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One of the classical separation axioms of topology is com­
plete normality. A topological space X is completely normal if 
for every pair of subsets A and B of X which are separated (Le. 
An B = 0= A n B) there are disjoint open sets containing A 
and B respectively. A standard exercise is to show that this is 
equivalent to hereditary normality. We will refer to completely 
normal Hausdorff spaces as Ts spaces. 

Until now it has been somewhat of a mystery how well­
behaved countably compact Ts spaces can be. Under Godel's 
axiom of constructibility (V = L) they can be quite patho­
logical: in [1] there is a V = L construction of a compact Ts 
space X of cardinality 2c in which every subspace is separable, 
yet the space has no infinite closed O-dimensional subspaces; 
in particular, X has no nontrivial convergent sequences. 

Our main results show that these spaces are much better 
behaved under the Proper Forcing Axiom (PFA), introduced 
in [2]. It implies that every countably compact Ts space is 
sequentially compact. [The consistency of this is new even for 
the compact case.] Much more strongly, it implies that every 
countable subset of a countably compact Ts space has compact, 
Frechet-Urysohn closure. [A space is called Frechet- Urysohn if 
whenever a point x is in the closure of a subset A, then there 
is a sequence from A converging to x.] Hence, in particular, a 
separable subspace can have cardinality at most c. 
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A striking corollary of this and the Tychonoff theorem is 
that, under PFA, the product of any number of countably com­
pact Ts spaces is countably compact, although the Ts property 
may be lost. This establishes the set-theoretic independence 
of the productivity of countable compactness when the factors 
are Ts; earlier, J. Vaughan [3] showed the consistency of the 
existence of a family of sequentially compact perfectly normal 
(T6 ) spaces whose product is not countably compact. 

We have also shown that the PFA implies every compact 
Ts space is pseudo-radial of chain-net order ~ 2. [A space is 
called pseudo-radial if closures can be obtained by iterating 
the operation of taking limits of well-ordered nets.] In fact, 
the closure of any subset A can be taken by taking the set A 
of all limits of convergent sequences in A, and adding to Ii the 
set of all points which are the limit of a well-ordered net in A. 

The proofs of these results use the following "reduction the­
orem". For the definitions of "countably tight" and "free se­
quence" see [4], [5], or [6]. "Separable" is synonymous with 
having a countable dense subset. 

Theorem 1 [4] The following are equivalent. 
(a)	 Every separable, Ts, compact space IS countably 

tight. 
(b)	 Every free sequence in a separable, Ts , countably 

compact space is countable. 
(c)	 A separable, Ts, countably compact space cannot 

contain WI. 

(d)	 No version of IN is Ts. 

Here IN is the generic symbol for a locally compact Haus­
dorff space X with a countable dense set of isolated points, 
identified with the set N of positive integers, such that X\N 
is homeomorphic to WI. We will also identify X\N with WI 

using a definition of N that makes it disjoint from WI. Baum­
gartner and the first author have independently observed that 
using only the usual axioms of set theory one can construct 
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versions of ,N in which the union of N with the successor or­
dinals is not normal. On the other hand, it is also consistent 
that there are other versions which are Ts ([4, 12]). One of our 
main results is that this cannot happen under the following 
version of the Open Coloring Axiom (OCA): 

If X is a separable metric space and 

[X]2 = Ko U K 1 

is a partition with K o open in the product topology then either 
there exists an uncountable O-homogeneous subset of X, of else 
X can be covered by countably many l-homogeneous sets. 

As usual, [A]2 stands for the collection of two-element subsets 
of A. A subset H of X is called i-homogeneous if [H]2 ~ ](i. 

In saying lio is open in the product topology, what we really 
mean is that {(x, y) : {x, y} E l(o} is open. 

The OCA was introduced and proved relatively consistent 
with ZFC + MA + 2No = N2 by Todorcevic ([15]), who ex­
tended and refined the previous work of Abraham, Rubin, and 
Shelah ([0]). (For many other applications of OCA see [13, 
14].) Answering a question of the first author, the fourth au­
thor showed: 

Theorem 2. [12] under OCA no version of,N can be com­
pletely normal. 

