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ON THE HOMOGENEITY OF INFINITE
PRODUCTS

FONS van ENGELEN

ABSTRACT. We show that if X is a zero-dimensional
metric space that is either first category (in itself) or
contains a dense complete subspace, then the countable
infinite product X*“ is homogeneous.

1. INTRODUCTION

Question 387 of Open Problems in Topology [6] asks for which
zero-dimensional subsets X of R it is true that X“ is homo-
geneous. The main purpose of this note is to provide a proof
that X* is homogeneous if either X is first category in itself
(i.e. X = UicoX; with X; closed and nowhere dense in X),
or X contains a dense complete subspace. In fact it will be
shown that for arbitrary metrizable X of covering dimension
zero (so no separability required) X“ is even strongly homo-
geneous in these cases, i.e. every non-empty clopen subset of
X*“ is homeomorphic to X“.

After I obtained the above theorem, I learned that similar
results had been announced by S. V. Medvedev in [4]. As far
as I know his proofs have never been published; therefore I
have organized this note in such a way that some of the other
results announced in [4] follow as well.

Whether or not X*“ is homogeneous for all zero-dimensional
(separable) metric spaces X remains an interesting open prob-
lem.
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2. PRELIMINARIES

All spaces are zero-dimensional (in the sense of dim) and
metrizable.

The choice of metric will always be irrevelant, obvious, or
indicated; all metrics are assumed to be bounded by 1.

For standard definitions and terminology, we refer the reader
to [2], [3], and [5]. A space is called nowhere compact if no
non-empty clopen subset is compact. We call a space weight-
homogeneous if all non-empty open subspaces have the same
weight. We write X = Y (resp. A: X = Y)if X and Y are
homeomorphic (resp. if & is a homeomorphism between X and
Y). If U is a family of subsets of a space, then mesh(U/) =
sup{diam(U):U € U}.

In our proofs, we will need a homeomorphism extension theo-
rem (Proposition 2.3) which is a generalization of Lemma 3.2.2
of [1] to the non-separable situation.

2.1 Lemma. Suppose X is a non-compact weight-homogeneous
space of weight k. Then X can be written as the disjoint union
of k non-empty clopen subsets.

Proof: Since X is non-compact we can write X as a disjoint
union U, ,, X; with X clopen and non-empty. Now if k = w we
are done, so assume that £ > w. Let U; be a disjoint covering of
X by clopen sets of diameter less than 1/:. Then |U; U;| = . If
some U; has cardinality &, then we are done, so assume |;| <
for each i. Let V} be a disjoint covering of X; by clopen sets
of diameter less than 1/k; since w(X;) = k£ > w we must have
|Vi | > ;| for some k;. Then U; <, Vi, is the required covering
of X. O

2.2 Definition: Let A be a closed nowhere dense subset of the
space X, and let B be a closed nowhere dense subset of the
space Y. Suppose that h : A — B is a homeomorphism, {U, :
a < Kk} is a covering of X — A by disjoint non-empty clopen
subsets of X, and {V, : a < k} is a covering of Y — B by
disjoint non-empty clopen subsets of Y. Then {(Ua, Vo) : a <

I<w
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k} is a KR-covering for (X — A,Y — B, k) if, whenever D, C
Uy, Ry C Vo, and hy : Dy — R, is a bijection for each a < &,
the combination mapping h = h U U,¢, ha s continuous in
points of A, and h—! is continuous in points of B.

2.3 Theorem: Let X andY be nowhere compact weight-homo-
geneous spaces of weight k. Let A and B be closed nowhere
dense subsets of X and Y, respectively, and suppose that h :
A — B is a homeomorphism. then there ezists a KR-covering

{(Ua, Vo) : @ < &} for (X — A,Y — B, h).

