y such that, for each $Q \in Q$, diam (Q) < d(Q, B); also define

$$Q_i = \{Q \in Q : d(Q, B) \in (2^{-i-1}, 2^{-i}]\}.$$

With each $P \in \mathcal{P}$ we will associate $Q_P \in \mathcal{Q}$ and $a_P \in A$, and with each $Q \in \mathcal{Q}$ we will associate $P_Q \in \mathcal{P}$ and $b_Q \in B$, such that, putting $b_P = h(a_P)$ and $a_Q = h^{-1}(b_Q)$, the following hold:

- (i) $d(P, a_P) < 2d(P, A)$ and $Q_P \subset B(b_P, d(P, A))$;
- (ii) $d(Q, b_Q) < 2d(Q, B)$ and $P_Q \subset B(a_Q, d(Q, B))$;
- (iii) for each $i \in \omega$, the families $\{Q_P : P \in \mathcal{P}_i\}$ and $\{P_Q : Q \in \mathcal{Q}_i\}$ are discrete.

We will describe the construction of the sets Q_P and the points a_P ; the construction of the P_Q and b_Q is analogous.

Fix $i \in \omega$. Let \mathcal{W} be a disjoint clopen covering of Y with $\operatorname{mesh}(\mathcal{W}) < 2^{-i-2}$. With each $W \in \mathcal{W}$ such that $W \cap B \neq \emptyset$ we associate $Q_W \in \mathcal{Q}$ as follows. Take $b \in B$ and $\delta > 0$ such that $B(b,\delta) \subset W$. Since B is nowhere dense in Y there exists $Q_W \in \mathcal{Q}$ such that $Q_W \cap B(b,\frac{1}{2}\delta) \neq \emptyset$. Since diam

 $(Q_W) < d(Q_W, B) < \frac{1}{2}\delta$ we have $Q_W \subset B(b, \delta) \subset W$. Now take $P \in \mathcal{P}_i$. Find $a_P \in A$ such that $d(P, a_P) < 2d(P, A)$ (so the first part of (i) is satisfied) and let $b_P = h(a_p)$. Then $b_P \in W$ for some $W \in \mathcal{W}$, and we can define $Q_P = Q_W$. To verify the second part of (i), note that $d(b_P, Q_W) < \operatorname{diam}(W) < 2^{-i-2}$ and $\operatorname{diam}(Q_W) < \operatorname{diam}(W) < 2^{-i-2}$ since $Q_W \subset W$, hence $Q_P = Q_W \subset B(b_P, 2^{-i-1}) \subset B(b_P, d(P, A))$ since $d(P, A) > 2^{-i-1}$. Clearly, (iii) is satisfied because each $W \in \mathcal{W}$ contains at most one element of $\{Q_P : P \in \mathcal{P}_i\}$ (although this element Q_W can be Q_P for many different $P \in \mathcal{P}_i$).

Since each $P \in \mathcal{P}$ and $Q \in \mathcal{Q}$ is non-compact and weight-homogeneous, we can find, using Lemma 2.1, disjoint clopen families \mathcal{U}_P and \mathcal{V}_Q of size κ such that $P = \bigcup \mathcal{U}_P$ and $Q = \bigcup \mathcal{V}_Q$. Put

$$\mathcal{U} = \bigcup \{\mathcal{U}_P : P \in \mathcal{P}\}, \ \mathcal{V} = \bigcup \{\mathcal{V}_Q : Q \in \mathcal{Q}\},$$

and well-order \mathcal{U} and \mathcal{V} in type κ . Inductively, we will define bijections $\kappa \to \mathcal{U}, \kappa \to \mathcal{V}$, with the image of α denoted by U_{α} resp V_{α} , together with points $a_{\alpha} \in A$ and $b_{\alpha} = h(a_{\alpha}) \in B$.

