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AN ACRIN DOWKER SPACE 

TIMOTHY J. LABERGE 

ABSTRACT. Under a set-theoretic assumption, we con
struct a normal not countably paracompact space X with 
the property that any continuous regular image of X is 
normal. 

1. INTRODUCTION 

A space is ACRIN if All Continuous Regular Images are Nor
mal. A Dowker space is a normal space that is not countably 
paracompact. The goal of this paper is to construct an ACRIN 
Dowker space. 

Our construction assumes CH + O({a < W2 : cf(a) = WI}). 
We will build a de Caux type Dokwer space on W2 X W (see 
[1] and [3]). Results from [2] show that lifting to W2 is indeed 
necessary-there is no ACRIN Dowker space of size WI. 

We begin by defining some of the terminology we will use. 

• A P-space is a space in which Gs's are open. 
• A space is	 locally Lindelof if every point has a closed 

Lindelof neighborhood. 
• A space is	 almost Lindelof if the non-Lindelof closed 

sets form a filterbase. Thus, if X is almost Lindelof and 
A and B are disjoint closed subsets of X, then at least 
one of A and B is Lindelof. 

•	 1rl and 1r2 denote the projections of W2 X W onto the first 
and second coordinates, respectively. 

Next, we prove some easy but useful lemmas about almost 
Lindelof spaces. 
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Proposition 1.1. A regular almost Lindelof space is locally 
Lindelof· 

Proof: Let X be a regular almost Lindelof space. Fix an open 
cover U with no countable subcover, and let x E X be arbi
trary. Take a U E U with x E U. By regularity, we can find 
~n open V with x E V ~ V ~ U. Now, V and X \ U are dis
joint closed sets and X \ U is non-Lindelof, so V is a Lindelof 
neighborhood of x. D 

Proposition 1.2. Suppose X is almost LindeloJ, Y is non
LindeloJ, f: X --+ Y is a continuous surjection, and A ~ Y is 
closed. Then Y is almost LindeloJ, and A is Lindelof if and 
only if f-1[A] is Lindelof. 

Proof: To see that Y is almost Lindelof, fix disjoint closed 
subsets Hand !< of Y. Then f-l[H] and f- 1 [!<] are disjoint 
closed subsets of X, so one of them, say f-1[H], is Lindelof. 
But then H == f[f-I[H]] is a continuous image of a Lindelof 
set, and so is Lindelof. 

To prove the second assertion, first suppose that A is a Lin
delaf subset of Y. Let V == {Vi : i E I} be an open cover of Y 
that has no countable subcover. Since A is Lindelof, there is a 
countable J ~ I such that A ~ UiEJ Vi. 

For each i E I, let Ui = j-I[Vi], then U == {Ui : i E I} is an 
open cover of X with no countable subcover. Now, f-I[A] ~ 

UiEJ Ui , so f-1[A] and X \ UiEJ Ui are disjoint closed subsets 
of X, and X \ UiEJ Ui is non-Lindelof. Therefore, f-1[A] is 
Lindelof. 

The reverse implication is trivial, so the proof is complete. D 

Proposition 1.3. A regular almost Lindelof P-space is nor
mal. 

Proof: Let Hand !{ be disjoint closed subsets of a regular 
almost Lindelof P-space X, with H Lindelof. There is an open 
cover {Un: nEw} of H with Un n!{ == 0 for each nEw. 
Let U == UnEw Un. Since X is a P-space, U = UnEw Un' so 
Un K == 0. D 
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2.	 CONSTRUCTION OF X 

Our plan is to construct a de Caux type Dowker space X 
with point set W2 X w, using an Ostaszewski type inductive con
struction. Like the de Caux space, our example will be almost 
Lindelof. To help make the space not countably paracompact, 
each Fn = W2 X [n,w) will closed and non-Lindelof. 

Let E = {a E W2 : cf(a) == WI}. We assume GH + O(E). 
By 2W1 == W2, we can enumerate {A E [W2 x W]Wl : 17r2(A)1 < w} 
as {A o : a E E}, with Ao ~ a x w. 

By O(E), there are sequences {Eo: a E E} and {Go: a E 
E} such that for each a E E: 

(1)	 Bo U Go ~ a x w; 
(2)	 11r2(Bo U Co)1 < W; 
(3)	 7r1(Bo) and 'JrI(Co) are cofinal in 0: and have order type 

WI; 
(4) whenever Hand !{ are elements of [W2 x w]W2 , there is 

an f3 E E such that B(3 ~ Hand C(3 ~ !{. 