Proof: The case where A and B are empty is trivial so assume
A # 0 # B. Let P be a disjoint covering of X — A by clopen
subsets of X such that, for each P € P, diam(P) < d(P, A);
then P = ;<. P: where

P.={P€P:d(P,A)e (27,27}

Similarly, we let Q be a disjoint covering Y — B by clopen
subsets of Y such that, for each Q € Q, diam (Q) < d(Q, B);

also define
Qi = {Q € Q : d(Qa B) € (2-i—la2-‘]}'

With each P € P we will associate Qp € Q and ap € A,
and with each Q € Q we will associate Py € P and bg € B,
such that, putting bp = h(ap) and ag = h~'(bg), the following
hold:

(i) d(P,ap) <2d(P,A) and Qp C B(bp,d(P, A));

(i) d(Q,bg) < 2d(Q, B) and Py C B(ag,d(Q, B));

(iii)) for each i € w, the families {Qp : P € P;} and

{Pg : @ € Q;} are discrete.

We will describe the construction of the sets Qp and the
points ap; the construction of the Py and bg is analogous.

Fix : € w. Let W be a disjoint clopen covering of Y with
mesh(W) < 27-2. With each W € W such that WN B # 0
we associate Qw € Q as follows. Take b € B and § > 0
such that B(b,6) C W. Since B is nowhere dense in Y there
exists Qw € Q such that Qw N B(b,36) # 0. Since diam
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(@Qw) < d(Qw, B) < 36 we have Qw C B(b,6) C W. Now take
P € P;. Find ap € A such that d(P,ap) < 2d(P, A) (so the
first part of (i) is satisfied) and let bp = h(a,). Then bp € W
for some W € W, and we can define Qp = Qw. To verify the
second part of (i), note that d(bp,Qw) < diam(W) < 272
and diam(Qw) < diam(W) < 27*-2 since Qw C W, hence
Qrp = Qw C B(bp,?‘i-l) C B(bp,d(P,A)) since d(P,A) >
2-i-1_ Clearly, (iii) is satisfied because each W € W contains
at most one element of {Qp : P € P;} (although this element
@w can be Qp for many different P € P;).

Since each P € P and @ € Q is non-compact and weight-
homogeneous, we can find, using Lemma 2.1, disjoint clopen
families Up and Vg of size x such that P = JUp and Q = U Vy.
Put

U= J{Up:PeP}, V=U{Vo: Q€ Q},

and well-order U and V in type . Inductively, we will define
bijections k — U,k — V, with the image of a denoted by U,
resp V,, together with points a, € A and b, = k(a,) € B.
First assume that a is even. Put U, = min(if — {Us : B <
a}), and take P € P containing U,. Since Qp contains &
elements of V we can choose V, C @, such that V, € V —
{Vs : B < a}. Define a, = ap and b, = h(a,) = bp. If @
is odd we similarly put V, = min(V — {V, : a < f}), take
@ € Q containing V,, and choose U, C Py such that U, €
U—-{Us: B < a}; also b, = by and a, = h~(b,) = ag.
Clearly, U = {Uy : a < £} and V = {V, : & < &} are coverings
of X — A and Y — B by non-empty disjoint clopen subsets of
X and Y, respectively. We claim that {(U,,V,) : @ < k} is
the required KR-covering.
First we note that
(iv) if a is even then d(U,,a,) < 3d(U,, A) and
d(Va, ba) < d(U,, A);
(v) if ais odd then d(V,,b,) < 3d(V,, B) and
d(Ua,aq) < d(Va, B).
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Indeed, if « is even and U, C P then
d(Uy,as) = d(Ua,ap) < d(P,ap) + diam (P).
But d(P,ap) < 2d(P, A) by (i) and diam(P) < d(P, A), so
d(Ua, aq) < 3d(P, A) < 3d(Us, A).
Since V,, C Qp we have, again by (i), that V, C B(bp,d(P, A))

SO

d(Va, ba) = d(Va,bp) < d(P, A) < d(U,, A),

establishing (iv). The proof of (v) is similar.