First assume that α is even. Put $U_{\alpha} = \min(\mathcal{U} - \{U_{\beta} : \beta < \alpha\})$, and take $P \in \mathcal{P}$ containing U_{α} . Since Q_P contains κ elements of \mathcal{V} we can choose $V_{\alpha} \subset Q_p$ such that $V_{\alpha} \in \mathcal{V} - \{V_{\beta} : \beta < \alpha\}$. Define $a_{\alpha} = a_P$ and $b_{\alpha} = h(a_{\alpha}) = b_P$. If α is odd we similarly put $V_{\alpha} = \min(\mathcal{V} - \{V_{\alpha} : \alpha < \beta\})$, take $Q \in \mathcal{Q}$ containing V_{α} , and choose $U_{\alpha} \subset P_Q$ such that $U_{\alpha} \in \mathcal{U} - \{U_{\beta} : \beta < \alpha\}$; also $b_{\alpha} = b_Q$ and $a_{\alpha} = h^{-1}(b_{\alpha}) = a_Q$. Clearly, $\mathcal{U} = \{U_{\alpha} : \alpha < \kappa\}$ and $\mathcal{V} = \{V_{\alpha} : \alpha < \kappa\}$ are coverings of X - A and Y - B by non-empty disjoint clopen subsets of X and Y, respectively. We claim that $\{(U_{\alpha}, V_{\alpha}) : \alpha < \kappa\}$ is the required KR-covering.

First we note that

- (iv) if α is even then $d(U_{\alpha}, a_{\alpha}) < 3d(U_{\alpha}, A)$ and $d(V_{\alpha}, b_{\alpha}) < d(U_{\alpha}, A)$;
- (v) if α is odd then $d(V_{\alpha}, b_{\alpha}) < 3d(V_{\alpha}, B)$ and $d(U_{\alpha}, a_{\alpha}) < d(V_{\alpha}, B)$.

Indeed, if α is even and $U_{\alpha} \subset P$ then

$$d(U_{\alpha}, a_{\alpha}) = d(U_{\alpha}, a_{P}) \leq d(P, a_{P}) + \operatorname{diam}(P).$$

But $d(P, a_P) < 2d(P, A)$ by (i) and diam(P) < d(P, A), so

$$d(U_{\alpha}, a_{\alpha}) < 3d(P, A) \leq 3d(U_{\alpha}, A).$$

Since $V_{\alpha} \subset Q_P$ we have, again by (i), that $V_{\alpha} \subset B(b_P, d(P, A))$ so

$$d(V_{\alpha}, b_{\alpha}) = d(V_{\alpha}, b_{P}) \le d(P, A) \le d(U_{\alpha}, A),$$

establishing (iv). The proof of (v) is similar.

Now assume that, for each $\alpha < \kappa, D_{\alpha} \subset U_{\alpha}$, $R_{\alpha} \subset V_{\alpha}$, and $h_{\alpha}: D_{\alpha} \to R_{\alpha}$ is a bijection, and put $\tilde{h} = h \cup \bigcup_{\alpha < \kappa} h_{\alpha}$. Let $a \in A$, and take a sequence $(x_n)_n$ converging to a. Since $\tilde{h}|A:A\approx B$ we may assume that $x_n\in U_{\alpha_n}$ for some $\alpha_n<\kappa$, for all $n<\omega$. Let $P_n\in \mathcal{P}$ and $Q_n\in \mathcal{Q}$ be such that $U_{\alpha_n}\subset P_n$ and $V_{\alpha_n}\subset Q_n$. Then

(vi)
$$\operatorname{diam}(U_{\alpha_n}) < d(U_{\alpha_n}, A) \to 0$$
 and $\operatorname{diam}(V_{\alpha_n}) < d(V_{\alpha_n}, B) \to 0$.

