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ULTRAFILTERS: WHERE 
TOPOLOGICAL DYNAMICS 

ALGEBRA == COMBINATORICS 

ANDREAS BLASS 

ABSTRACT. We survey some connections between topo
logical dynamics, semigroups of ultrafilters, and combi
natorics. As an application, we give a proof, based on 
ideas of Bergelson and Hindman, of the Hales-Jewett par
tition theorem. 

Furstenberg and his co-workers have shown [15, 16, 17] how 
to deduce combinatorial consequences from theorems about 
topological dynamics in compact metric spaces. Bergelson and 
Hindman [4] applied similar methods in non-metrizable spaces, 
particularly the Stone-Cech compactification ,BN of the discrete 
space of natural numbers. This approach and related ideas 
of Carlson [11] lead to particularly simple formulations since 
many of the basic concepts of dynamics, when applied to ,BN, 
can be expressed in terms of a semigroup operation on ,BN, the 
natural extension of addition on N. The semigroup ,BN can al
so substitute, in many contexts, for the enveloping semigronps 
((14]) traditionally used in topological dynamics. Further sim
plifications and applications of these ideas were developed in 
[3]. 
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The purpose of this paper is to survey some of these de
velopments. In contrast to most surveys, however, we include 
some detailed proofs, in order to emphasize their simplicity. In 
the first three sections, we develop the necessary theory of dy
namics and the equivalent semigroup structure in fiN. In the 
fourth section, we apply the theory to present proofs of Hind
man's partition theorem for finite sums and of the Hales-Jewett 
theorem about homogeneous combinatorial lines in cubes. A 
final section (omitted for lack of time in the talk on which 
this paper is based) compares the ultrafilters discussed in the 
earlier sections with other ultrafilters traditionally related to 
combinatorics, for example selective ultrafilters. 

1. ULTRAFILTERS 

Throughout most of this paper we are concerned with ul
trafilters on the set N of natural numbers. These are usually 
defined by some version of the following set-theoretic defini
tion, in which we have included some redundant clauses for 
ease of future reference. 

Definition 1. An ultrafilter on N is a family U of subsets of 
N such that 

(1) If X ~ Y and X E U then Y E U. 
(2) If X, Y E U then X n Y E U. 
(3) 0 ~ U. 
(4) N E U. 
(5) For any X ~ N, either X E U or N - X E U. 
(6) If X U Y E U then either X E U or Y E U. 

The first four of these clauses define filters. 
The implications in (2) and (6) are reversible, by (1). 
To each a E N is associated a principal or trivial ultrafilter, 

namely a = {X ~ N I a E X}. In many contexts, we identify 
a with a. 

The following alternative definition expresses the usual way 
of viewing ultrafilters topologically. 
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Definition 2. An ultrafilter on N is a point in the Stone-tech 
compactification ,aN of the discrete space N. 

The two definitions are equivalent in the following sense. For 
any point p E ,aN, the family of subsets of N whose closures 
in ,aN contain p satisfies Definition 1. Conversely, if U is as in 
Definition 1, then the closures in ,aN of the sets in U have ex
actly one point p in common. And the constructions described 
in the preceding two sentences are inverse to each other. 

Although the two definitions of ultrafilters above are the 
most familiar ones, two other, equivalent definitions will be 
more useful for our purposes. The first of these uses the no
tion of a quantifier Q over N. This is an operation which 
applies to a formula 'P(n) with a free variable ranging over N 
and produces a new formula (Qn) 'P(n) in which n is no longer 
free; it is required that replacing 'P(n) by an equivalent formula 
'ljJ(n) yields an equivalent result (Qn) 'ljJ(n). Formally, a quan
tifier can be identified with the set of those X ~ N for which 
(Qn) n E X is true. Under this identification, the following 
definition amounts to Definition 1. 

Definition 3. An ultrafilter on N is a quantifier U over N that 
respects the propositional connectives in the sense that the 
following equivalences hold for all formulas 'P(n) and "p(n) 

(1) (Un) cp(n) /\ (Un) 1/J(n) ~ (Un) (cp(n) /\ 1/J(n)) 
(2) (Un) 'P(n) V (Un) 1/J(n) ~ (Un) ('P(n) V 1/J(n)) 
(3) .(Un) 'P(n) ~ (Un) !'P(n) 

If U is an ultrafilter in the sense of Definition 1, then the 
corresponding quantifier (Un), usually read "for U-almost all 
n," is defined by 

(Un) 'P(n) ~ {n E N I ep(n)} E U; 

conversely, from a quantifier as in Definition 3 we can define 

U = {X ~ N I (Un) n EX}. 
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As all propositional connectives (of any number of argu
ments) can be expressed in terms of ...., and 1\, they are all 
respected by ultrafilter quantifiers. 

Finally, we give another topological definition, which will 
provide a connection to dynamics. 