Now assume that, for each @ < #,D, C U,, R, C V,,
and h, : D, = R, is a bijection, and put b = h U U, ha-
Let a € A, and take a sequence (z,), converging to a. Since
7L|A : A = B we may assume that z, € U, for some o, < k,
for all n < w. Let P, € P and @, € Q be such that U,, C P,
and V,, C @,. Then

(vi) diam(U,,) < d(U,,,A) — 0 and

diam(V,,) < d(V,,,B) — 0.

Indeed, diam(U,,) < diam(P,) < d(P,,A) < d(U,,,A) <
d(z.,a) — 0, and similarly diam(V,,) < d(V,,, B). Further-
more, d(V,,,B) < d(Q,, B)+ diam(Q,,) so since diam(Q,) <
d(@n, B) it suffices to show that d(Q,,B) — 0. Assume to-
wards a contradiction that for some i the set / = {n < w :
d(Q.,B) € (27,27} = {n < w: @, € Q;} is infinite. Now
if a,, is even the @, = Qp, C B(bp,,d(P,,A)) by (i), whence
d(@Qn,B) < d(P,,A). But d(P,, A) — 0 so it must be the case
that a,, is odd for infinitely many n € I. For these n we have
that P, = Py, , and we find that

a € (U{Prin€lanodd})” C((J{Po:Q€ Q})”
= U{PQ:QEQ,‘}CX—A,
with closures being taken in X, and the equality being true

because of (iii). We have a clear contradiction, and (vi) has
been proved.
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Put a, = a,, and b, = b,, = h(a,). We find that

d(an,a) < d(an,zs) + d(zs,a)
< d(an,Ua,)+ diam(U,,) + d(z,,a),
and by (iv) and (v)
d(an,Uay) < max{3d(Uan, A), d(Var, B)},
so d(a,,a) — 0 by (vi). Then also b, = h(a,) — h(a) = b,

whence

d(h(zx), h(a))

-~

d(h(z,), ) < d(h(zn), bn) + d(bs, )
d(V,,,b,) + diam(V, ) + d(b,,b) — 0
using (vi) and the fact that by (iv) and (v),

d(Va,,b,) < max{3d(V,,,B),d(Ua,,A)}.

Thus, k(z,) — k(a) proving that  is continuous in points of A.
The proof that 2! is continuous in points of B is completely
analogous. [

IN

2.4 Definition: An associated decomposition of the space X
is a pair (G, (X;):) consisting of a dense complete subspace G
of X (with complete metric p) and a sequence {X; : 1 < w} of
closed subsets of X such that
(1) X — G =Uic, Xi and
(i) X — X; = UU;, where U; is a disjoint family of clopen
subsets of X such that p-mesh(U;|G) — 0

Note that the sets X; in the above definition will automati-
cally be nowhere dense.

2.5 Proposition: If X has a dense complete subspace G, then
X has an associated decomposition (G, (X;):).

Proof: For each ¢ let V; be a disjoint covering of G by (rela-
tively) open sets of p-diameter less that 1/z. It is well-known
that V; can be extended to a disjoint open family (but not
necessarily covering) U; in X. Since G is a G5 in X we can
write X — G = U;¢, Y: with Y; closed in X. Now put X; =
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Y;U(X —UU;), and define Y; to be a refinement of U|(X - X;)
by disjoint clopen subsets of X. O

3. MAIN LEMMAS

3.1 Lemma: Let X and Y be weight-homogeneous spaces of
weight & such that X = Ui, Xi and Y = U, Yi with
Xi(resp. Y;) closed and nowhere dense in X (resp. Y ). Sup-
pose furthermore that every non-empty clopen subset of X (re-
sp. Y) contains a closed nowhere dense copy of each X; (resp.

Y;). Then X = Y.

Proof: Since we are going to use Theorem 2.3, first note that X
and Y (and hence all clopen subspaces) are nowhere compact.
Without loss of generality we may assume that X; = @ (resp.
Y; = 0) if 7 is odd (resp. even).