Indeed, $\operatorname{diam}(U_{\alpha_n}) < \operatorname{diam}(P_n) < d(P_n,A) \leq d(U_{\alpha_n},A) \leq d(x_n,a) \to 0$, and similarly $\operatorname{diam}(V_{\alpha_n}) < d(V_{\alpha_n},B)$. Furthermore, $d(V_{\alpha_n},B) \leq d(Q_n,B) + \operatorname{diam}(Q_n)$ so since $\operatorname{diam}(Q_n) < d(Q_n,B)$ it suffices to show that $d(Q_n,B) \to 0$. Assume towards a contradiction that for some i the set $I = \{n < \omega : d(Q_n,B) \in (2^{-i-1},2^{-i}]\} = \{n < \omega : Q_n \in Q_i\}$ is infinite. Now if α_n is even the $Q_n = Q_{P_n} \subset B(b_{P_n},d(P_n,A))$ by (i), whence $d(Q_n,B) < d(P_n,A)$. But $d(P_n,A) \to 0$ so it must be the case that α_n is odd for infinitely many $n \in I$. For these n we have that $P_n = P_{Q_n}$, and we find that

$$a \in (\bigcup \{P_n : n \in I, \alpha_n \text{ odd }\})^- \subset (\bigcup \{P_Q : Q \in \mathcal{Q}_i\})^-$$
$$= \bigcup \{P_Q : Q \in \mathcal{Q}_i\} \subset X - A,$$

with closures being taken in X, and the equality being true because of (iii). We have a clear contradiction, and (vi) has been proved.

Put
$$a_n = a_{\alpha_n}$$
 and $b_n = b_{\alpha_n} = h(a_n)$. We find that
$$d(a_n, a) < d(a_n, x_n) + d(x_n, a)$$

$$\leq d(a_n, U_{\alpha_n}) + \operatorname{diam}(U_{\alpha_n}) + d(x_n, a),$$

and by (iv) and (v)

$$d(a_n, U_{\alpha_n}) < \max\{3d(U_{\alpha_n}, A), d(V_{\alpha_n}, B)\},\$$

so $d(a_n,a) \to 0$ by (vi). Then also $b_n = h(a_n) \to h(a) = b$, whence

$$d(\tilde{h}(x_n), \tilde{h}(a)) = d(\tilde{h}(x_n), b) \le d(\tilde{h}(x_n), b_n) + d(b_n, b)$$

$$\le d(V_{\alpha_n}, b_n) + \operatorname{diam}(V_{\alpha_n}) + d(b_n, b) \to 0$$

using (vi) and the fact that by (iv) and (v),

$$d(V_{\alpha_n},b_n) < \max\{3d(V_{\alpha_n},B),d(U_{\alpha_n},A)\}.$$

Thus, $\tilde{h}(x_n) \to \tilde{h}(a)$ proving that \tilde{h} is continuous in points of A. The proof that \tilde{h}^{-1} is continuous in points of B is completely analogous. \square

- **2.4 Definition:** An associated decomposition of the space X is a pair $(G,(X_i)_i)$ consisting of a dense complete subspace G of X (with complete metric ρ) and a sequence $\{X_i: i < \omega\}$ of closed subsets of X such that
 - (i) $X G = \bigcup_{i < \omega} X_i$ and
 - (ii) $X X_i = \bigcup \mathcal{U}_i$, where \mathcal{U}_i is a disjoint family of clopen subsets of X such that ρ -mesh $(\mathcal{U}_i|G) \to 0$

Note that the sets X_i in the above definition will automatically be nowhere dense.

2.5 Proposition: If X has a dense complete subspace G, then X has an associated decomposition $(G,(X_i)_i)$.

Proof: For each i let \mathcal{V}_i be a disjoint covering of G by (relatively) open sets of ρ -diameter less that 1/i. It is well-known that \mathcal{V}_i can be extended to a disjoint open family (but not necessarily covering) $\tilde{\mathcal{U}}_i$ in X. Since G is a G_{δ} in X we can write $X - G = \bigcup_{i < \omega} Y_i$ with Y_i closed in X. Now put $X_i = \mathcal{V}_i$

 $Y_i \cup (X - \bigcup \tilde{\mathcal{U}}_i)$, and define \mathcal{U}_i to be a refinement of $\tilde{\mathcal{U}}_i | (X - X_i)$ by disjoint clopen subsets of X. \square

3. Main Lemmas

3.1 Lemma: Let X and Y be weight-homogeneous spaces of weight κ such that $X = \bigcup_{i < \omega} X_i$ and $Y = \bigcup_{i < \omega} Y_i$ with X_i (resp. Y_i) closed and nowhere dense in X (resp. Y). Suppose furthermore that every non-empty clopen subset of X (resp. Y) contains a closed nowhere dense copy of each X_i (resp. Y_i). Then $X \approx Y$.

