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LINEARLY ORDERED ZERO-DIMENSIONAL
COMPACT SPACES AS REMAINDERS

ELIZA WAJCH

ABSTRACT. A concept of a GDA-space over a linearly
ordered set is introduced and applied to a direct method
of constructing a compactification whose remainder is a
fixed zero-dimensional linearly ordered compact space.

INTRODUCTION

It is well known that, for any Tikhonov space Y, there exists
a Tikhonov space X with X\ X homeomorphic to Y (cf.[1:
4.18]). However, the general problem of finding an internal
characterization of spaces which have compactifications whose
remainders are homeomorphic to a fixed Tikhonov space Y is
difficult. Various authors discovered conditions on a locally
compact space X which guarantee that members of a certain
class of compact spaces are remainders of X (cf. for instance
[2-4,7,8]). The fact that Y is a remainder of a locally compact
space X is usually proved by using a theorem of Magill, i.e. by
showing that Y is a continuous image of SX\X (cf. [6; Thm.
2.1]). There are not too many methods of adding ¥ to X in
order to compactify X. In the present paper we introduce a
concept of a generalized double-arrow space (abbr. a GDA-
space) over a linearly ordered set and observe that all GDA-
spaces over the same set are homeomorphic. It occurs that a
zero-dimensional compact Hausdorff space is linearly ordered
if and only if it is a GDA-space over some set. This property
leads us to describing those locally compact spaces X which
have remainders homeomorphic to a fixed linearly ordered zero-
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dimensional compact space Y, and to giving a direct method
of constructing a compactification aX of X with aX\X =
Y. Our results generalize those obtained by Hatzenbuhler and
Mattson in [3-4]). All the spaces considered here are assumed
to be completely regular and Hausdorff.

GENERALIZED DOUBLE-ARROW SPACES

In what follows, S denotes a linearly ordered set with a min-
imal element p and a maximal element ¢ where p # q.

1. Definition. Suppose that Y is a compact Hausdorff space
which has a collection {U, : s € S} of clopen sets satisfying the
following conditions:
LU,=0andU, =Y,
I. U,C U, fors<t (s,t €S);
III. the family {U\U, : s,t € S & s < t} forms an open
base forY .

Then we shall call Y a generalized double arrow-space over S

(abbr. a GDA(S )-space)

2. Theorem. Any linearly ordered zero-dimensional compact
space X is a generalized double-arrow space over some set.

Proof: Let X = [a,b] and let p ¢ X. Say that p < z for any
z € X. Considering the set T = {z € X : z has an immediate
successor } U{p, b} with the order inherited from that of X, and
putting Uy = {r € X : 2 <t} fort € T, we see that X is a
GDA(T)-space. O

From now on, Y will be a fixed GDA(S)-space, and {U, :
s € S}- a collection of clopen sets in Y fulfilling conditions (I)-
(III) of 1.

By a lower section of S we shall mean a nonempty proper
subset D of S such that s < ¢t for any s € D and t € S\D.
Denote by L(S) the space of all lower sections of S, equipped
with the topology induced by the linear order in L(S) given by
inclusion, i.e. D; < D, if and only if D; C D,. Clearly, the
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sets {D € L(S) : D < [p,s]} with s € S witness that L(S) is a
GDA(S)-space.

3. Theorem. Any GDA(S)-space is homeomorphic to L(S).

Proof: Fory € Y, put f(y) = {s € S:y &€ U,}. In the light
of (I) and (II), f(y) € L(S). We shall show that the function
f:Y — L(S) is a homeomorphism.

Let y,2 € Y and y # 2. Since Y is Hausdorff, it follows
from (III) that there exist s,t € S with s < t, y € U;\U, and
z € U\U,. Then s € f(y), t € f(y), but either t € f(z) or
s & f(z); so f(y) # f(2).