We will define, for each n < w, closed nowhere dense subsets
A, and B, of X and Y, a homeomorphism &, : A, = B,, and
KR-coverings {(UZ,V}): a < k} for (X —A,,Y — By, h,) such

that the following conditions are satisfied for all n < w.

(i) Xa CAn C Apt1 and Y, C B, C Bpyy;

(ii) hn+l|An = h.n;

(iii) for each a < &, hn,1[UZ N Apnt1] = V7 N Bpya;

(iv) for each o < «, there exists § < « such that Uzt C Uj

and VJ*1 C Vj.

Supposing this can be done, it follows form (i) and (ii) that
h = Unco hn 1s a well-defined bijection form X to Y. To show
that A is a homeomorphism it suffices to show, by the definition
of KR-covering, that for each n < w, h[UZ] = V. We only
show that A[UZ] C V. Take z € UZ, then for some k > n, z €
Ak41 — Ar and hence z € U;,‘ for some B < k. By (iv) we
must have U§ C UZ, whence also V§ C V2. Thus, by (iii),
h(z) = hit1(z) € hi1[U§ N Akya] C VF C V7, and we are
done.

For the construction it will be convenient to take h_; =
Ay, = B_; =0, and to let {(U;',V;!): a < &} be a KR-
covering for (X,Y,0). Now let n = —1 or n < w and assume
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that A,, By, h, and {(UZ,V?): a < £} have been construct-
ed. For each a < «, if n is odd put A} = UFN X4, and let B}
be a closed nowhere dense copy of A? in V' (note that V is
non-empty by the definition of KR-covering!); and if n is even
put B} = V7 NY,41 and let A}, be a closed nowhere dense
copy of B2 in U;. In both cases put A} : A2 ~ BZ. Apply
Theorem 2.3 to obtain KR-coverings {(UZz,V3s) : B < &} for
(Ur — A2,V — B2, h%). Define

Ansr = AU |J A%, Boyr = B,U | BY, and

a<lk a<lk

hpy1 = ha U U h%.
a<lk
It is clear that A,4; and B,,; are closed and nowhere dense
sets containing A, and X,4; resp. B, and Y,;;, and us-
ing the fact that {(U?,V}) : a < &} is a KR-covering for

(X — A,,Y — By, h,) ?t isaeasily verified that h,; is a home-
omorphism. Furthermore, hn41[U2 N Apt1] = hnp[AZ] =

h%[A%] = B? = V2N B,,, proving (iii), and (iv) is also readily
obtained. Since {(Uj 3, Vy5) : @, 8 < k} can be reindexed as
{(Uz+1,V2+1) : a < k}, it remains to show that the former
family is a KR-covering for (X — Ap41,Y — Bn41,hnt1). So
suppose that Do s C Uls, Rap C Vg3, and hop @ Dop —
R, is a bijection for each a < «; put ho = Us<x ha,s and
b = hpy1 UUgcrx ha. Since {(U35,V2s) : B < &} is a KR-
covering for (U? — A®,V* — B?, k") and h is k2 U h, on UZ, h
(resp. k1) is continuous in points of A” (resp. BZ). Finally
note that h = h, UUacx(h? U k), so since h? U &, is a bijec-
tion between subsets of U? and V?, and {(UZ,V}) : a < &}
is a KR-covering for (X — A,,Y — By, h,) we find that h is

continuous in points of A,, and A~! is continuous in points of

B,.. O

3.2 Lemma: Let X and Y be nowhere compact spaces with
associated decompositions (G,(X;):) and (H,(Y:)i). Suppose
furthermore that every non-empty clopen subset of X (resp.
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Y) contains a closed nowhere dense copy of each X; (resp.

Y,). Then X = Y.