Proof: Since we are going to use Theorem 2.3, first note that X and Y (and hence all clopen subspaces) are nowhere compact. Without loss of generality we may assume that $X_i = \emptyset$ (resp. $Y_i = \emptyset$) if i is odd (resp. even).

We will define, for each $n < \omega$, closed nowhere dense subsets A_n and B_n of X and Y, a homeomorphism $h_n : A_n \approx B_n$, and KR-coverings $\{(U_\alpha^n, V_\alpha^n) : \alpha < \kappa\}$ for $(X - A_n, Y - B_n, h_n)$ such that the following conditions are satisfied for all $n < \omega$.

- (i) $X_n \subset A_n \subset A_{n+1}$ and $Y_n \subset B_n \subset B_{n+1}$;
- (ii) $h_{n+1}|A_n = h_n$;
- (iii) for each $\alpha < \kappa, h_{n+1}[U_{\alpha}^n \cap A_{n+1}] = V_{\alpha}^n \cap B_{n+1};$
- (iv) for each $\alpha < \kappa$, there exists $\beta < \kappa$ such that $U_{\alpha}^{n+1} \subset U_{\beta}^{n}$ and $V_{\alpha}^{n+1} \subset V_{\beta}^{n}$.

Supposing this can be done, it follows form (i) and (ii) that $h = \bigcup_{n < \omega} h_n$ is a well-defined bijection form X to Y. To show that h is a homeomorphism it suffices to show, by the definition of KR-covering, that for each $n < \omega$, $h[U_{\alpha}^n] = V_{\alpha}^n$. We only show that $h[U_{\alpha}^n] \subset V_{\alpha}^n$. Take $x \in U_{\alpha}^n$, then for some $k \ge n$, $x \in A_{k+1} - A_k$ and hence $x \in U_{\beta}^k$ for some $\beta < \kappa$. By (iv) we must have $U_{\beta}^k \subset U_{\alpha}^n$, whence also $V_{\beta}^k \subset V_{\alpha}^n$. Thus, by (iii), $h(x) = h_{k+1}(x) \in h_{k+1}[U_{\beta}^k \cap A_{k+1}] \subset V_{\beta}^k \subset V_{\alpha}^n$, and we are done.

For the construction it will be convenient to take $h_{-1} = A_{-1} = B_{-1} = \emptyset$, and to let $\{(U_{\alpha}^{-1}, V_{\alpha}^{-1}) : \alpha < \kappa\}$ be a KR-covering for (X, Y, \emptyset) . Now let n = -1 or $n < \omega$ and assume

that A_n , B_n , h_n and $\{(U_{\alpha}^n, V_{\alpha}^n) : \alpha < \kappa\}$ have been constructed. For each $\alpha < \kappa$, if n is odd put $A_{\alpha}^n = U_{\alpha}^n \cap X_{n+1}$ and let B_{α}^n be a closed nowhere dense copy of A_{α}^n in V_{α}^n (note that V_{α}^n is non-empty by the definition of KR-covering!); and if n is even put $B_{\alpha}^n = V_{\alpha}^n \cap Y_{n+1}$ and let A_{α}^n be a closed nowhere dense copy of B_{α}^n in U_{α}^n . In both cases put $h_{\alpha}^n : A_{\alpha}^n \approx B_{\alpha}^n$. Apply Theorem 2.3 to obtain KR-coverings $\{(U_{\alpha,\beta}^n, V_{\alpha,\beta}^n) : \beta < \kappa\}$ for $(U_{\alpha}^n - A_{\alpha}^n, V_{\alpha}^n - B_{\alpha}^n, h_{\alpha}^n)$. Define