Definition 4. An ultrafilter on N is a uniform operation on 
sequences in compact Hausdorff spaces. That is, it is an op
erator assigning to every sequence (Xn)nEN in every compact 
Hausdorff space X a point U-limn X n E X subject to the re
quirement that, if f : X ~ Y is a continuous map to another 
compact Hausdorff space, then f(U-liIIln x n ) = U-limn f(x n ). 

The easiest way to connect this definition with the previous 
ones is to notice that a sequence (xn ) in X is a (continuous) 
function x from the discrete space N into X; if X is a compact 
Hausdorff space, then this map extends uniquely to x : jJN ~ 

X, and so each p E ,aN yields a point x(p) EX. Uniformity is 
easy to check, so an ultrafilter in the sense of Definition 2 yields 
one in the sense of Definition 4. Conversely, an operation as in 
Definition 4 can be applied to the sequence in ,aN whose nth 

term is n, yielding a point p E ,aN, and these constructions are 
inverse to each other. 

One can verify that U-liIIln X n is the unique point in X such 
that every neighborhood G of it satisfies (Un) X n E G. In par
ticular, it follows that U-limn X n is a limit point or a member 
of the sequence (xn ). Thus, a non-trivial ultrafilter can be re
garded as a systematic way of passing to a limit point of any 
sequence. 

The trivial ultrafilter a corresponds in Definition 2 to the 
point a E N ~ ,aN, in Definition 3 to the "quantifier" that just 
substitutes a for the quantified variable, and in Definition 4 to 
the operation that picks out the ath term from sequences. 

The set ,aN of all ultrafilters on N admits a binary operation 
+, extending ordinary addition on N (see for example [12, 23]). 
In the context of Definition 4, it amounts to an iteration of limit 
operations: 
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Translating this into the language of quantifiers, one again 
finds an iteration: 

((U+V)p)cp(p) {:=? (Um)(Vn)cp(m+n). 

The equivalent characterizations in terms of Definitions 1 and 
2 are more complicated, at least on first sight. Definition 1 
leads to 

u + V = {X ~ N I {m I {n 1m + n E X} E V} E U}. 

And for Definition 2 we have the following description of addi
tion. Start with ordinary addition + : N x N ~ N. Extend it 
by continuity to + : N x ,BN ~ ,BN, fixing the first argument 
in N and requiring continuity in the second. Then, fixing the 
second argument in ,BN and requiring continuity in the first, 
obtain an extension + : ,BN x ,aN ~ ,aN. 

Notice that the operation + on j3N is a continuous function 
of the left summand for any fixed value in j3N of the right 
summand, but it is not a continuous function of the right sum
mand for a fixed left summand unless the latter is in N (see 
[23, Section 10]). I refer to continuity in the left argument as 
left-continuity, and I therefore call ,aN a left topological semi
group. (Caution: Some authors use "right" instead of "left" 
because the right translations are continuous, and some au
thors define U + V to be what I would call V +U; authors who 
disagree with me on both points therefore say "left," just as I 
do, though they mean the opposite.) 

The addition operation on j3N is associative (most easily 
checked using the quantifier description of +); it is commuta
tive as long as one of the summands is in N, but not in general 
(for details, see [23, Section 10]). 

2. DYNAMICS 

Topological dynamics is concerned with the behavior of it
erations of a continuous map T from a space X into itself. 
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(Actually, it is considerably more general [14], but the pre
ceding description covers what will be relevant here.) For the 
purposes of this paper, a dynamical system consists of a com
pact Hausdorff space X and a continuous function T : X ~ X. 
We write Tn for the nth iterate ToT 0 · .• 0 T of T. To study 
the limiting behavior of these iterates for large n, we define (as 
in [24]) for each ultrafilter U on N 

ru(x) = U-limTn(x). 
n 

Regarded as a function of U E I3N, for fixed x EX, this is 
the continuous extension to ,aN of the function N ~ X : n ~ 

Tn(x). It follows that {TU(x) IU E ,BN} is the closure in X of 
the forward orbit {Tn(x) In E N} of the p,oint x. 

But regarded as a function of x for fixed U, ru(x) need 
not be continuous unless U is principal. If U is the principal 
ultrafilter n, then TU = Tn, so no confusion will be caused by 
identifying it with n in this context. 

The notion of iteration with respect to an ultrafilter, TU , 

connects nicely with the addition operation on ultrafilters in 
that 

Indeed, we have 

ru+V(x) (U +V)-limTP(x) 
p 

U-lim V-limTm+n(x) = U-lim V-limTm(Tn(x)) 
m n m n 

U-lim T m (V-lim Tn (x)) (as T m is continuous) 
m n 

TU(TV(x)). 

We next introduce some concepts from topological dynamics, 
i.e., concepts about the behavior of Tn(x) for large n. In each 
definition, it is assumed that (X, T) is a dynamical system. 
More information about these concepts can be found in [14, 
15]. 

Definition. A point x E X is recurrent if, for each neighbor
hood G of x, infinitely many n E N satisfy Tn(x) E G. It is 
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uniformly recurrent if, for each neighborhood G of x, there is 
MEN such that Vn3k < MTn+k(x) E G. 