Proof: Fix complete metrics p; on G and p; on H. Let U;
(resp. V;) be a disjoint family of clopen subsets of X (resp. Y))
as in Definition 2.4, such that p;-mesh(;|G) — 0 (resp. p,-
mesh(V;|H) — 0). Without loss of generality we may assume
that for each n < w, Xy, = Xon41, Usn = Usny1, Yo=0, Vo =
{Y}, Yans1 = Yony2, and Vinyy = Viongo. Also put V_; = V.
Now construct A, By, h, and {(Ua,V,) : @ < &} exactly as in
the proof of Lemma 3.1, but subject to the further condition

(*) for each a < «,{U} : @ < &} refines U, and
{V}:a < k} refines V,.

This is accomplished as follows. If the construction has
just been carried out for n + 1 as above, and n is odd, then
Xn41 C Apy1 so X — Apyy C UUn41, and we can replace
each UZ?*! by a family U?*! of non-empty disjoint clopen sub-
sets of X which refines U,;,. Because of nowhere compact-
ness and weight-homogeneity we can apply Lemma 2.1 and re-
place the corresponding V**! by a family V**! of non-empty
disjoint clopen subsets of Y such that |U2*!| = |V2*1| (in
face, we could choose this cardinality to be ). Reindexing
Uacn U2 and Uye, V2!, the new {(UZH, VP! @ o < &}
still satisfies the “old” requirements. But also, by definition
{U*! : a < &} refines Up41, and by (iv) and the inductive
hypothesis {V**! : a < &} refines V, = V,;;. If nis even a
similar argument applies.

Define M = {0 € k¥ : for all n < w,U:(';Ll) CUjm} I
o0 € M then there exists a unique point z, € Nycy, Usn) N
G : indeed, p; is a complete metric on G and, by (*),p1-
diam(U7(,,) N G) < pi-mesh(U,) — 0. Since each {U7 : & < &}
is disjoint, different o yield different z,. Also, z, € X — A,
and every ¢ € X — A is some z, because of (iv) and the
fact that X — A = N, U{UZ : @ < k}. Again by ( iv),
M = {0 € k“: for all n < w, V;}:il) C Vin)} so there is
a similar one-to-one correspondence ¢ — y, between M and
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Y- B If wedefneg: X-A —>Y - Bbyg(z,) =y,
then clearly g[U? N (X — A)] = VN (Y — B). Endowing
X — A C G with p; and Y — B C H with p,, we see from p,-
diam(U2 N G) < py-mesh(U,) — 0 and py-diam(V* N G) < p,-
mesh(V,) — 0 that {UZN(X — A) : n < w, a < &} and
{V2N(Y—-B):n <w, a < k} are bases for X — A and Y — B,
whence ¢ is a homeomorphism.

Finally, define h = gUU,<,, k. Since {(UZ,V?):a < k} is
a KR-covering for (X — An,Y —B,,h,)and g : UZN(X —A) =
V2N(Y —B), the map gUh, is a homeomorphism. This implies
that & is a homeomorphism since X — A and Y — B are dense
inXandY 0O

4. MAIN THEOREMS

4.1 Theorem: Let X be first category (in itself), such that
every non-empty clopen subset of X contains a closed copy of
X. Then

(a) X is strongly homogeneous;

()X = Qx X = (w+1) x X; in particular, X contains a
closed nowhere dense copy of X.

Proof: Put X = U, X; with X; closed and nowhere dense
X. (a) Let U be a non-empty clopen subset of X. Then
U = U;c, Ui where U; = U N X;, and U; is closed and nowhere
dense in X. Now every non-empty clopen subset of U, being
also clopen in X, contains a closed copy of X, and hence closed
nowhere dense copies of each X;; and similarly each non-empty
clopen subset of X contains closed nowhere dense copies of the
U;. By Lemma 3.1, U = X.