$$A_{n+1} = A_n \cup \bigcup_{\alpha < \kappa} A_{\alpha}^n, \ B_{n+1} = B_n \cup \bigcup_{\alpha < \kappa} B_{\alpha}^n, \ \text{and}$$

$$h_{n+1}=h_n\cup\bigcup_{\alpha<\kappa}h_\alpha^n.$$

It is clear that A_{n+1} and B_{n+1} are closed and nowhere dense sets containing A_n and X_{n+1} resp. B_n and Y_{n+1} , and using the fact that $\{(U_{\alpha}^n, V_{\alpha}^n) : \alpha < \kappa\}$ is a KR-covering for $(X - A_n, Y - B_n, h_n)$ it is easily verified that h_{n+1} is a homeomorphism. Furthermore, $h_{n+1}[U_{\alpha}^n \cap A_{n+1}] = h_{n+1}[A_{\alpha}^n] =$ $h_{\alpha}^{n}[A_{\alpha}^{n}] = B_{\alpha}^{n} = V_{\alpha}^{n} \cap B_{n+1}$ proving (iii), and (iv) is also readily obtained. Since $\{(U_{\alpha,\beta}^n, V_{\alpha,\beta}^n) : \alpha, \beta < \kappa\}$ can be reindexed as $\{(U_{\alpha}^{n+1}, V_{\alpha}^{n+1}) : \alpha < \kappa\}$, it remains to show that the former family is a KR-covering for $(X - A_{n+1}, Y - B_{n+1}, h_{n+1})$. So suppose that $D_{\alpha,\beta} \subset U_{\alpha,\beta}^n$, $R_{\alpha,\beta} \subset V_{\alpha,\beta}^n$, and $h_{\alpha,\beta} : D_{\alpha,\beta} \to$ $R_{\alpha,\beta}$ is a bijection for each $\alpha < \kappa$; put $h_{\alpha} = \bigcup_{\beta < \kappa} h_{\alpha,\beta}$ and $\tilde{h} = h_{n+1} \cup \bigcup_{\alpha < \kappa} \tilde{h}_{\alpha}$. Since $\{(U_{\alpha,\beta}^n, V_{\alpha,\beta}^n) : \beta < \kappa\}$ is a KRcovering for $(U_{\alpha}^n - A_{\alpha}^n, V_{\alpha}^n - B_{\alpha}^n, h_{\alpha}^n)$ and \tilde{h} is $h_{\alpha}^n \cup \tilde{h}_{\alpha}$ on U_{α}^n, \tilde{h} (resp. \tilde{h}^{-1}) is continuous in points of A^n_{α} (resp. B^n_{α}). Finally note that $\tilde{h} = h_n \cup \bigcup_{\alpha < \kappa} (h_\alpha^n \cup \tilde{h}_\alpha)$, so since $h_\alpha^n \cup \tilde{h}_\alpha$ is a bijection between subsets of U_{α}^{n} and V_{α}^{n} , and $\{(U_{\alpha}^{n}, V_{\alpha}^{n}) : \alpha < \kappa\}$ is a KR-covering for $(X - A_n, Y - B_n, h_n)$ we find that \tilde{h} is continuous in points of A_n , and \tilde{h}^{-1} is continuous in points of B_n . \square

3.2 Lemma: Let X and Y be nowhere compact spaces with associated decompositions $(G,(X_i)_i)$ and $(H,(Y_i)_i)$. Suppose furthermore that every non-empty clopen subset of X (resp.

Y) contains a closed nowhere dense copy of each X_i (resp. Y_i). Then $X \approx Y$.

