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ON THE HOMOGENEITY OF INFINITE
 
PRODUCTS
 

FONS van ENGELEN 

ABSTRACT. We show that if X is a zero-dimensional 
metric space that is either first category (in itself) or 
contains a dense complete subspace, then the countable 
infinite product XW is homogeneous. 

1. INTRODUCTION 

Question 387 of Open Problems in Topology [6] asks for which 
zero-dimensional subsets X of R. it is true that XW is homo­
geneous. The main purpose of this note is to provide a proof 
that XW is homogeneous if either X is first category in itself 
(i.e. X = Ui<wXi with Xi closed and nowhere dense in X), 
or X contains a dense complete subspace. In fact it will be 
shown that for arbitrary metrizable X of covering dimension 
zero (so no separability required) XW is even strongly homo­
geneous in these cases, i.e. every non-empty clopen subset of 
XW is homeomorphic to XW. 

After I obtained the above theorem, I learned that similar 
results had been announced by S. V. Medvedev in [4]. As far 
as I know his proofs have never been published; therefore I 
have organized this note in such a way that some of the other 
results announced in [4] follow as well. 

Whether or not XW is homogeneous for all zero-dimensional 
(separable) metric spaces X remains an interesting open prob­
lem. 
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2. PRELIMINARIES 

All spaces are zero-dimensional (in the sense of dim) and 
metrizable. 

The choice of metric will always be irrevelant, obvious, or 
indicated; all metrics are assumed to be bounded by 1. 

For standard definitions and terminology, we refer the reader 
to [2], [3], and [5]. A space is called nowhere compact if no 
non-empty clopen subset is compact. We call a space weight­
homogeneous if all non-empty open subspaees have the same 
weight. We write X ~ Y (resp. h : X ~ Y) if X and Yare 
homeomorphic (resp. if h is a homeomorphism between X and 
Y). H U is a family of subsets of a space, then mesh(U) = 
sup{diam(U):U E U}. 

In our proofs, we will need a homeomorphism extension theo­
rem (Proposition 2.3) which is a generalization of Lemma 3.2.2 
of [1] to the non-separable situation. 

2.1 Lemma. Suppose X is a non-compact weight-homogeneous 
space of weight /\'. Then X can be written as the disjoint union 
of K, non-empty clopen subsets. 

Proof: Since X is non-compact we can write X as a disjoint 
union Uj<w X j with X j clopen and non-empty. Now if /\, = W we 
are done, so assume that K, > w. Let Ui be a disjoint covering of 
X by clopen sets of diameter less than 1/i. Then IUi Ui I = /\'. If 
some Ui has cardinality /\', then we are done, so assume lUi I < /\, 
for each i. Let vt be a disjoint covering of X j by elopen sets 
of diameter less than 11k; since w(Xj ) = K, > w we must have 
IV{ I ~ IUj Ifor some kj • Then Uj<w vt is the required covering 
ofX. D 

2.2 Definition: Let A be a closed nowhere dense subset of the 
space X, and let B be a closed nowhere dense subset of the 
space Y. Suppose that h : A -+ B is a homeomorphism, {UOl : 
o < K,} is a covering of X - A by disjoint non-empty clopen 
subsets of X, and {VOl : 0 < K,} is a covering of Y - B by 
disjoint non-empty clopen subsets ofY. Then {(UOl , Va) : Q < 
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K} is a KR-covering for (X - A, Y - B, h) if, whenever Do C 
Uo, Ro C Vo' and ho : Do --. R o is a bijection for each 0 < K, 

the combination mapping it = h U UO<I( ho is continuous in 
points of A, and ;"-1 is continuous in points of B. 

2.3 Theorem: Let X and Y be nowhere compact weight-homo­
geneous spaces of weight K. Let A and B be closed nowhere 
dense subsets of X and Y, respectively, and suppose that h : 
A --. B is a homeomorphism. then there exists a KR-covering 
{(Ua,Va): 0 < K} for (X - A, Y - B,h). 

Proof: The case where A and B are empty is trivial so assume 
A # 0 # B. Let P be a disjoint covering of X - A by clopen 
subsets of X such that, for each PEP, diam(P) < d(P, A); 
then P = Ui<w Pi where 

Pi = {P E P: d(P, A) E (2- i - 1 ,2-i ]}. 