We construct the topology on X by replacing "cofinite" 
with "co-countable" in the standard Ostaszewski construction, 
declaring (0:, n) to be isolated if cf(a) =I WI, taking the topolo
gy generated by the union of the preceding topologies at limits, 
and proceeding as follows for points (a, n) with cf{a) == WI. 
Begin by choosing an nEw such that AoUBoUGo ~ aXn. Let 
(a,m) be isolated if m =I n. Make sure that (a,n) E Bo n Go 
and that if Ao is closed discrete in the topology defined so far, 
that (a, n) E °Ao . 

3. PROPERTIES OF X 

As constructed, X is a locally Lindelof P-space and the char
acter of X is WI. The open cover {[a, a) x w : a < W2} has 
no countable subcover, so X is not Lindelof. Because each A o 

has a limit point, X is NI-compact (i.e., X has no uncountable 
closed discrete sets). 

We claim that every open cover of X of size WI has a count
able subcover. If not, there is an increasing open cover U == 
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{UOt a < Wl} of X that has no countable subcover. Take 
X Ot E UOt +l \ UOt , then because X is a P-space, {x Ot : a < Wl} 
is closed discrete, contradicting the fact that X is ~l-compact. 

Let A be a closed subset of X. This claim also shows that any 
open cover of A of size Wl has a countable subcover, hence A 
is Lindelof if and only if IAI ~ Wl. 

We made sure that each BOt and COt have a common limit 
point, so any pair of closed non-Lindelof subsets of X intersect. 
Thus, X is almost Lindelof and (because X is a regular P
space) normal. 

X is a Dowker space because {W2 x [0, n] : nEw} is countable 
open cover of X with no closed shrinking. To see this, suppose 
that for each nEw, Fn is a closed subset of W2 x [0, nJ. Be
cause the complement of W2 x [0, n] is non-Lindelof, Fn must 
be Lindelof. But then UnEw Fn is Lindelof, and hence not all 
ofX. 

We need a lemma before we can prove that X is ACRIN. 

Lemma 3.1. Suppose that f : Z ---T Y is continuous with Y 
regular. If f(Z) is dense in Y, then w(Y) ~ w(Z)L(Z). 

Proof: Let B be a base for Z of size w(Z). We show that 
{inty(cly(f[UA]) : A E [B]~L(Z)} is a base for Y. Fix ayE Y 
and an open U ~ Y with y E U. By regularity, there are 
open V and W with y E V ~ V ~ W ~ W ~ U. In Z, 
find A E [B]~L(Z) such that f-1[V] ~ UA ~ f-1[W]. Then 
y E inty(cly(f[UA]) ~ W ~ U. 0 

Theorem 3.2. X is ACRIN. 

Proof: Let f : X ---T Y be continuous with Y regular. By 
Lemma 1.2, Y is either Lindelof or almost Lindelof, so we can 
reduce to considering disjoint Hand !{ with H Lindelof. Since 
Y is regular and locally Lindelof, there is a countable open 
cover {Un: nEw} of H such that each Un n !{ = 0 and Un is 
Lindelof. Set F = UnEw Un. 

Claim: If F is Lindelof, then Hand !{ are separated. 
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To prove the claim, suppose that F is Lindelof. Then be
cause Hand !{ n F are disjoint closed Lindelof sets, there is 
an open U containing H such that Un (!{ nF) = 0. But then 
H ~ U n UnEw Un and 

(U n UUn) n !{ ~ U n F n K = 0, 
nEw 

so Hand ]{ are separated. 

Thus, to complete the proof, we need only show that F is 
Lindelof. By Lemma 1.2, each f-I[Un ] is a closed Lindelof 
subset of X. Since X is a P-space, A = UnEw f-I[Un ] is closed 
and Lindelof. As mentioned above, A must have cardinality 
WI. Since the character of X is WI, the weight of A is also WI. 

Now, UnEw Un ~ f[A] ~ f[A] ~ F, so f[A] = F. By CH 
and Lemma 3.1, the weight of F is WI. The following claim 
finishes the proof. 

Claim: If D is a closed subset of Y that has weight WI, then 
D is Lindelof. 

To see this, fix an open cover V = {Vi : i E I} of D. Since 
the weight of D is WI, we can assume that III = WI. Let 
Ui = j-I[Vi], then U = {Ui : i E I} is an open cover of the 
closed subset f-l[D] of X. Since every open cover of a closed 
subset of X of size WI has a countable subcover, there is a 
countable J ~ I such that f-I[D] is covered by {Ui : i E J}. 
Clearly, {Vi : i E J} covers D. 0 

We would like to express our thanks to Amer Beslagic, who 
greatly simplified our original construction and provided Lem
ma 3.1. Though more complicated, our original construction 
gave a space Y with WI = hd(Y) < hl(Y) = W2. We used a 
computation in C(Y) to show ACRIN. 
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