Proof: Fix complete metrics ρ_1 on G and ρ_2 on H. Let \mathcal{U}_i (resp. \mathcal{V}_i) be a disjoint family of clopen subsets of X (resp. Y) as in Definition 2.4, such that ρ_1 -mesh $(\mathcal{U}_i|G) \to 0$ (resp. ρ_2 -mesh $(\mathcal{V}_i|H) \to 0$). Without loss of generality we may assume that for each $n < \omega, X_{2n} = X_{2n+1}, \ \mathcal{U}_{2n} = \mathcal{U}_{2n+1}, \ Y_0 = \emptyset, \ \mathcal{V}_0 = \{Y\}, Y_{2n+1} = Y_{2n+2}, \text{ and } \mathcal{V}_{2n+1} = \mathcal{V}_{2n+2}.$ Also put $\mathcal{V}_{-1} = \mathcal{V}_0$. Now construct A_n , B_n , h_n and $\{(U_\alpha, V_\alpha) : \alpha < \kappa\}$ exactly as in the proof of Lemma 3.1, but subject to the further condition

(*) for each $\alpha < \kappa$, $\{U_{\alpha}^{n} : \alpha < \kappa\}$ refines \mathcal{U}_{n} and $\{V_{\alpha}^{n} : \alpha < \kappa\}$ refines \mathcal{V}_{n} .

This is accomplished as follows. If the construction has just been carried out for n+1 as above, and n is odd, then $X_{n+1} \subset A_{n+1}$ so $X-A_{n+1} \subset \bigcup \mathcal{U}_{n+1}$, and we can replace each U_{α}^{n+1} by a family $\mathcal{U}_{\alpha}^{n+1}$ of non-empty disjoint clopen subsets of X which refines \mathcal{U}_{n+1} . Because of nowhere compactness and weight-homogeneity we can apply Lemma 2.1 and replace the corresponding V_{α}^{n+1} by a family $\mathcal{V}_{\alpha}^{n+1}$ of non-empty disjoint clopen subsets of Y such that $|\mathcal{U}_{\alpha}^{n+1}| = |\mathcal{V}_{\alpha}^{n+1}|$ (in face, we could choose this cardinality to be κ). Reindexing $\bigcup_{\alpha<\kappa}\mathcal{U}_{\alpha}^{n+1}$ and $\bigcup_{\alpha<\kappa}\mathcal{V}_{\alpha}^{n+1}$, the new $\{(U_{\alpha}^{n+1},V_{\alpha}^{n+1}):\alpha<\kappa\}$ still satisfies the "old" requirements. But also, by definition $\{U_{\alpha}^{n+1}:\alpha<\kappa\}$ refines \mathcal{U}_{n+1} , and by (iv) and the inductive hypothesis $\{V_{\alpha}^{n+1}:\alpha<\kappa\}$ refines $\mathcal{V}_{n}=\mathcal{V}_{n+1}$. If n is even a similar argument applies.

Define $M = \{ \sigma \in \kappa^{\omega} : \text{ for all } n < \omega, U_{\sigma(n+1)}^{n+1} \subset U_{\sigma(n)}^{n} \}$. If $\sigma \in M$ then there exists a unique point $x_{\sigma} \in \bigcap_{n < \omega} U_{\sigma(n)} \cap G$: indeed, ρ_1 is a complete metric on G and, by $(*), \rho_1$ -diam $(U_{\sigma(n)}^n \cap G) \leq \rho_1$ -mesh $(\mathcal{U}_n) \to 0$. Since each $\{U_{\alpha}^n : \alpha < \kappa\}$ is disjoint, different σ yield different x_{σ} . Also, $x_{\sigma} \in X - A$, and every $x \in X - A$ is some x_{σ} because of (iv) and the fact that $X - A = \bigcap_{n < \omega} \bigcup \{U_{\alpha}^n : \alpha < \kappa\}$. Again by (iv), $M = \{\sigma \in \kappa^{\omega} : \text{ for all } n < \omega, V_{\sigma(n+1)}^{n+1} \subset V_{\sigma(n)}^n \}$ so there is a similar one-to-one correspondence $\sigma \to y_{\sigma}$ between M and

