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PERFECTLY NORMAL NON-ARCHIMEDEAN
 
SPACES IN MITCHELL MODELS
 

YUAN-QING QIAO l AND FRANKLIN D. TALL l 

ABSTRACT. We investigate the metrizability of perfect­
ly normal non-archimedean spaces in Levy and 
Mitchell-collapse models. By collapsing a snpercompact 
cardinal to N2, we prove that in the extension all per­
fectly normal non-archimedean spaces of size essentially 
greater than or equal to N2 must be metrizable. It follows 
that K+-Souslin lines with small subspaces metrizable do 
not exist in these models. 

A non-archimedean space is a topological 'space which has a 
basis which is a tree under the inclusion relation. We will call 
a non-metrizable, perfectly normal non-archimedean space an 
archvillain. 

A still-open question raised by Nyikos is whether it is con­
sistent that all perfectly normal non-archimedean spaces are 
metrizable [N1], [N2], [R]. For quite a long time, the only such 
space known was the branch space of a Souslin line or a triv­
ial modification thereof. On the other hand, Todorcevic [T1] 
proved that under the hypothesis of M A + -,wI<H ( the con­
sistency of which can be obtained from an inaccessible cardi­
nal), there is no such space of weight N1 . However, the exis­

1 The authors acknowledge support from grant A-7354 of the Natural 
Sciences and Engineering Research Council of Canada. 
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tence of such spaces of higher weights remained unsolved. The 
first author, in another paper [Q], proved that the existence of 
non-trivial perfectly normal, non-metrizable, non-archimedean 

= 2Nospaces essentially of size N2 is consistent with ZFe by 
constructing such spaces in MA models. Here we provide a 
counterpoint to Todorcevic's result by providing a model in 

< 2Nowhich all archvillains have size essentially Nl = N2• 

1. TOPOLOGICAL LEMMAS 

Since Souslin trees can always trivially produce archvillains 
of size as big as one likes, e.g. by taking the sum of a Souslin 
line and a large metrizable space, we take some measures to 
regulate the situation. 

Definition 1.0. Let T be a tree, let X = {x c T : x is a 
countable branch of T}. Then (X, T), i.e. X with the topology 
generated by the basic open sets Ut , t E T, defined by Ut = 
{x EX: t EX}, is called the branch space of T. 

Note such spaces are first countable and non-archimedean. 
A space is called a Souslin space if it has a base which is a 

Souslin tree. 

Definition 1.1. Let (X, T) be a non-archimedean space, where 
T is its topological basis which is a tree. We call eX, T) stout 
if 

(1)	 For any t E T, the upper cone of t, Tt = {t' E T : t <T 
t'}, has the same size as T; 

(2)	 IXI = ITI; 
(3) Vt E T, d(t) = ITtl = IXI ITI, where d(t) is the 

density of Ut . 

Our focus on stout non-archimedean spaces is justified by 
the following lemma. 

Lemma 1.1. Every archvillain includes a stout archvillain sub­
space. 
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To prove Lemma 1.1, we need the notion of u-density. 

Definition. 1.2. A poset is a-dense, if the intersection of any 
countable family of dense open sets is dense open. 

Definition 1.3. A space X is developable if it has a countable 
family of open coverings {Wn : n < w}, such that for each 
point x E X, {U{w E Wn : x E w} : n < w} forms a base for x. 

Note that in a non-archimedean space any open covering has 
a refinement which is an antichain of the tree base. (Here and 
elsewhere we shall systematically confuse t with Ut .) Hence a 
non-archimedean space is developable if and only if it has a 
countable family of antichain coverings which forms a base. 

Lemma 1.2. If a non-archimedean space X without isolated 
points has any a-dense tree base T, then X is not metrizable. 

Proof: Non-archimedean spaces are collectionwise normal, there­
fore being developable is equivalent to being metrizable for a 
non-archimedean space. An antichain covering of (X, T) is a 
maximal antichain of T. Since X does not have isolated points, 
the upper part of a maximal antichain covering, defined as 
{t E T : :)a E the maximal antichain, such that a <T t}, is not 
empty. Since T is a-dense, any countable family of upper parts 
of maximal antichain coverings will have a dense open inter­
section in T. Hence there will be some basic open sets which 
are above all these maximal antichains, i.e., the union of the 
coverings is not a base. D 

Lemma 1.3. Every archvillain has an open subspace without 
isolated points whose subspace topological base is a a-dense tree 
[T1]. 

Proof of Lemma 1.1: Perfect normality is hereditary. To see 
there is a stout non-metrizable subspace, we need only find an 
upper cone which is stout because an upper cone is a-dense in a 
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u-dense tree and a u-dense tree base induces a non-metrizable 
topology. 