Similarly, we let Q be a disjoint covering Y - B by clopen 
subsets of Y such that, for each Q E Q, diam (Q) < d(Q,B); 
also define 

With each PEP we will associate Qp E Q and ap E A, 
and with each Q E Q we will associate PQ E P and bQ E B, 
such that, putting bp = h(ap) and aQ = h-1(bQ), the following 
hold: 

(i) d(P,ap) < 2d(P,A) and Qp C B(bp,d(P, A)); 
(ii) d(Q, bQ) < 2d(Q, B) and PQ C B(aQ' d(Q, B)); 
(iii) for each i E w, the families {Qp : P E Pi} and 

{PQ : Q E Qi} are discrete. 
We will describe the construction of the sets Qp and the 

points ap; the construction of the PQ and bQ is analogous. 
Fix i E w. Let W be a disjoint clopen covering of Y with 

mesh(W) < 2-i- 2
• With each W E W such that W n B =F 0 

we associate Qw E Q as follows. Take b E Band 6 > 0 
such that B(b,6) c W Since B is nowhere dense in Y there 
exists Qw E Q such that Qw n B(b, t6) =F 0. Since diam 
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(Qw) < d(Qw, B) < !6 we have Qw C B(b,6) C W. Now take 
P E Pi. Find ap E A such that d(P, ap) < 2d(P, A) (so the 
first part of (i) is satisfied) and let bp = h(ap ). Then bp E W 
for some W E W, and we can define Qp = Qw. To verify the 
second part of (i), note that d(bp , Qw) < diam(W) < 2-i- 2 

and diam(Qw) < diam(W) < 2-i- 2 since Qw C W, hence 
Qp = Qw c B(bp,2- i

- 1
) c B(bp,d(P, A)) since d(P, A) > 

2- i - 1 • Clearly, (iii) is satisfied because each W E W contains 
at most one element of {Qp : P E Pi} (although this element 
Qw can be Qp for many different P E 'Pi). 

Since each PEP and Q E Q is non-compact and weight­
homogeneous, we can find, using Lemma 2.1, disjoint clopen 
families Up and VQ of size'" such that P = UUp and Q = UVQ • 

Put 

and well-order U and V in type "'. Inductively, we will define 
bijections '" -+ U, '" -+ V, with the image of a denoted by U°t 

resp Va' together with points aa E A and ba = h(aa) E B. 
First assume that a is even. Put Ua =' rnin(U - {Up: f3 < 

a}), and take PEP containing Ua . Since Qp contains '" 
elements of V we can choose Va C Qp such that Va E V ­
{Vp : f3 < a}. Define aOt = ap and bOt = h(aa) = bp. If a 
is odd we similarly put Va = min(V - {Va : Q' < ,B}), take 
Q E Q containing Va' and choose Ua C PQ such that UOt E 
U - {Up: f3 < a}; also ba = bQ and aa = h-1(ba) = aQ. 
Clearly, U = {UOt : a < "'} and V = {VOt : a < "'} are coverings 
of X - A and Y - B by non-empty disjoint clopen subsets of 
X and Y, respectively. We claim that {(Ua, VOt ) : a < "'} is 
the required KR-covering. 

First we note that 
(iv)	 if a is even then d(Uon aOt ) < 3d(Ua , A) and
 

d{V bOt) < d(UOt , A);
Ot , 

(v)	 if a is odd then d(Va , ba ) < 3d(VOt , B) and
 
d(Ua, aa) < d(Va, B).
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Indeed, if 0 is even and U0 C P then 

d(Uo,ao) = d(Uo,ap) ~ d(P,ap) + diam (P). 

But d(P, ap) < 2d(P, A) by (i) and diam(P) < d(P, A), so 

d(Uo,ao) < 3d(P, A) ~ 3d(Uo, A). 

Since Vo C Qp we have, again by (i), that Vo C B(bp,d(P,A)) 
so 

d(Vo,bo) = d(Vo,bp ) ~ d(P, A) ~ d(Uo, A), 

establishing (iv). The proof of (v) is similar. 
Now assume that, for each 0 < "', Do C Uo, R o C Vo, 

and ho : Do ~ R o is a bijection, and put it = h U UO<K ho. 
Let a E A, and take a sequence (xn)n converging to a. Since 
hlA : A ~ B we may assume that X n E UOn for some an < "', 
for all n < w. Let Pn E P and Qn E Q be such that UOn C Pn 
and VOn C Qn. Then 

(vi)	 diam(UQn ) < d(Uon , A) ~ 0 and
 
diam(Von ) < d(Von , B) ~ o.
 