Thus, recurrence means that, under the iteration of T, the 
point x returns to each of its neighborhoods infinitely often. 
Uniform recurrence bounds how long the sequence of iterates 
can stay out of any given neighborhood; there is M depending 
on G such that of every M consecutive iterates at least one is 
in G. 

Definition. Two points x, y E X are proximal if, for every 
neighborhood G of the diagonal in X x X, infinitely many 
n E N satisfy (Tn(x), Tn(y)) E G. 

Proximality is usually defined in the context of metric spaces 
by requiring that, for every positive c, infinitely many n have 
the distance between Tn(x) and Tn(y) smaller than c. This 
definition clearly makes use not of the full metric structure 
but only of the associated uniform structure; that is, it makes 
sense in any uniform space. A compact Hausdorff space has a 
unique uniform structure, and the definition we gave for com
pact Hausdorff spaces is just the specialization to this case of 
the general concept in uniform spaces. 

The dynamical concepts just defined can be elegantly ex
pressed in terms of ultrafilter iterations, as follows. 

Theorem 1. Let (X, T) be a dynamical system. 

(1)	 A point x E X is recurrent if and only if T U (x) = x 
for some non-trivial ultrafilter U on N, if and only if 
TU(x) = x for some U =I O. 

(2)	 A point x E X is uniformly recurrent if and only if for 
every ultrafilter V on N there is an ultrafilter U on N 
with TU(TV(x)) = x 

(3)	 Two points x, y E X are proximal if and only if there is 
an ultrafilter U on N with T U (x) = ru (y), if and only 
if there is a non-trivial ultrafilter U on N with ru (x) = 
TU(y). 
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Proof: (1) By definition, recurrence means that x is a limit 
point of the sequence (Tn (X ) ). That implies that x is in the 
closure {ru (x) IU E ,BN - {6} } of {Tn (x) In E N - {O} }. This 
in turn implies that x E {TU(x) IU E ,BN-N}, i.e., that we can 
take U non-trivial. Indeed, if U were trivial, say U = it =1= 0, 
then Tn (x) = X, so Tnk (x) = X for all k, and therefore, if we 
take U' to be a non-principal ultrafilter containing the set of 
multiples of n, then TU'(x) = x also. Finally, x E {TU(x) I 
U E I1N - N} implies recurrence, since every rt'(x) with non
principal U is a limit point of {Tn(x) In EN}. 

(2) Assume first that X is uniformly recurrent, and let an 
ultrafilter V be given. Temporarily fix a closed neighborhood 
G of x, and let M be as in the definition of uniform recur
rence for this neighborhood. So \In 3k < M Tn+k (x) E G. As 
only finitely many k's occur and as V is an ultrafilter, the 
same k must work for V-almost all n. Fix this k, so we have 
(Vn) Tn+k(x) E G. Equivalently, (Vn) Tn(x) E T-k(G). As 
T-k(G) is closed, TV(x) E T-k(G), and so Tk(TV(x)) E G. 
Now un-fix G, and remember that, as X is a compact Haus
dorff space, every neighborhood of x includes a closed neigh
borhood. So we have shown that, for every neighborhood G of 
x, the set 

YG == {k E N I Tk(TV(x)) E G} 

is non-empty. Clearly, Y G1 nY G2 = YGI nG2' so, as G ranges over 
the neighborhoods of x, the sets YG generate a filter. Extend 
it to an ultrafilter U. Then we have, for each neighborhood G 
of x, (Uk) Tk(TV(x)) E G, so TU(TV(x)) = x, as desired. 

Conversely, suppose x is not uniformly recurrent, and fix an 
open neighborhood G such that no M satisfies the definition 
of uniform recurrence. That is, for all MEN, the set 

YM = {n EN I (Vk < M)Tn+k(x) tt G} 

is nonempty. These sets YM generate a filter, as they form a 
chain, so there is an ultrafilter V containing all of them. For 
every kEN we have, since Yk+l E V, (Vn) Tn+k(x) tt G; so 
(Vn) rn(x) rI T-k(G); so, as T-k(G) is open, TV(x) rf. T-k(G); 
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so Tk(TV(x)) fI. G. As k is arbitrary, it follows that, for any 
ultrafilter U, TU(TV(x)) ~ G, as desired. 

(3) Suppose TU(x) = ru(y). IfU is principal, then proxi
mality follows trivially, so suppose U is non-principal. To prove 
that x and yare proximal, let G be any neighborhood of the di
agonal. Since (TU(x), TU(y)) =U-liIlln(Tn(x), Tn(y)) is on the 
diagonal by assumption, there must be infinitely many n (in 
fact U-almost all n) such that (Tn(x), Tn(y)) E G, as required. 