0
Outline of Proof: For each 0 < WI let 0 0 ~ W be such that 

0 U [0,0] is a compact neighborhood of [0,0]. It is easily seen 
that 0 0 c. a/3 and a/3\aQ c. U, for every neighborhood U of 
(0,,8] whenever ° < ,8. As usual, identify {oo : 0 < WI} with 
a subset of the Cantor set, 

Let S be the set of all (eke, 0'1' 0",) such that e< 11 < Jl and 
define the partition 

[S]2 = 1<0 U 1<1 

by {{a,b,c,) (a,b,c)} E lio iff 

a # a and [(a\b) n (c\b) =F 0 or (c\b) n (b\a) =F 0]. 



398 NYIKOS, SHAPIROVSKII, VELICKOVIC 

Then ](0 is open in the product topology. 
It is not hard to show in ZFC that S can not be the union of 

a sequence {Sn : n < w} of I-homogeneous sets. So, by DCA, 
there is an uncountable 0-homogeneous subset H of S. By 
cutting H down if necessary we may assume p, < l whenever 
(oe, Of), op} and (0(, Oij, Oil) are two distinct members of H 
such that ~ < (. Then 

A = U{(~,1/] : (0(, Of), op} E H} 

and 
B = U{ (1/, p,] : (0(,0'7' op) E H} 

are separated in ,N. If there were an open subset U of ,N 
such that A C U and clU n B = 0, we could let c = U n N 
and have af) \ae almost contained in c and ap \aTJ almost disjoint 
from c whenever (oe, 0'17' op) E H. Now, for every ~ there are 
at most one 1/ and p, such that (oe, Of), op} E H. If this happens 
choose n(~) E N such that 

[(af)\ae)\c] U [(a p \af)) n c] ~ [0, n(~)]. 

Then there is an uncountable subset I of H, n E N, and Q ~ 

[0, n] such that whenever (0(,0'7' op) E I then n(e) = nand 
Q'7 n [0, n] = Q. But then any pair of distinct elements of I is 
in ](1, a contradiction. 

In the proof of Theorem 2, if is possible to strengthen the 
conditions for merrlbership of {(oe, 0'17' op) (O{, Oij, oil)} in ](0 

by requiring that aTJ \ae meet afJ. \ aT} whenever ~ < (, and still 
show that PFA gives an uncountable O-homogeneous set. Of 
course, the resulting ](0 will not be open, but we can use a 
different consequence of PFA formulated by the third author 
and of independent interest. If X is a set and H is a proper 
u-ideal on X, call a graph 9 on X H -sparse if for all Z f/. H 
there exists H E H and a countable Q C Z such that for all 
b E [X\H]<w there exists z E Q such that {z, y} ¢ 9 for all 
y E b. 
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The Sparse Graph Axiom. Let X be a set and let H be a 
proper u-ideal on X. Let {HQ : Q < WI} c H. Every H­
sparse graph on X has an independent subset I ¢. HQ for all 
£} <WI. 

The proof that PFA implies the Sparse Graph Axiom uses a 
standard technique of interpolating countable elementary sub­
models of large enough fragments of set theory, made explicit 
in the works of Todorcevic [14], [15]. 

Besides the following theorem, the Sparse Graph Axiom also 
implies the axiom WI --+ (Wl,(Wl; fin Wt))2 of Todorcevic [16]. 
This axiom, which implies that there are no S-spaces [16], is 
easily seen equivalent to the Sparse Graph Axiom applied to 
X = WI' H = [WI]SW, and HQ = o. It can be phrased as 
follows: if 9 is a graph on WI, then either 9 has an uncountable 
independent subset, or else there is a pair S, B such that S is 
an uncountable subset of WI and B is an uncountable disjoint 
family of finite subsets of WI such that whenever s E Sand 
b E B satisfy s < b, there is an edge in 9 from s to b; more 
formally, [{s},b] n 9 =I 0. 