For each t E T, let Tt = it' E T : t < t'}. Let K, = min{I~1 : 
t E T}. Pick a to E T, such that ITto I = K,. Obviously, T to is a 
tree in which for any t E Tto ' Tt has the same size as Tto . 

Let ,\ = min{d(t) : t E Tto }. Pick a tt E Tto ' such that 
d(t1 ) = A. Obviously, ~1 is a subspace in which for any t E Ttl' 

d(t) = d(tt). 
Always d(t l ) ::; ITtl I. Take a dense subset Y C tt so that 

IYI = d(tt). Since X is first countable, there is a T' C Ttl such 
that IT'I = d(t1 ) = IYI and T' is a base for the subset Y. For 
any t' E T', Ynt' is dense in t', therefore IYnt'1 = d(t') = IYI; 
and IT:,I ::; IT'I = IYI = d(t') :5 IT!,I, hence IT:" = IYI = d(t'). 

Y is a non-metrizable subspace since T' is its base and it is 
dense in Ttl; T' is u-dense since Ttl is o--dense. Hence (Y, T') 
is a stout archvillain. D 

Lemma 1.4. If (X, T) is a perfectly normal non-archimedean 
space, A is an antichain of T, Y = {x EX: x ~ UA & 
(Vt E T)(x E t ~ (3a E A)(t <T a))}, then Y is metrizable. 

Proof: Let UA = U{Fn : n < w}, where the Fn's are closed, 
An = {a E A: an Fn =1= 0}, and Gn = U{a : a E An}. Clearly 
Fn C Gn • Claim that each Gn is closed. Since for any point 
x EX, if x is not in Gn there is a basic open set vET such 
that x E v and v is disjoint from Fn . However, if v meets Gn , 

then v meets some a E An. Either v C a or a C v. If v C a, 
then x is in a, hence x is in Gn ; if a C v, then v meets Fn , 

contradiction. 
Let Wn = { minimal t E T: t n Y :I 0, t n Gn = 0}. For 

each n, Wn is an antichain of T because of the minimality. For 
each y E Y and each n, there is atE T so that yEt but 
t nGn = 0. For otherwise, y is in Gn , and therefore y is in UA. 

Hence each Wn is a cover of Y. Moreover, for each y in 
Y, since y is a limit point of UA, for any t E T such that 
yEt, there is some nEw and some a E An' such that t < a. 
Then there must be some t' E Wn such that t < t' and yEt'. 
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Therefore the union of the Wn ' s forms a basis for Y, so as noted 
earlier, Y is developable and hence metrizable, since subspaces 
of non-archimedean spaces are non-archimedean. D 

In the proof, the antichain A is positioned above Y, or just 
above Y, that is to say, (Vy E Y)(Vt E T)(y E t ~ (3a E 
A)(t <T a)). 

The following lemma relates the metrizability of subspaces 
to the perfectness of the space. 

Lemma 1.5. Suppose (X, T) is a perfectly normal non­
archimedean space. If Y C X, and Y is nowhere dense, then 
Y is metrizable. 

Proof: If Y is nowhere dense, we will find an antichain which 
is positioned above Y. Then by Lemma 1.4, Y is rnetrizable. 

Let T(Y) = {t E T : Y n t i= 0}. Since Y is nowhere dense, 
for each t E T(Y), there is an t' E T so that t' n Y = 0 and 
t < t'. For each t E T(Y), let a(t) == least{sET: t < s 
but s n Y == 0}. Then A == {a(t) : t E T(Y)} is an antichain 
above Y, for if t, t' E T(Y), a(t) < a(t'), then a(t) < t', so 
a(t) n Y f:. 0. Hence for t, t' E T(Y), either a(t) == a(t') or 
a(t) na(t') == 0. By Lemma 1.4, since X is perfectly normal, Y 
is metrizable. 0 

Lemma 1.6. Suppose (X, T) is a stout archvillain. If Y c 
X,IYI < lXI, then Y is metrizable. 

Proof: It suffices to prove Y is nowhere dense in X. This is 
obvious by stoutness. 0 

We can prove a decomposition theorem for archvillains: 

Theorem 1.1. If (X, T) is an archvillain, then X == M U 
(Ua Ya ) U (U,e X,e), where the Ya's are basic open sets whose 
subspace bases are Souslin trees, the X{3 's are basic open sets 
whose subspace bases do not include Souslin trees, and M is a 
metrizable subspace. 



236 YUAN-QING QIAO AND FRANKLIN D. TALL 

First, we prove a lemma. 

Lemma 1.7. If an archvillain (X, T) includes a Souslin sub­
space, it includes an open Souslin space. 