Conversely, suppose x and yare proximal. So, as Granges 
over neighborhoods of the diagonal, the sets 

are non-empty, and they generate a filter (because YG1 nYG2 = 
YG1nG2)' which we extend to an ultrafilter U. Then we have, 
for all closed neighborhoods G of the diagonal, (Un) (Tn(x), 
Tn(y)) E G and so (TU(x), TU(y)) E G. But the intersection 
of all closed neighborhoods of the diagonal is just the diagonal, 
so we conclude that TU(x) = TU(y). D 

We close this section by pointing out a simpler connection 
between dynamical systems and ultrafilters: ultrafilters pro
vide the universal example of a dynamical system. The com
pact Hausdorff space ,aN with the shift map S : ,aN ~ ,8N : 
U 1--+ i +U is a dynamical system and enjoys the following uni
versal property. If (X, T) is any dynamical system and x is any 
point in X, then there is a unique continuous map f : I3N --+ X 
such that f 0 S = To fand f(O) = x, namely the map defined 
by f{U) = TU(x). Thus, (,aN, S) may be regarded as the free 
dynamical system on one generator. 

Henceforth, when we refer to {3N as a dynamical system, we 
mean (,BN, S). 

3. DYNAMICS = ALGEBRA 

The addition operation defined for ,BN in Section 1 is just 
the ultrafilter iteration of the shift map, i.e., of the universal 
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dynamical system. Indeed, we have, for any ultrafilters U and 
Von N 

SU(V) = U-limSn(V) = U-lim(n + V) = U + V, 
n	 n 

where at the last step we used that U-lim commutes with con
tinuous maps, like addition as a function of its left argument, 
and that U-limn n = U. 

Of course, this equivalence between iteration in (,aN, S) and 
addition allows us to reformulate Theorem 1 algebraically. We 
do so in the following theorem, adding some more reformula
tions in terms of subsemigroups (i.e., non-empty subsets closed 
under addition) and ideals in the semigroup (,BN, +). A left 
ideal is a non-empty set I ~ ,aN such that if U E I and V E ,aN 
then V +U E I; right ideals and two-sided ideals are defined 
analogously. 

Theorem 2. (1) An ultrafilter U is recurrent in ;3N if and 
only if V + U = U for some V f; O. 

(2)	 An ultrafilterU is uniformly recurrent in ,aN if and only 
if, for each V, there is W with W +V +U = U, if and 
only ifU belongs to a minimal (closed) left ideal in ,aN. 

(3)	 Two ultrafilters U1 and U2 are proximal in ,aN if and 
only if there is an ultrafilter V such that V +U1 = V +U2 • 

(4)	 An ultrafilter U generates a minimal closed subsemi
group of (3N if and only if it is idempotent, i. e., U +U = 
u. 

Proof: Parts (1), (3), and the first part of (2) are immediate 
consequences of the corresponding parts of Theorem 1 and the 
fact that SU(V) = U +V. 

To finish the proof of (2), notice first that every ultrafilter 
U generates a left ideal, namely ,BN + U = {V +U IV E ,aN}. 
It follows that a minimal left ideal, being the ideal generated 
by any of its elements U, is closed, for it is the image of the 
compact space ,aN under the continuous map adding U on the 
right. That is why "closed" is parenthesized in (2); putting it 
in or leaving it out doesn't affect the statement. Now to say 
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that a particular ultrafilter U is in a minimal left ideal is to 
say that the left ideal ,BN +U that it generates is minimal or, 
equivalently, is generated by each of its elements. That is, for 
every ultrafilter V, the ideal ,BN + V +U generated by V +U 
must be all of ,BN +U. Equivalently, ,BN +V +U must contain 
the generator U of ,BN +U. But that means that, for every V, 
we can express U as W +V +U by suitably choosing W. This 
completes the proof of (2). 

(4), which is included in the theorem because of its analogy 
to (2), is trivial in one direction, as {U} is a closed subsemi
group if U is idempotent. To prove the non-trivial direction 
(due, as far as I know, to Ellis [14]), let C be a minimal closed 
subsemigroup of ,BN and let U E C. Then C +U is also closed 
(being the image of the compact set C under a continuous map) 
and a subsemigroup of C, so by minimality it equals C. In par
ticular it contains U. So the set D == {V E C I V + U = U} 
is nonempty. It is closed (being the pre-image of {U} under 
a continuous map) and also a subsemigroup of C, so i't equals 
C and therefore contains U. That is, U + U = U, and the 
proof is complete. (It follows, of course, by minimality, that 
C == {U}.) D 

The information in Theorem 2 about ideals and subsemi
groups can be used to give quick existence proofs for the cor
responding sorts of ultrafilters. 

Corollary. There exist uniformly recurrent ultrafilters. There 
exist non-trivial idempotent ultrafilters. 

Proof: The intersection of a chain of closed subsemigroups of 
,BN is again a closed subsemigroup; it is non-empty by com
pactness, and it is obviously closed topologically and closed 
under addition. By Zorn's Lemma, there are minimal closed 
subsemigroups of ,BN - N. Their elements are idempotent by 
(4) of the theorem. The same argument applied to closed left 
ideals yields uniformly recurrent points. D 
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The concepts characterized in Theorem 2 are related to each 
other as follows. 

Theorem 3. Each of the following statements about an ultra
filter U and the dynamical system ,8N implies the next. 