Y-B. If we define $g:X-A\to Y-B$ by $g(x_\sigma)=y_\sigma$ then clearly $g[U_\alpha^n\cap (X-A)]=V_\alpha^n\cap (Y-B)$. Endowing $X-A\subset G$ with ρ_1 and $Y-B\subset H$ with ρ_2 , we see from ρ_1 -diam $(U_\alpha^n\cap G)\le \rho_1$ -mesh $(\mathcal{U}_n)\to 0$ and ρ_2 -diam $(V_\alpha^n\cap G)\le \rho_2$ -mesh $(\mathcal{V}_n)\to 0$ that $\{U_\alpha^n\cap (X-A):n<\omega,\ \alpha<\kappa\}$ and $\{V_\alpha^n\cap (Y-B):n<\omega,\ \alpha<\kappa\}$ are bases for X-A and Y-B, whence g is a homeomorphism.

Finally, define $h = g \cup \bigcup_{n < \omega} h_n$. Since $\{(U_{\alpha}^n, V_{\alpha}^n) : \alpha < \kappa\}$ is a KR-covering for $(X - A_n, Y - B_n, h_n)$ and $g : U_{\alpha}^n \cap (X - A) \approx V_{\alpha}^n \cap (Y - B)$, the map $g \cup h_n$ is a homeomorphism. This implies that h is a homeomorphism since X - A and Y - B are dense in X and $Y \cap B$.

4. MAIN THEOREMS

- **4.1 Theorem:** Let X be first category (in itself), such that every non-empty clopen subset of X contains a closed copy of X. Then
 - (a) X is strongly homogeneous;
- $(b)X \approx \mathbb{Q} \times X \approx (\omega + 1) \times X$; in particular, X contains a closed nowhere dense copy of X.

Proof: Put $X = \bigcup_{i < \omega} X_i$ with X_i closed and nowhere dense X. (a) Let U be a non-empty clopen subset of X. Then $U = \bigcup_{i < \omega} U_i$ where $U_i = U \cap X_i$, and U_i is closed and nowhere dense in X. Now every non-empty clopen subset of U, being also clopen in X, contains a closed copy of X, and hence closed nowhere dense copies of each X_i ; and similarly each non-empty clopen subset of X contains closed nowhere dense copies of the U_i . By Lemma 3.1, $U \approx X$.

(b) Write $\mathbb{Q} \times X = \bigcup_{i < \omega} \bigcup_{q \in \mathbb{Q}} (\{q\} \times X_i)$. Then each non-empty clopen subset of X contains closed nowhere dense copies of each $\{q\} \times X_i \approx X_i$, and each non-empty clopen subset of $\mathbb{Q} \times X$ contains a clopen subset of X as a closed subset and thus contains closed nowhere dense copies of each X_i . By Lemma 3.1, $\mathbb{Q} \times X \approx X$. The proof for $(\omega + 1) \times X$ is similar. \square .

4.2 Theorem: Let X be first category (in itself). Then X^{ω} is strongly homogeneous.

Proof: Note that X^{ω} is first category, and that every non-empty clopen subset of X^{ω} contains a closed copy of X^{ω} . Now apply Theorem 4.1(a). \square

- **4.3 Theorem:** Let X contain a dense complete subspace, and suppose that every non-empty clopen subset of X contains a closed copy of X. Then
 - (a) X is strongly homogeneous;
- (b) if X contains more than one point then $X \approx (\omega + 1) \times X$; in particular, X contains a closed nowhere dense copy of X.

Proof: If some non-empty clopen subset of X is compact, then X itself is compact and it easily follows that either X has one point or $X \approx 2^{\omega}$, in which cases the theorem holds. So assume that X is nowhere compact. Applying Proposition 2.5, fix an associated decomposition $(G,(X_i)_i)$ for X, and let ρ and \mathcal{U}_i be as in Definition 2.4.