Indeed, diam(Uon ) < diam(Pn ) < d(Pn,A) ~ d(Uon,A) ~ 

d(xn,a) ~ 0, and similarly diam(Von ) < d(Von , B). Further­
more, d(Von , B) ~ d(Qn,B)+ diam(Qn) so since diam(Qn) < 
d( Qn, B) it suffices to show that d( Qn, B) ~ o. Assume to­
wards a contradiction that for some i the set I = {n < w : 
d(Qn,B) E (2- i- 1 ,2-i ]} = {n < w: Qn E Qi} is infinite. Now 
if On is even the Qn = QPn C B(bpn , d(Pn, A)) by (i), whence 
d(Qn, B) < d(Pn, A). But d(Pn, A) ~ 0 so it must be the case 
that an is odd for infinitely many n E I. For these n we have 
that Pn = PQn , and we find that 

a E	 (U{Pn : n E [,an odd })- C (U{PQ : Q E Qi})­

- U{PQ : Q E Qi} C X - A, 

with closures being taken in X, and the equality being true 
because of (iii). We have a clear contradiction, and (vi) has 
been proved. 
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Put an = aQn and bn = bQn = h(an). We find that 

d(an,a) ~ d(an,xn) +d(xn, a) 

~ d(an, UQn ) + diam(UQn ) +d(xn,a), 

and by (iv) and (v) 

d(an,UQn ) < max{3d(UQn ,A),d(VQn , B)}, 

so d(an,a) ~ 0 by (vi). Then also bn = h(an) ~ h(a) = b, 
whence 

d(h(xn ), h(a)) = d(h(xn ), b) ~ d(h(xn), bn) +d(bn , b) 

~	 d(VQn , bn) + diam(V +d(bn, b) --+ 0Qn ) 

using (vi) and the fact that by (iv) and (v), 

d(VQn,bn) < max{3d(VQn ,B),d(UQn ,A)}. 

Thus, h(xn ) --+ h(a) proving that h is continuous in points of A. 
The proof that h-1 is continuous in points of B is completely 
analogous. D 

2.4 Definition: An associated decomposition of the space X 
is a pair (G, (Xi)i) consisting of a dense complete subspace G 
of X (with complete metric p) and a sequence {Xi: i < w} of 
closed subsets of X such that 

(i) X - G = Ui<w Xi and 
(ii)	 X - Xi = UUi , where Ui is a disjoint family of clopen 

subsets of X such that p-mesh(UiIG) --+ 0 

Note that the sets Xi in the above definition will automati­
cally be nowhere dense. 

2.5 Proposition: If X has a dense complete subspace G, then 
X has an associated decomposition (G, (Xi)i). 

Proof: For each i let Vi be a disjoint covering of G by (rela­
tively) open sets of p-diameter less that Iii. It is well-known 
that Vi can be extended to a disjoint open family (but not 
necessarily covering) Ui in X. Since G is a Gs in X we can 
write X - G = Ui<w }Ii with }Ii closed in X. Now put Xi = 
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Yi U (X - UUi), and define Ui to be a refinement of Uil(X - Xi) 
by disjoint clopen subsets of X. D 

3. MAIN LEMMAS 

3.1 Lemma: Let X and Y be weight-homogeneous spaces of 

weight I\, such that X = Ui<w Xi and Y = Ui<w Yi with 
Xi (resp. l'i) closed and nowhere dense in X (resp. Y). Sup­
pose furthermore that every non-empty clopen subset of X (re­
sp. Y) contains a closed nowhere dense copy of each Xi (resp. 
Yi). Then X ~ Y: 

Proof: Since we are going to use Theorem 2.3, first note that X 
and Y (and hence all clopen subspaces) are nowhere compact. 
Without loss of generality we may assume that Xi = 0 (resp. 
Yi = 0) if i is odd (resp. even). 