(1) U is uniformly recurrent and proximal to o. 
(2) U is idempotent. 
(3) U is recurrent and proximal to o. 

Proof· (1) ~ (2) Let U be uniformly recurrent and proximal 
to o. By Theorem 2(3), fix V with V +U = V + 0 = V. By 
Theorem 2(2), fix W with 

W+V+U=U. 

Combining these two equations, we get U = W +V, and sub
stituting this into the displayed equation we get U +U = u. 

(2) ~ (3) If U is idempotent, then the requirement V + 
U ., U for recurrence and the requirement V +U = V for 
proximality to 0 (see Theorem 2) are satisfied by taking V = 
U. D 

The preceding results connect the algebraic properties of j3N 
with its dynamical properties, but in fact, thanks to the uni
versality of ,8N among dynamical systems, we easily get con
nections between the algebra of j1N and arbitrary dynamical 
systems. 

Theorem 4. Let (X, T) be a dynamical system and let x EX. 
IfU is (uniformly) recurrent in j3N then TU(x) is (uniformly) 
recurrent in X. If U1 and U2 are proximal in I3N then TUI (x) 
and T U

2 (x) are proximal in X . 

Proof: Each part is proved by combining the corresponding 
parts of Theorems 1 and 2 with the fact that ru+v = ru 0 TV. 

Suppose U is recurrent in .aN. So by Theorem 2(1) there is 
V with V +U = U. Then TV(TU(x)) = TV+U(x) = ru(x), so 
TU (x) is recurrent by Theorem 1(1 ). 
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Suppose U is uniformly recurrent. By Theorem 2(2), for 
every V there is W with W + V +U = U and therefore 
TW(TV(TU(x))) = TU(x). By Theorem 1(2), TU(x) is uni
formly recurrent. 

Finally, suppose U1 and U2 are proximal. By Theorem 2(3), 
there is V with V+U1 = V+U2 • Then TV (TU

I (x)) = TV(yi/2(X)). 
By Theorem 1(3), TUl(X) and TU2(X) are proximal. D 

As an application of these connections between dynamics 
and algebra, we give a short proof of the Auslander-Ellis The
orem [15]. 

Theorem 5. Let (X, T) be a dynamical system. For each x E 
X, there exists a uniformly recurrent y proximal to x. 

Proof: By the corollary of Theorem 2, there exists a uniformly 
recurrent V E ~N. It follows immediately that every ultrafilter 
of the form W + V is uniformly recurrent. The set ~N + V 
of such ultrafilters is a closed subsemigroup of ~N. By Zorn's 
Lemma, it includes a minimal closed subsemigroup. By Theo
rem 2(4), there is an idempotent U E ,aN +V. Then U, being 
uniformly recurrent and idempotent, is also proximal to 0 by 
Theorem 3. 

Now for X, T, and x as in the theorem, let y = TU(x). 
Then, by Theorem 4, y is uniformly recurrent and proximal to 
TO(x) = x. D 

The property of ultrafilters, "uniformly recurrent and prox
imal to 0," which played a key role in the proof of Theorem 
5, has alternative algebraic descriptions that will be usefullat
ere To introduce them, we first define a partial ordering of the 
idempotent ultrafilters by 

U ~ V ¢::::::> U +V = V +U = u. 
This definition and parts of the next theorem are from [4]. 
When we refer to an idempotent ultrafilter as minimal, we 
mean with respect to this ordering. 
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Theorem 6. The following three assertions are equivalent, for 
any U E j3N. 

(1)	 U is uniformly recurrent and proximal to O. 
(2)	 U is idempotent and belongs to some minimal left ideal 

of j3N. 
(3)	 U is a minimal idempotent. 

Furthermore, these equivalent conditions imply that U belongs 
to every two-sided ideal of ,8N. Finally, every idempotent ul
trafilter U is ~ a minimal idempotent. 

Proof: 
The equivalence of (1) and (2) is immediate from Theo

rem 2(2) and Theorem 3. 
To prove (2) =} (3), assume (2), and suppose V is an idem

potent ~ U. Since U is uniformly recurrent by Theorem 2, 
choose W so that W + V + U = U, which reduces, in view of 
V ~ U, to W +V = U. Using this, the idempotence of V, and 
again V ~ U, we compute 

v =U +V = W+ V+ V = W +V =U, 

so U is minimal. 
We next show that, if U is idempotent and I ~ j3N +U is 

a minimal left ideal, then there is an idempotent V ~ U iIi I. 
Since we already know that (2) implies (3), this gives the last 
sentence of the theorem; it will also be useful in establishing 
(3) =} (2). So let such U and I be given. Being a closed 
subsemigroup of ,8N, I contains an idempotent W by the same 
argument as in the proof of Theorem 5. Being in j3N + U, 
this W satisfies W +U = W because U is idempotent. Let 
V = U + W. Then V belongs to the left ideal I because W 
does. From W +U = Wand the idempotence of Wand U, we 
infer 

V+u=u+W+u=u+W=V, 

U+V=U+U+W=U+W=V, 
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and 

v+ V ==u+ W+U+ W =U+ W+ W =U+ W = V, 

which mean that V ~ U, as desired. 
The proof of (3) ===} (2) is now easy. If U is a minimal 

idempotent, apply Zorn's Lemma to get a minimal left ideal 
I ~ (1N + U as in the preceding paragraph, and let V be ob
tained as there. Being ~ U, this V must be equal to U by 
minimality. So U E I. 