- (a) Let U be a non-empty clopen subset of X. It is easily verified that $(G \cap U, (X_i \cap U)_i)$ is an associated decomposition for U (endow $G \cap U$ with the restriction of ρ). Put $U_i = X_i \cap U$. Since each every non-empty clopen subset of X contains a closed copy of X, it also contains closed nowhere dense copies of all U_i ; and similarly every non-empty clopen subset of U contains closed nowhere dense copies of all X_i . By Lemma 3.2, $X \approx U$.
- (b) It is easily verified that $((\omega + 1) \times G, ((\omega + 1) \times X_i)_i)$ is an associated decomposition for $(\omega + 1) \times X$ (take e.g. the max-metric on $(\omega + 1) \times G$). For an application of Lemma 3.2 it suffices to show that X contains a closed nowhere dense copy of each $(\omega + 1) \times X_i$. Let Y be the subspace $(\omega \times X) \cup (\{\omega\} \times X_i)$ of $(\omega + 1) \times X$. Since Y clearly contains a closed nowhere dense copy of $(\omega + 1) \times X_i$, it suffices to prove that $X \approx Y$. Since every non-empty clopen subset of X or Y contains a closed copy of X, both X and Y are weight-homogeneous, of the same weight. Put $A = X_i$, $B = \{\omega\} \times X_i$, and let $h : A \to B$ be any

homeomorphism. Then by Proposition 2.3 there exists a KR-covering $\{(U_{\alpha},V_{\alpha}): \alpha<\kappa\}$ for (X-A,Y-B,h). However, for each $\alpha<\kappa,U_{\alpha}\approx X$ since X is strongly homogeneous by (a), and $V_{\alpha}\approx\omega\times X\approx X$ since X is in addition non-compact. Thus, there exist homeomorphisms $h_{\alpha}:U_{\alpha}\to V_{\alpha}$, and by the definition of KR-covering, $\tilde{h}=h\cup\bigcup_{\alpha<\kappa}h_{\alpha}:X\to Y$ is a homeomorphism. \square

4.4 Theorem: Let X contain a dense complete subspace. Then X^{ω} is strongly homogeneous.

Proof: Note that X^{ω} contains a dense complete subspace and that every non-empty clopen subspace of X^{ω} contains a closed copy of X^{ω} . Now apply Theorem 4.3. \square

4.5 Corollary: Let Γ be one of the classes Δ_n^1 , Π_n^1 , or Σ_n^1 . If $Det(\Gamma)$ and $X \in \Gamma$ then X^{ω} is strongly homogeneous.

Proof: By Moschovakis [7], X has the Baire property. Thus, either X contains a dense complete subset or some non-empty open subset of X is first-category (see Kuratowski [3], §11.IV). In the former case, Theorem 4.4 applies, and in the latter case X^{ω} is first category whence $X^{\omega} \approx (X^{\omega})^{\omega}$ is strongly homogeneous by Theorem 4.2. \square

It follows from Corollary 4.5 that X^{ω} is homogeneous if X is a (separable) absolute Borel set. This has been proved independently by Gruenhage and Zhou (and possibly others). They also proved corollary 4.5 for Σ^1_1 , and the following corollary to Theorem 4.2: $(MA + \neg CH)$ if $|X| \leq \omega_1$ then X^{ω} is homogeneous. Furthermore, they showed that X^{ω} is homogeneous if X is zero-dimensional and first-countable and contains a dense set of isolated points.

REFERENCES

- [1] F. van Engelen, Homogeneous zero-dimensional absolute Borel sets, CWI Tract 27, 1986.
- [2] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [3] K. Kuratowski, Topology I, Academic Press, New York, 1966.

- [4] S. V. Medvedev, Characterization of h-homogeneous spaces, Interim Report of the Prague Top. Symp. 2, 1987.
- [5] J. van Mill, Infinite-dimensional topology: prerequisites and introduction, North-Holland, Amsterdam, 1989.
- [6] J. van Mill and G. M. Reed (eds.), Open problems in topology, North-Holland, Amsterdam, 1990.

Erasmus Universiteit Rotterdam Econometrisch Instituut Postbus 1738 3000 DR Rotterdam, The Netherlands