We will define, for each n < w, closed nowhere dense subsets 
An and Bn of X and Y, a homeomorphism hn : An ~ Bn, and 
KR-coverings {(U;, Van) : a < I\,} for (X -An' Y -Bn, hn) such 
that the following conditions are satisfied for all n < w. 

(i) X n C An C An+l and Yn C Bn C Bn+1; 

(ii) hn+l lAn = hn; 
(iii) for each Q < 1\" hn+l[U~ n An+1] = Van n Bn+1 ; 

(iv) for each a < /\', there exists {i < I\, such that U~+l C U3 
nand V:+l c Vp . 

Supposing this can be done, it follows form (i) and (ii) that 
h = Un<w hn is a well-defined bijection form X to Y. To show 
that h is a homeomorphism it suffices to show, by the definition 
of ](R-covering, that for each n < w, h[U:l = Van. We only 
show that h[U~] eVan. Take x E U~, then for some k ~ n, x E 
Ak+l - Ak and hence x E U3 for some (i < 1\,. By (iv) we 
must have U3 C U;, whence also V; c V:. Thus, by (iii), 
h(x) = hk+l(X) E hk+l [Ug n Ak+l] c Vt3

k C Van, and we are 
done. 

For the construction it will be convenient to take h_ t = 
A_I = B_ 1 = 0, and to let {(U;l, V;l) : 0 < K} be a I<R­
covering for (X, Y, 0). Now let n = -lor n < wand assume 
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that An' Bn, hn and {(U:, V:) : 0 < K,} have been construct­
ed. For each (} < "', if n is odd put A~ = U: nXn+1 and let B~ 

be a closed nowhere dense copy of A~ in Van (note that Van is 
non-empty by the definition of ]<R-covering!); and if n is even 
put B~ = Van n Yn+l and let A~ be a closed nowhere dense 
copy of B~ in U~. In both cases put h~ : A~ ~ B~. Apply 
Theorem 2.3 to obtain ]<R-coverings {(U~,fJ' Va~fJ) : f3 < K} for 
(U~ - A~, Van - B~, h~). Define 

An+1 = An U UA:, Bn+1 = Bn U UB~, and 
a<~ a<~ 

hn+1 = hn U U h~. 
a<~ 

It is clear that An+1 and Bn+1 are closed and nowhere dense 
sets containing An and X n+1 resp. Bn and Yn+I , and us­
ing the fact that {(U~ , Van) : 0 < K,} is a I<R-covering for 
(X - An' Y - Bn, hn) it is easily verified that hn+1 is a home­
omorphism. Furthermore, hn+1 [U~ n An+1] = hn+1 [A~] = 
h~[A~] = B~ = Van nBn+1 proving (iii), and (iv) is also readily 
obtained. Since {( U~,(3' Va~(3) : 0, {3 < K} can be reindexed as 
{(U~+l, V:+ 1 ) : 0 < K,}, it remains to show that the former 
family is a ]<R-covering for (X - An+1 , Y - Bn+1, hn+1 ). So 
suppose that Da,fJ C U:,fJ' Ra,fJ C V~fJ' and ha,fJ : Da,fJ --+ 

ROl,fJ is a bijection for each 0 < "'; put ha = UfJ<~ ha,fJ and 
h = hn+I UUa<~ hOt. Since {(U~,fJ,VOt~fJ) : f3 < K} is a ](R­

covering for (U: - A~, Van - B~, h~) and 11, is h~ U ha on U~, 11, 
(resp. 11,-1) is continuous in points of A~ (resp. B~). Finally 
note that h = hn U Ua<~(h~ U ha), so since h~ U ha is a bijec­
tion between subsets of U: and V:, and {(U~, Van) : 0 < K,} 
is a ]<R-covering for (X - An' Y - Bn, hn) we find that h is 
continuous in points of An' and h- I is continuous in points of 
Bn • D 

3.2 Lemma: Let X and Y be nowhere compact spaces with 
associated decompositions (G, (Xi)i) and (H, (l'i)i). Suppose 
furthermore that every non-empty clopen subset of X (resp. 
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Y) contains a closed nowhere dense copy of each Xi (resp. 
Ii). Then X ~ Y. 