Finally, we must prove that every ultrafilter satisfying (2) 
belongs to every two..sided ideal. In fact, every minimal left 
ideal I is included in every two-sided ideal J. To see this, let 
U E I and V E J. Then In J is non-empty because it contains 
V +U. So I n J is a left ideal, and it must equal I because I 
is minimal. So I ~ J. D 

4. COMBINATORICS 

In this section, we apply the results obtained above to give 
relatively easy proofs of some highly non-trivial combinatori
al theorems. The first of these is Hindman's Theorem, first 
proved in [22]. A simpler proof was given by Baumgartner [1], 
but we shall give two yet simpler (given the preceding machin
ery) arguments, one due to Furstenberg [15] and the other to 
Galvin and Glazer [12, 19, 23]. 

Theorem 7. IfN is partitioned into finitely many pieces, then 
there is an infinite H ~ N such that all finite sums of distinct 
members of H lie in the same piece. 

Furstenberg's Proof: Let the given partition have k pieces, and 
regard it as a function N ~ [{, where [{ is a k-element set. 
Let X be the set of all functions N ~ 1<, topologized by giv
ing 1< the discrete topology and then giving X the product 
topology. Thus, !{ is a compact Hausdorff space, and the giv
en partition is a point x EX. Let T : X --+ X be the shift 
map, defined by T(y)(n) = y(n + 1); it is clearly continuous, 
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so we have a dynamical system. By Theorem 5, let y E X 
be uniformly recurrent and proximal to x. We write out what 
these properties of y mean for our specific X and T. Uniform 
recurrence means that, given any n E N, there is N E N such 
that the initial segment (y(O),y(l), ,y(n - 1)) of y recurs 
at least once in every segment (y(r), , y(r + N - 1)) of Y 
of length N. Proximality means that, given any N, there are 
infinitely many intervals of length N where x and y agree, 
(x(r), ... ,x(r + N - 1)) = (y(r), ... , y(r + N - 1)). 

Let c == y(O). We intend to complete the proof by finding 
infinitely many natural numbers, all of whose finite sums are 
mapped to c by x. 

By uniform recurrence, find No such that c occurs at least 
once among every No consecutive terms in y. By proximality, 
find a place, beyond term 0, where No consecutive terms of x 
coincide with those of y and therefore contain a c. So we can 
fix ho > 0 with x (ho) == c. This ho will be the first member of 
our H. 

By uniform recurrence, find NI such that among every NI 

consecutive terms of y there are ho +1 consecutive terms that 
coincide with y(O), ... ,y(ho); in particular, among every NI 

consecutive terms, there are two terms a distance ho apart 
where y has the value c (the same as at 0 and ho). By prox
imality, there are two places a distance ho apart where x has 
value c, say x(hl ) = x(hi + ho) = c, with hI > hoe hI will be 
the next member of H. 

Repeating this process, we inductively choose hi so that, for 
all sums s of zero or more elements of {ho, . .. ,hi-I}' we have 
x(s + hi) == y(s + hi) == c. This is done by finding N such 
that every N consecutive terms of y contain a segment that 
coincides with the initial segment of y up to the largest s, and 
then finding a segment of length N beyond hi- 1 where x and 
y coincide. 

The set of all finite sums of distinct hn's is clearly included 
in the partition piece corresponding to c. D 
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Galvin's and Glazer's Proof: This proof uses ultrafilters direct
ly rather than applying them via Theorem 5 to dynamics on 
other spaces. Let U be any idempotent non-trivial ultrafilter on 
N (by the corollary to Theorem 2), and let C be the piece of the 
partition that is in U (by clause (6) of Definition 1). So we have 
(Un) n E C. As U is idempotent, we also have (cf. the quan
tifier form of the definition of + in ,aN) (Un) (Uk) n + k E C. 
As ultrafilter quantifiers respect propositional connectives, 

(Un) [n E C /\ (Uk)n + k E C]. 

So we can fix ho with ho E C and (re-naming variables) (Un) 
ho + n E C. Using again that U is idempotent and respects 
connectives, we find 

(Un) [n E CI\(Uk)n+k E Cl\ho+n E CI\(Uk) ho+n+k E C]. 

So we can fix hI having the four properties listed for n inside 
the brackets. In particular, hI E C and ho + hI E C. 