Theorem 3. The Sparse Graph Axiom implies no 1 N can be 
Ts. 

The proof of Theorem 3 applies the Sparse Graph Axiom to 
X = [Wl]3, H = {H eX: there is a club F C WI such that 
[F]3 n H = 0}, and HQ = [WI]3 \ [WI \0]3. The graph involved 
is the set of all pairs from X not in flO, so that "independent" 
is synonymous with "O-homogeneous." 

Given either Theorem 2 or Theorem 3, we can combine The­
orem 1(a) and (b) with the results from [5] to show that the 
closure of every countable set is compact [5, Theorem 1 and 
following sentence] and sequential [5, Theorem 2], [6]. This 
takes us to the threshold of: 

Theorem 4. [PFA] In a countably compact Ts space, every 
countable subset has compact, Frechet- Urysohn closure. 
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The final three steps are taken in ZFC. A compact sequential 
space· has the property that every countably compact subset 
is compact [7]. Every pseudocompact subset of a Ts space is 
countably compact [8, 3.10.21]. And if a countably compact 
space has the property that every pseudocompact subset is 
compact, then the space is Frechet-Urysohn [9]. 

Corollary 1. [PFA] Every countably compact Ts space is se­
quentially compact. 

Corollary 2. [PFA] If X is a product of countably compact Ts 
spaces, then X is countably compact. 

Indeed, one need only take a countably infinite set S in the 
product, project it to each factor space, take the respective 
compact closures, and find an accumulation point of S in the 
compact product of these subspaces. 

Corollary 2 show that an affirmative answer to the Scarbor­
ough-Stone problem is consistent in the Ts case. Scarborough 
and Stone showed [10] that the product of Nt sequentially com­
pact spaces is countably compact and asked whether this con­
tinued to hold for any number of factors. The first author has 
solved this problem [11] by producing a family of Ts sequen­
tially compact spaces whose product is not countably compact, 
but it is still important to know what happens if higher sepa­
ration axioms are imposed on the factor spaces. Corollary 2, 
coupled with the results of [3], give an independence result for 
the 'Scarborough-Stone problem for Ts and Ts spaces. For the 
case of T3 , Tychonoff, and T4 spaces we only know that the 
negative answer is consistent. 

Another sweeping corollary of Theorem 4 comes by way of 
the following curious concept. 

Definition 1. A dense subset S of a space X is super-dense 
if S meets every closed infinite subset A of X. 

Lemma 1. Every dense, countably compact subspace of a Ts 
space is super-dense. 
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Outline of Proof: Let A be closed infinite, and let D be an 
infinite discrete subspace of A. Let B =cl(D)\D. By Ts, we 
can expand D to a discrete-in-(X\D)-family of open sets, and 
if we pick points of S one apiece from these open sets, the only 
accumulation points will be in B, and at least one of these is 
in S. 

Definition 2. A space X is c-radial if, whenever a point x 
of X is in the closure of a countably compact subset S, then 
there is a well-ordered net from S converging to x. 

A standard transfinite induction, using regularity of X and 
super-density of S, gives: 

Theorem 5. Every compact Ts space is c-radial. 

Corollary 3. [PFA] Every compact Ts space is pseudo-radial, 
of chain-net order :5 2. 

Proof: Let A C X and let Abe the set of all limits of sequences 
from A. Now A is countably compact. Indeed, if D is any 
countably infinite subset of A, then there is a countable subset 
B of A such that D is a subset of cl(B); then, by Theorem 
4, cl(B) is Frechet-Urysohn, hence a subset of A; of course, 
cl(B) is (countably) compact, so any accumulation point of D 
is actually in A. Now apply Theorem 5. 

Finally, here is a curious corollary which does not mention 
countable compactness. 

Corollary 4. [PFA] Every locally compact, Ts, separable, first 
countable space of cardinality Nt is a normal Moore space. 

In [4], it is shown that the statement of Corollary 4 is equiv­
alent to any of the (equivalent) statements in Theorem 1 if one 
assumes MA + ...,CH. 
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