(b) Write Q x X = U<, Useq({q} X Xi). Then each non-
empty clopen subset of X contains closed nowhere dense copies
of each {q} x X; = X;, and each non-empty clopen subset of
Qx X contains a clopen subset of X as a closed subset and thus
contains closed nowhere dense copies of each X;. By Lemma
3.1, @ x X = X. The proof for (w+ 1) x X is similar. .
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4.2 Theorem: Let X be first category (in itself). Then X“ is
strongly homogeneous.

Proof: Note that X“ is first category, and that every non-
empty clopen subset of X contains a closed copy of X“. Now
apply Theorem 4.1(a). O

4.3 Theorem: Let X contain a dense complete subspace, and
suppose that every non-empty clopen subset of X contains a
closed copy of X. Then

(a) X is strongly homogeneous;

(b) if X contains more than one point then X = (w+1)x X;
in particular, X contains a closed nowhere dense copy of X.

Proof: If some non-empty clopen subset of X is compact, then
X itself is compact and it easily follows that either X has one
point or X &~ 2¥, in which cases the theorem holds. So assume
that X is nowhere compact. Applying Proposition 2.5, fix an
associated decomposition (G, (X;);) for X, and let p and U; be
as in Definition 2.4.

(a) Let U be a non-empty clopen subset of X. It is easily
verified that (GNU, (X; NU);) is an associated decomposition
for U (endow G N U with the restriction of p). Put U; =
X;NU. Since each every non-empty clopen subset of X contains
a closed copy of X, it also contains closed nowhere dense copies
of all U;; and similarly every non-empty clopen subset of U
contains closed nowhere dense copies of all X;. By Lemma 3.2,
X=U.

(b) It is easily verified that ((w+ 1) x G, ((w + 1) x Xi):)
is an associated decomposition for (w + 1) x X (take e.g. the
max-metric on (w+ 1) x G). For an application of Lemma 3.2
it suffices to show that X contains a closed nowhere dense copy
of each (w+1) x X;. Let Y be the subspace (wx X)U({w} x X;)
of (w+1)x X. Since Y clearly contains a closed nowhere dense
copy of (w + 1) x X;, it suffices to prove that X = Y. Since
every non-empty clopen subset of X or Y contains a closed
copy of X, both X and Y are weight-homogeneous, of the same
weight. Put A= X;, B = {w} x X, and let h : A — B be any
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homeomorphism. Then by Proposition 2.3 there exists a KR-
covering {(Ua,V,) : @ < &} for (X — A,Y — B, h). However,
for each a < k,U, ~ X since X is strongly homogeneous by
(a), and V, = w x X ~ X since X is in addition non-compact.
Thus, there exist homeomorphisms A, : Uy — V4, and by the
definition of KR-covering, h = hU Uacrha : X = Y is a
homeomorphism. [

4.4 Theorem: Let X contain a dense complete subspace. Then
X" s strongly homogeneous.

Proof: Note that X“ contains a dense complete subspace and
that every non-empty clopen subspace of X“ contains a closed
copy of X“. Now apply Theorem 4.3. O

4.5 Corollary: Let T be one of the classes Al, II}

no

Det(T' ) and X € T then X*“ is strongly homogeneous.

Proof: By Moschovakis [7], X has the Baire property. Thus,
either X contains a dense complete subset or some non-empty
open subset of X is first-category (see Kuratowski [3], §11.IV).
In the former case, Theorem 4.4 applies, and in the latter case
X“ is first category whence X“ ~ (X“)“ is strongly homoge-
neous by Theorem 4.2. O

It follows from Corollary 4.5 that X*“ is homogeneous if X
is a (separable) absolute Borel set. This has been proved inde-
pendently by Gruenhage and Zhou (and possibly others). They
also proved corollary 4.5 for 1, and the following corollary to
Theorem 4.2: (M A+ -~CH) if | X| < w; then X*“ is homoge-
neous. Furthermore, they showed that X*“ is homogeneous if
X is zero-dimensional and first-countable and contains a dense
set of isolated points.

or XX If
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