Repeating this process, we inductively choose hi so that, for 
all sums s of zero or more elements of {ho, ... , hi-I}, we have 
s + hi E C and (Un) s + hi + n E C. The latter property, 
when expanded by idempotence, ensures that it is possible to 
choose hi+1 to keep the induction going. (In fact, U-almost all 
numbers can serve as hi+1.) Clearly, all finite sums of distinct 
members of H = {hn In E N} are in C. 0 

Notice that the Galvin-Glazer proof shows that the piece 
that contains the homogeneous H can be taken to be any piece 
of the given partition that belongs to some idempotent ultra
filter. 

We turn next to an application of these ideas in the context 
of words over a finite alphabet, rather than natural numbers. 
We shall prove the Hales-Jewett Theorem [20, 19], but first we 
need some definitions and notational conventions. 

Let E be a finite set, which we call an alphabet, and let 
W be the set of words on E, i.e., the set of finite sequences of 
members of~. Let v be an object, called a variable, that is not 
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in ~; let A be the set of words on E U { v }; and let V = A - W. 
So V is the set of words on E U {v} in which v actually occurs; 
these are often called variable words over E. For each a E E, 
we define a function a : A ~ W sending each x E A to the 
result of substituting a for v in X; we call a(x) an instance of 
x. Notice that if x E W then a(x) == x. 

With this notation, the Hales-Jewett Theorem [20] is as fol
lows. 

Theorem 8. IfW is partitioned into finitely many pieces, then 
there is an x E V whose instances all lie in the same piece of 
the partition. 

The proof is a special case of arguments from [3]. 
Proof: First, observe that A is a semigroup under the oper
ation .- of concatenation, that W is a subsemigroup, that V 
is a two-sided ideal in A, and that each a is a homomorphism 
A ~ W. The operation .- can be extended to the Stone-Cech 
compactification j3A just as addition was extended to j3N. 

It is easy to verify that, in the compact left-topological semi
group j3A, j3W is a closed subsemigroup, j3V is a closed, two
sided ideal, and the continuous extension of a, which we still 
call a : f3A -» ,BW, is a homomorphism. 

The algebraic results about ,BN proved earlier generalize eas
ily to semigroups like (3A and (3W. We apply the analogs in 
this context of several parts of Theorem 6. In particular, there 
is a minimal idempotent W E ,BW. In ,BA, this W is idem
potent but not necessarily minimal. (In fact, we shall see in a 
moment that it is definitely not minimal.) There is a minimal 
idempotent V ~ W in ,BA. It belongs to every two-sided ideal, 
so V E j3V. (In particular, V # W.) 

For any a E b, since a is a homomorphism f3A ~ ,BW, 
we can infer from V ~ W that a(V) ~ a(W) = W (the last 
equality because a is the identity on Wand hence on ,BW). By 
minimality of W in (3W, it follows that a(V) = W. 
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Now let W be partitioned into finitely many pieces, and let 
X be the piece that is in the ultrafilter W. For each a E E, 
we have a-1(X) E V because X E W = a(V). So naEE a-I (X) 
is non-empty. (In fact it is in V.) Any element x of this 
intersection clearly serves as the x required in the theorem. 

The proof actually establishes a stronger theorem, obtained 
by broadening the notion of "instance" to allow a specified, 
finite set of words in W (not merely single letters) as the a's 
being substituted for v. Unlike Theorem 8, this stronger form 
is non-trivial even in the case where E consists of just one 
letter; indeed this case amounts to van der Waerden's theorem 
on arithmetic progressions. (Van der Waerden's theorem is 
usually deduced from Theorem 8 for a b-element alphabet by 
using base b expansions of natural numbers; see [19].) 

5. P-POINTS 

In this section, we briefly discuss the connections between 
the ultrafilters discussed earlier and other, perhaps more fa
miliar (from [2, 6, 8, 10, 13,25, 26] for example), special ultra
filters. We begin with a pair of definitions. 

Definition. A non-principal ultrafilter U on N is selective 
if every function on N becomes one-to-one or constant when 
restricted to a suitable set in U. 

Definition. A non-principal ultrafilter U on N is a P-point 
if every function on N becomes finite-to-one or constant when 
restricted to a suitable set in U. 

Both of these definitions have numerous equivalent forms. 
The versions above were chosen to make it obvious that all 
selective ultrafilters are P-points. The definition of P-point 
is just a combinatorial reformulation of the usual topological 
notion of P-point specialized to the space (3N - N: a point such 
that the intersection of any countably many neighborhoods is 
again a (not necessarily open) neighborhood. 
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Selectivity also has a topological formulation, based on a 
theorem of Kunen [10] that characterizes selective ultrafilters 
U as those enjoying the following Ramsey property. If the set 
[N]2 of two-element subsets of N is partitioned into two pieces, 
then there is a set H E U all of whose two-element subsets 
lie in one piece. (The corresponding statement for [N]k holds 
for all finite k, and there are even infinitary generalizations; 
see [26].) If we identify [N]2 with the "above diagonal" subset 
{(a, b) I a < b} of N2 