Proof: Fix complete metrics PIon G and P2 on H. Let Ui 
(resp. Vi) be a disjoint family of clopen subsets of X (resp. Y) 
as in Definition 2.4, such that pl-mesh(UiIG) --. 0 (resp. P2­
mesh(ViIH) --. 0). Without loss of generality we may assume 
that for each n < w,X2n = X 2n+l , U2n = U2n+l , 10 = 0, Vo = 
{Y}, Y2n+1 = Y2n+2' and V2n+1 = V2n+2• Also put V-I = Vo· 
Now construct An, Bn,hn and {(UQ , VQ ): Q' < K} exactly as in 
the proof of Lemma 3.1, but subject to the further condition 

(*)	 for each 0 < K, {U~ : 0 < K} refines Un and
 
{Von: 0 < I\,} refines Vn.
 

This is accomplished as follows. If the construction has 
just been carried out for n + 1 as above, and n is odd, then 
X n+l C An+l so X - An+1 C UUn +1 , and we can replace 
each U~+l by a family U~+l of non-empty disjoint clopen sub­
sets of X which refines Un+1 • Because of nowhere compact­
ness and weight-homogeneity we can apply Lemma 2.1 and re­
place the corresponding V n+1 by a family V:+1 of non-emptyo 
disjoint clopen subsets of Y such that IU~+ll = IV~+11 (in 
face, we could choose this cardinality to be K). Reindexing 
UO<IC U~+l and UO<IC V~+l, the new {(U~+I , Von +I ) : 0 < Ie} 
still satisfies the "old" requirements. But also, by definition 
{U:+1 

: Q < I\,} refines Un +l , and by (iv) and the inductive 
hypothesis {vQn+1 : 0 < I\,} refines Vn = Vn +1 • If n is even a 
similar argument applies. 

Define M = {u E K 
W 

: for all n < w,U:(~~I) c U:(n)}' If 
(J' E M then there exists a unique point Xu E nn<w Uu(n) n 
G : indeed, PI is a complete metric on G and, by (*), Pl­
diam(U:(n) n G) :5 pl-mesh(Un ) --+ o. Since each {U: : Q' < K} 
is disjoint, different (J' yield different Xu. Also, Xu E X - A, 
and every x E X - A is some Xu because of (iv) and the 
fact that X - A = nn<w U{U: : Q' < K}. Again by ( iv), 

WM = {u E K : for all n < w, VU(~~l) C Vuen)} so there is 
a similar one-to-one correspondence (J' --+ Yu between M and 
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Y - B. IT we define 9 : X - A --+ Y - B by g(xu) = Yu 
then clearly g[U: n (X - A)] = Von n (Y - B). Endowing 
X - A C G with PI and Y - B C H with P2, we see from PI­
diarn(U: n G) :5 pl-mesh(Un ) --+ 0 and P2-diam(Von n G) :5 P2­
mesh(Vn ) --+ 0 that {U~ n (X - A) : n < w, Q < Ie} and 
{Vonn (Y -B) : n < w, Q < Ie} are bases for X -A and Y - B, 
whence 9 is a homeomorphism. 

Finally, define h = 9 U Un<w hn • Since {(U-;, V:) : Q < Ie} is 
a KR-covering for (X -An' Y -Bn, hn) and g: u:n(X -A) ~ 

Vonn(Y -B), the map gUhn is a homeomorphism. This implies 
that h is a homeomorphism since X - A and Y - B are dense 
in X and Y D. 

4. MAIN THEOREMS 

4.1 Theorem: Let X be first category (in itself), such that 
every non-empty clopen subset of X contains a closed copy of 
X. Then 

(a) X is strongly homogeneous; 

(b)X ~ Q x X ~ (w +1) x X,. in particular, X contains a 
closed nowhere dense copy of X . 

Proof: Put X = Ui<w Xi with Xi closed and nowhere dense 
X. (a) Let U be a non-empty clopen subset of X. Then 
U = Ui<w Ui where Ui = un Xi, and Ui is closed and nowhere 
dense in X. Now every non-empty clopen subset of U, being 
also clopen in X, contains a closed copy of X, and hence closed 
nowhere dense copies of each Xi; and similarly each non-empty 
clopen subset of X contains closed nowhere dense copies of the 
Ui. By Lemma 3.1, U ~ X. 