Let D € L(S). Since Y is compact, there exists y € N{U,\U, :
t € S\D & s € D}. For this y, we have f(y) = D; so
f(Y) = L(S).

Let y € Y be such that {p} # f(y) # S\{q}. Consider any
D1, D, € L(S) with D, < f(y) < Dy. Take to € Dy\f(y)
and so € f(y)\D:. Then y € U, \U,,. If z € Uy, \U,,, then
8o € f(2), while ¢ty € f(2). This implies that D; < f(z) < D,,
so f is continuous at y. Arguing similarly, we can prove that
f is continuous at f~!({p}) and at f~1(S\{q}). O

As an immediate, consequence of 2 and 3, we obtain the
following

4. Corollary. A compact zero-dimensional space X is linearly
ordered if and only if there ezists a collection U of its clopen
subsets such that U is linearly ordered by inclusion and the

family {U\V : U,V € U} forms an open base for X

5. Remarks. (a) Suppose that S is infinite and any s €
S\{p,q} has an immediate successor. Observe that if S,
equipped with the order topology, is compact, then the GDA(S)-
space is homeomorphic to S. Indeed: if {p} is nonisolated in S,
it suffices to put U, = [p, s) for s € S\{q}; if p is isolated in S,
let s = sup{s € S: any t € [p, s] is isolated in S}, U, = [p, s)
for s < sp, and U, = [p, s] for s > 59 (s € S). Of course, if S is
finite, then |L(S)| = |S| - 1.
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(b) Suppose that S with the order topology is both compact
and connected. Put S; = (S\{q}) x {0} and S; = (S\{p}) X
{1}. Let the space Yo = So U S; be endowed with the topology
whose base consists of all sets of the form ([s, %) x {0})U((s, t] x
{1}) where s,t € S and s < t. Defining U, = ([p,s) x {0})U
((p,s] x {1} for s € S, we show that Y is the GDA(S)-space.

SPACES FOR WHICH THE GDA(S)-SPACE IS A REMAINDER

6. Theorem. The GDA(S)-space with |S| > 3 is a remainder
of a locally compact space X if and only if there exist collections
{V, : s € S\{p,q}} and {W, : s € S\{p,q}} of noncompact
closed subsets of X, such that

(6.1) V,NW, =0 for any s € S\{p, q};

(6.2) clx[X\(V: U W,)] is compact for any s € S\{p, q};

(6.3) clx (V,\W)) is compact whenever s,t € S\{p,q} and s < t;
(6.4) clx(V:\V;) is noncompact whenever s,t € S\{p,q} and
s<t.

Proof:  Necessity. Suppose that there exists a compactifi-
cation aX of X with aX\X =Y. For s € S\{p,q}, take a
continuous function f, : X — [0, 1] such that f,(Y'\U,) = {0}
and f,(U;) = {1}. Put W, = f71([0,i]) N X and V, =
U3, 1) N X, Then clax[X\(V, UW))] C f71([5.3) € X;
hence (6.2) holds. Fix s,t € S\{p, ¢} with s < t. Suppose that
clx(V,\V,) is not compact. There exists yo €cl.x(V,\Vi) N
Y. Then yo € f;'([%,1]), so yo € U,. On the other hand,
yo € f7([0,2]), so yo € Y\U;. But this contradicts the fact
that U, C U;. Thus we have (6.3). Further, there exists y; €
U:\U,. If U is any open neighbourhood of y; in aX such that
U C f7H(3,1) n £71([0,3)), then U N (V,\V,) # @; hence
y1 Eclax(V:\V;) and we obtain (6.4).