, then this Ramsey property says that 
[N]2 together with the sets H x H for H E U generates an 
ultrafilter on N x N. Let T : ,B(N x N) ~ ,BN x ,BN be the 
continuous extension of the inclusion map N x N ~ ,BN x ,8N. 
Then ultrafilters on N x N that contain H x H for all H E U are 
precisely those sent by T to (U, U). Thus (cf. [5, Section 10]), 
the Ramsey property is equivalent to saying that T- 1(U, U) 
consists of exactly three points, namely the ultrafilter on N x N 
mentioned above, a symmetrical one "below diagonal," and an 
isomorphic copy of U concentrated on the diagonal. (Hindman 
[21] has shown that there are P-points U such that T- 1(U, U) 
has the same cardinality, 22No 

, as ,BN.) 
P-points also have a Ramsey-like property [2, Theorem 2.3]: 

If U is a P-point and if [N]2 is partitioned into two pieces, then 
there is H E U and there is a function f : N ~ N such that 
one piece of the partition contains all the two-element subsets 
{a, b} of H for which f(a) < b. 

Although P-points and selective ultrafilters, like the ultrafil
ters discussed in the previous sections, have interesting combi
natorial and topological properties, they are quite different in 
several respects, of which we list three. 

First, since U + V = U-liIlln(n + V), while P-points are, in 
view ·0£ their topological description, never limit points of a 
countable set of other non-principal ultrafilters, it follows that 
no P-point can be of the form U + V with non-principal U 
and V. In particular, no P-point can be recurrent. So the 
family of P-points and, a fortiori, the subfamily of selective 
ultrafilters are disjoint from the families of ultrafilters studied 
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in the preceding sections (recurrent, idempotent, etc.). 
Second, the ultrafilters in the preceding sections are proved 

to exist on the basis of the usual axioms of set theory (Zermelo
Fraenkel axioms, including the axiom of choice). In contrast, 
the existence of P-points or of selective ultrafilters is indepen
dent of these axioms. More precisely, the continuum hypoth
esis (as well as weaker assumptions, like Martin's axiom) im
plies the existence of many selective ultrafilters and also many 
P-points that are not selective, but there are models of set the
ory with no selective ultrafilters [25] and even with no P-points 
[27, 28]. 

Finally, where Ramsey ultrafilters have r- 1(U, U) as small 
as possible, namely of size 3, the following theorem shows that 
idempotent ultrafilters have it as large as possible. 

Theorem 9. IIU is an idempotent non-trivial ultrafilter on N, 
then there are 22NO ultrafilters V on N x N with r(V) = (U, U). 

Proof: Observe first that, for each natural number n, the set of 
multiples of n is in U. Indeed, as there are only finitely many 
congruence classes modulo n, any ultrafilter must contain one 
of them, so we can fix j such that 0 ~ j < nand (Ux) x =j 
(mod n). Then (Ux)(Uy)x + y =2j (mod n), so for idempo
tent U it follows that (Ux) x =2j (mod n). But then j =2j 
(mod n) and so j = 0 as claimed. 

In particular, for any n, U-almost all numbers x are divisible 
by 2n and therefore have D's as the last n digits in their binary 
expanSIons. 

Using this, we can proceed as in Galvin's and Glazer's proof 
of Theorem 7 to find, in any set C E U, a sequence ho, hI, ... 
such that 

(1) All finite sums of distinct hi'S are in C. 
(2) For each i, hi+1 is divisible by a power of 2 that is larger 

than hi-

Note the following consequence of (2). If a and b are each a 
sum of distinct hi'S and if no hi occurs in both sums, then the 
1's in the binary expansions of a and b occur in disjoint sets of 



54	 ANDREAS BLASS 

positions. We define the meshing number m(a, b) to measure 
the amount of intermeshing between these disjoint sets; that 
is, m(a, b) is the length 1of the longest sequence 81, ... ,81 such 
that for all odd (resp. even) i, there is a 1 in position 8i of the 
binary expansion of a (resp. b). It is clear that every integer 
1~ 2 occurs as m(a, b) with a and b sums of different hi'S; just 
take the first 1of the hi'S and let a (resp. b) be the sum of the 
odd (resp. even) nurrlbered ones. 

In view of (1), this means that each of the infinitely many 
sets m-1 {1} meets each set of the form C x C for C E U. So 
each m-1 {1} supports an ultrafilter containing all these C x 
C and therefore mapping to (U, U) by r. This proves that 
r- 1(U,U) is infinite. But every infinite closed subset of fiN 
(or the homeomorphic ,8(N x N)) has cardinality 22No 

; see [13], 
page 424, or [18], Chapter 9. D 

In spite of all these differences between P-points and selec
tive ultrafilters on the one hand and recurrent and idempotent 
ultrafilters on the other, it is possible, using the continuum 
hypothesis (or Martin's axiom) to construct idempotent ul
trafilters with strong connections to selective ultrafilters. For 
example, one can arrange that an idempotent ultrafilter be 
mapped to a selective one by the map N --+ N that sends each 
natural number a to the position of the rightmost (or the left
most) 1 in its binary expansion. For more information about 
such matters and for combinatorial applications, see [7, 9]. 
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