. Proof: If Y is a Souslin subspace, then 3t E T(Y) so that 
Tt = {s E T : t < s} is a Souslin tree. For otherwise, Vt E 
T(Y), Tt has an uncountable antichain, therefore there must 
be some t' E Tt , so that t' nY = 0. Let A be an antichain with 
union equaling U{t E T : (3y E Y)(3t' E T)(y E t' and t > t' 
and t n Y = 0)}. Then A is an antichain positioned above 
Y. Since Y is not metrizable, by Lemma 1.4 X could not be 
perfectly normal. Therefore, if an archvillain includes a Souslin 
subspace, one of its basic open sets is a Souslin space. D 

Lemma 1.7. shows that a stout archvillain of size greater 
than or equal to N2 does not include Souslin subspaces. For 
if it did, it would include an open subspace whose topological 
base is a Souslin tree, and therefore one of its upper cones 
would not have size N2 which contradicts the assumption that 
the space is stout. 

Proof of Theorem 1.1: If X includes a Souslin subspace, then 
by Lemma 1.7, there must be some basic open set t whose sub­
space base is a Souslin tree. Then there must be a maximal 
basic open set whose upper cone is a Souslin tree and includes t. 
Applying Lemma 1.7 repeatedly, we find there must be a maxi­
mal family which consists of basic open sets whose upper cones 
are Souslin trees. Note that this family is an antichain. Ex­
tend this antichain to a maximal antichain of basic open sets. 
The basic open sets in the extended part do not include any 
Souslin subspace; some of them may be metrizable. The maxi­
mal antichain is positioned above a metrizable space. For if the 
space below is not metrizable, then by Lemma 1.4 X cannot 
be perfectly normal. 0 
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2. SUPERCOMPACT CARDINALS AND ARCHVILLAINS 

In order to obtain a model which has no stout archvillains of 
size> NI , we will collapse a supercompact cardinal to N2 • The 
forcing poset used is an iteration of ccc posets of adding Cohen 
reals and countably closed posets of collapsing ordinals. The 
resulting model is the Mitchell model [M] which will be more 
precisely described later on. In the extension, any archvillain 
of size ~ ~2 has a reflection in some intermediate stage, and 
the reflection would have size < K" which is the large cardinal 
in the ground model. Then preservation lemmas would imply 
the non-metrizability of the reflection in the extension. As a 
result we would have a small-sized archvillain included in a 
stout archvillain, which would be a contradiction to Lemma 
1.6. 

Here are the preservation lemmas. 

Lemma 2.1. Adding Cohen reals preserves non-developability. 

Proof: See [DTW2]. D 

Lemma 2.2. Countably closed forcing preserves a-density. 

Proof: A poset is a-dense if and only if it does not add any 
new subset of w (see e.g. [J]). Let P be a a-dense poset in V. 
Claim P is a-dense in VQ, where Q is countably closed. Since 
P E V, the claim is equivalent to Qx P and hence P x Q being 
u-dense. But since P is a-dense, Q is still countably closed in 
V P , so P x Q adds no new subset of w. D 

From now on we assume that K, is a supercompact cardinal. 
We follow the formulation of the Mitchell collapse in [DJW]. 
The Mitchell collapse Mi(K,) is defined to be the iteration of 

{(POt, (jOt) : a < K,} such that if a is even, then (jOt is a name 
for Fn(w,2) (Cohen real forcing); and if a is odd, then (jOt is 
a name for Fn(WI, 2, WI) (countable partial functions from WI 

into 2); the support is finite on the even ordinals and countable 
on the odd. 

Lemma 2.3. [DJW] Suppose K is strongly inaccessible. 
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(1)	 There is anR~ such thatMi(K)*R~ isforcing equivalent 
to Fn(K, 2) x Q~ where Q", is countably closed. 

(2)	 If'\ < "-, then Mi(,,-) =.Mi('\) * (j, and ifG>. is Mi(,\)­
generic then V[GA] F Q ~ Mi(K}. 

(3)	 Mi(K} has the K-C.C. 
2N1(4)	 If G is Mi(K}-generic, then in V[G], 2No = = ~2 == K 

and Nt == ~i. 

Definition. K is a supercompact cardinal if for each A ~ K 

there is an elementary embedding j from the universe V into 
a transitive class M such that 

(i) j(a:) = 0: for all 0: < Kbut j(K) > A; 
(ii)	 MA C M. 

Definition. A formula with one free variable we call a prop­
erty. A property ¢J of a topological structure X is preserved by 
forcing with P over V if whenever G is a P-generic filter over 
V and V F ¢J[X] then V[G] F ¢J[X]. 

Lemma 2.4. Mitchell forcing preserves the non-developability 
of archvillains. 