Sufficiency. Before constructing the required compactifica-
tion of X, let us denote V, = 0, V, = X and prove the following:
(6.5) bdx(V,) is compact for any s € S:

(6.6) [intx (V:)]\(Vs U K') # 0 for any compact subset K of X
and any pair s,t € S with s < ¢;
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(6.7) for any compact subsets K; of X and any s;,t; € S with
t = 1,2 and s, < s3 < t; < 1y, there exists a compact set
K C X such that [intx(V;,)\(V, U K) C [fintx(Vi,)\(V,, U
K1) N {fintx (Vi, \(Va, U K3));

(6.8) for any s;,s; € S with i = 1,2 and s; < t; < s, < t,
there exists a compact set K C X such that [(intx(V;,))\(V,, U
K)]n[(lntX(Vtz))\Vn] =0.

To check (6.5), suppose that z € [bdx(V,)]\clx[X\(V,UW,)]
(s € S\{p,q}). There exists a neighbourhood G, of z with
Go C V,UW,. Since = € bdx(V;), for any neighbourhood G of
z, we have (GNGo)NW, # B and GNV, # 0; however, this is
impossible by (6.1). Consequently, bdx (V,) Cclx[X\(V,UW,)],
so bdx(V,) is compact by (6.2).

Suppose that there are s,t € S with s < ¢t and a compact
subset K of X, such that intx(V;) C V, U K. Then V,\V, C
KUbdx (V;). This, together with (6.5), contradicts (6.4). Hence
(6.6) holds.

To show (6.7), observe that A = [(intx(V%,))\V,,]\[(intx (V,N
‘/iz))\(vsx U V-’z U I(l u 1(2)] - [th \intX(‘/;z )] U (‘/Sl\‘/s2) U I{l U
K, C (Vi \V,)Ubdx (Vi )U(V,, \ Vs, )UK, UK,. Using (6.3) and
(6.5), we deduce that clx(A) is compact; thus (6.7) is satisfied.

Property (6.8) follows from (6.3) and from the inclusion
[(intx (Vs )\ Ve, ] N [(intx (Vi,))\Vi,] € Vi \Vi,.

At last, we are in a position to construct a compactification
aX of X with aX\X =Y. We may assume that X NY = 0.
Put aX = X UY and denote by B the collection containing
the original topology of X as well as all the sets (U,\U,) U
[(intx (V;))\(V.UK)] where K is a compact subset of X,s,t € S
and s < t. It follows from (I)-(III) and (6.7) that B forms a
base for some topology in aX. Let us consider aX with the
topology induced by B. Property (6.6) implies that X is a
dense subspace of aX. By ( 6.8) and the local compactness of
X, the space aX is Hausdorft.

Take any t;,s; € S and any compact subsets K; of X, such
that s; < t;for: =0,... ,n+1, p<tHr <, < ... <1, <
tht1 = ¢, So = p and U:‘;"OI(U,‘\U_,‘) =Y. In order to prove
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that aX is compact, it suffices to check that the set D =
X\ U [(intx (V;,))\(Vi; U K;)] is compact in X.

We have D = N2 [(X\intx(V;,)) UV, UK;] Cc EUUMY K,
where E = (2 [(Vour, \(intar (ViU intix (Vig))) U (Voo N0\
intx(V,))]. Put E;y =V, \[lintx(V;)U intx (V)] and E;, =
(Veu NVa,)\intx (Vi,) fori = 1,... ,n. Then E = U{N}_, Ei 4(;) :
f maps {1,... ,n} into {1,2}}. Conditions (6.3) and (6.5) im-
ply that the sets NI, F;, and ﬂ,_lE,-,g are compact in X be-
cause, by (II), there exist 7,5 € {1,... ,n} with s,4; <t; and
s; < to. Fix f:{l....,n} 28 {1, 2} The compactness of
D will be evident if we show that the set E; = N E; 55 is
compact.

Observe that if there exist 7,7 € {1,...,n} with f(z) =
1, f(j) =2and: > j, then, by (6.3) and (6.5), Ey is compact
since E;; N E;3 C V,,\ intx(V;,). Put ip = max f~'(1) and
suppose that {1,...,2} = f~}(1). Then ¢y < n and, by (II),
there exists jo € {io+1,... ,n+1} with s;, <¢;,. The inclusion
E; C V, \ intx(V; ), taken together with (6.3) and (6.5),

implies that E; is compact.