(b) Write Q x X = Ui<w UqEQ({q} x Xi). Then each non­
empty clopen subset of X contains closed nowhere dense copies 
of each {q} x Xi ~ Xi, and each non-empty clopen subset of 
QxX contains a clopen subset of X as a closed subset and thus 
contains closed nowhere dense copies of each Xi. By Lemma 
3.1, Q x X ~ X. The proof for (w + 1) x X is similar. D. 
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4.2 Theorem: Let X be first category (in itself). Then XW is 
strongly homogeneous. 

Proof: Note that XW is first category, and that every non­
empty clopen subset of XW contains a closed copy of XW. Now 
apply Theorem 4.1(a). 0 

4.3 Theorem: Let X contain a dense complete subspace, and 
suppose that every non-empty clopen subset of X contains a 
closed copy of X. Then 

(a) X is strongly homogeneous; 
(b) if X contains more than one point then X ~ (w +1) x X ; 

in particular, X contains a closed nowhere dense copy of X . 

Proof: If some non-empty clopen subset of X is compact, then 
X itself is compact and it easily follows that either X has one 
point or X ~ 2w

, in which cases the theorem holds. So assume 
that X is nowhere compact. Applying Proposition 2.5, fix an 
associated decomposition (G, (Xi)i) for X, and let p and Ui be 
as in Definition 2.4. 

(a) Let U be a non-empty clopen subset of X. It is easily 
verified that (G n U, (Xi n U)i) is an associated decomposition 
for U (endow GnU with the restriction of p). Put Vi = 
xinu. Since each every non-empty clopen subset of X contains 
a closed copy of X , it also contains closed nowhere dense copies 
of all Ui ; and similarly every non-empty clopen subset of U 
contains closed nowhere dense copies of all Xi. By Lemma 3.2, 
X~U. 

(b) It is easily verified that ((w + 1) x G, ((w + 1) x Xi)i) 
is an associated decomposition for (w + 1) x X (take e.g. the 
max-metric on (w +1) x G). For an application of Lemma 3.2 
it suffices to show that X contains a closed nowhere dense copy 
of each (w+ 1) X Xi. Let Y be the subspace (w x X)U( {w} x Xi) 
of (w + 1) x X. Since Y clearly contains a closed nowhere dense 
copy of (w + 1) X Xi, it suffices to prove that X ~ Y. Since 
every non-empty clopen subset of X or Y contains a closed 
copy of X, both X and Yare weight-homogeneous, of the same 
weight. Put A = Xi, B = {w} X Xi, and let h : A ~ B be any 
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homeomorphism. Then by Proposition 2.3 there exists a I(R­
covering {(UOI,VOI ) : Q' < Ie} for (X - A,Y - B,h). However, 
for each Q' < Ie, UOI ~ X since X is strongly homogeneous by 
(a), and VOl ~ W x X ~ X since X is in addition non-compact. 
Thus, there exist homeomoryhisms hOi : UOi -+ VOl' and by the 
definition of ](R-covering, h = h U UOl<1( hOi : X -+ Y is a 
homeomorphism. D 

4.4 Theorem: Let X contain a dense complete subspace. Then 
XW is strongly homogeneous. 

Proof: Note that XW contains a dense complete subspace and 
that every non-empty clopen subspace of XW contains a closed 
copy of XW. Now apply Theorem 4.3. D 

4.5 Corollary: Let r be one of the classes ~~, II~, or ~~. If 
Det(f) and X E r then XW is strongly homogeneous. 

Proof: By Moschovakis [7], X has the Baire property. Thus, 
either X contains a dense complete subset or some non-empty 
open subset of X is first-category (see Kuratowski [3], §ll.IV). 
In the former case, Theorem 4.4 applies, and in the latter case 
XW is first category whence XW ~ (XW)W is strongly homoge­
neous by Theorem 4.2. D 

It follows from Corollary 4.5 that XW is homogeneous if X 
is a (separable) absolute Borel set. This has been proved inde­
pendently by Gruenhage and Zhou (and possibly others). They 
also proved corollary 4.5 for E~, and the following corollary to 
Theorem 4.2: (MA + ,CB) if IXI ~ WI then XW is homoge­
neous. Furthermore, they showed that XW is homogeneous if 
X is zero-dimensional and first-countable and contains a dense 
set of isolated points. 
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