7. Corollary. Let T C S. If the GDA(S)-space is a remain-
der of X, then the GDA(T U {p, q})-space is a remainder of
X. Consequently, the GDA(T U {p, q})-space is a continuous
image of the GDA(S)-space.

Proof: The first part of the corollary follows from 6. To show
that the GDA(T U {p, q})-space is a continuous image of the
GDA(S)-space, it suffices to consider any space X with SX\X
being the GDA(S)-space. O

8. Examples. (a) Let X be the free union of noncompact
locally compact spaces X, with s € S. Putting V, = U<, X,
and W, = X\V,, we see that Y is a remainder of X where Y
is a GDA(S)-space.

(b) Let X be an infinite discrete space with |X| > d(Y).
Take a dense set D C Y with |D| < d(Y) where Y is a
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GDA(S)-space. Considering D x X with the discrete topol-
ogy and defining V, = (U,N D) x X and W, = (D x X)\V,, we
can construct a compactification aX of X with aX\X home-
omorphic to Y.

(c) Denote by C the Cantor set. Then C is the GDA-
space over the set T = {0,1} U {a, : n € N} with the usu-
al order induced from the real line, where (a1, ), (az, b2), ...
is the sequence of all components of the set [0,1]\C. Let
X = C\{1}. Take any sequence (z,) of points from the set
{b. : n € N} such that z, —» 1 and z, < z,4, for n € N.
For any : € N, we can inductively define a sequence (y,(z)) of
points from {a, : n € N} such that z, < y,(?) < z,4; and
Yn(z) < yn(y) whenever a; < a;(i,j,n € N). Usmg the sets
Vi = Unen([Zn, yn(¢)] N C) and W; = X\V; for i € N, we can
apply Theorem 6 to obtain a compactification of X with C as
its remainder.

(d) Let Z be the GDA([0, 1])-space, i.e. the interval [—1,1)
endowed with the topology whose base consist of all the sets
[a,b) U[—b,—a) where 0 < a < b < 1. Consider the subspace
X = Z\{0} of Z. For s € (0,1), define V, = Unen([33. n(n+l))U
[—n(n+1), —=)) and W, = X\V,. The families {V, :
(0,1)} and {W, : s € (0,1)} satisfy conditions (6.1)-(6.4); thus
Z is a remainder of X.

(e) Juhasz, Kunen and Rudin showed in [5] that if CH holds
then there exists a first countable, locally countable, locally
compact, perfectly normal, hereditarily separable, zero-dimen-
sional topology 7 on the real line R which is finer than the
Euclidean topology and has the property that, for each U €
T, there exists a usual open set G C U such that |U\G| <
w. Let X = (R,T). For any s € (0,1), choose a countable
compact neighborhood K, of sin X. Put V,={z € R:z <
s}\ intx(K,) and W, = {z € R : z > s}\intx(K,). Now,
by applying Theorem 6, we can find a compactification of X
whose remainder is the GDA(([0,1])-space. Similarly, we can
construct a compactification of X which has the Cantor set as
its remainder.
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It should be mentioned that conditions (6.1)-(6.4) were orig-
inally formulated from S = [0,w;] by Hatzenbuhler and Matt-
son in [4]. However, the authors of [4] proved the existence of
aX with aX\X = [0,w,] by the applying Magill’s theorem.

Finally, let us notice that if S is infinite and compact with
the order topology, then S is a continuous image of L(S). This,
along with the Magill theorem, gives at once the following

9. Proposition. Suppose that S is infinite and compact with
the order topology. If the GDA(S)-space is a remainder of X,
then S is a remainder of X.

Of course, the requirement that S be infinite cannot be omit-
ted in the above proposition since there are noncompact locally
compact spaces that do not have two-point compactifications.
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