Proof: Since developability is upward absolute, by 2.3 it suffices 
to show non-developability is preserved by countably closed 
forcing and by adding Cohen reals. The latter is true by 2.1; 
as for the countably closed Q"', if X is not developable in the 
ground model V, then by Lemma 1.3 there is an open subspace 
Y without isolated points which has a base T which is a O"-dense 
tree. Since Q~ preserves a-density (Lemma 2.2), T remains 0"­

dense and therefore Y remains non-developable in the model 
VQK. Since X includes a non-metrizable subspace Y, X is not 
developable in the extension. D 

Machinery for supercompact and weak compact reflection is 
exposited in [DTW1], [DTW2] and [DJW]. In either formula­
tion of supercompact reflection, it is not .difficult to check that 
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the Mitchell collapse satisfies the forcing requirements need­
ed to operate the machinery, and that the property of being 
a perfectly normal, non-archimedean, non-developable space 
satisfies the linguistic requirements, e.g. is local and struc­
tural in the sense of [DTW1]. The one thing that does need 
to be pointed out is that such spaces have character less than 
the critical point; one can prove directly that perfectly normal 
non-archimedean spaces are first countable, or quote [P] to the 
effect they are linearly ordered, whence it is then easy to see 
that pseudocharacter equals character. In any event, we can 
conclude that after Mitchell-collapsing a supercompact, every 
archvillain of size ~ K = N2 includes one of smaller size. In 
particular then, we have the following: 

Theorem 2.1. Mitchell-collapse a supercompact. Then every 
archvillain has a subspace of size N1 which is an archvillain. 

Proof: By 2.4 and reflection, an archvillain will have a non­
developable subspace of size N1 • Perfect normality and non­
archimedeanness are hereditary, so the subspace will be an 
archvillain. D 

Corollary. Assume K is supercompact. Mi(K) F There is no 
stout archvillain of size ~ N2 • 

Proof: By Theorem 2.1 a stout archvillain of size N2 would 
have a subspace which would be an archvillain of size N1 . This 
contradicts Lemma 1.6. D 

Note these results also hold if we Levy-collapse the super­
compact to N2 with countable conditions. In that case, CH 
will hold. 
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3.	 WEAKLY COMPACT CARDINALS AND ARCHVILLAINS OF
 

SIZE ~2
 

In [Q] it is proven that by using an inaccessible not weakly 
compact cardinal K in L, one can obtain an M A model in 
which there is an archvillain of size N2 • However, starting with 
a weakly compact cardinal K, one can Mitchell-collapse K to N2 

to obtain a model in which there is no stout archvillain of size 
N2 • Recall from e.g. [DJW]: 

Definition 3.1. A ITt-formula cp(XI , ... , X n ) is a second order 
formula of set theory which is of the form 

VXotP(Xo,Xl,. · · ,Xn ), 

where tP is a formula of the usual predicate logic in the language 
{E, X o, ... , X n }, where Xi are unary predicates. 

Definition 3.2. If M is a set and AI, ... , An E P(M), 

(M, E, AI,·· ., An) F 'P 

means for all Ao c M, we have tPM(Ao, ... ,An), where 
tPM(Ao, ... , An) is the relativization of the formula tP to M. 

Lemma 3.1. Suppose K is weakly compact. For any rr~-formula 
cp(Xt , ... , X n) and any At, ... , An in VI'\:+t such that 
(VI'\:' E, At, ..., An) F cp, there is a strong inaccessible () < K 

such that 

(Vo, E, Al n VB, ...,An n VO) F 'P · 

Using standard techniques, this can be used to prove the 
following theorem: 

Theorem 3.1. Assume K weakly compact. Mi(K) F There is 
no stout archvillain of size N2 • 

Proof: The basic idea is to show that the statement \II: "X is 
an archvillain of size K" is ITt. Then the standard argumen­
t as in e.g. [DJW] or [DTW2] yields that since we can take 
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Mi(K) C VK , the assertion that this statement is forced is also 
ITt. Then the preservation lemmas and the machinery in either 
of those articles finishes the proof. There are, however, several 
difficulties to be surmounted. First of all, we don't know if 
perfect normality is preserved. So, as in section 2, we preserve 
non-developability and use the fact that perfect normality is 
hereditary. Second, saying "X is non-archimedean" a priori re­
quires a second-order existential quantifier, so instead we deal 
with (X, T), where T is a tree base for X. By first countabil­
ity, the reflection (X', T') is indeed a subspace of (X, T), but 
we have to check it is non-archimedean. But it is, since that 
property is hereditary, and in any event, T' is a tree. Third, we 
need to observe that T can be taken to have size "', but that 
follows by first countability. Thus all we need to do is convince 
the reader that the statement "T is a first countable a-dense 
tree base of size K for X of size "," is ITt. Saying that T is 
a tree and a first countable base is routine coding; a-density 
may be expressed as "for every countable collection of maximal 
antichains of T, the set of nodes which are in all the antichains 
is a dense open subset of T", which is easily seen to be rr~. D 

Unfortunately Mi("') does have archvillains in it, in fact it 
contains Souslin trees. 

Since 2No = N2 in Mi(K), the existence of stout archvillains 
is excluded from the level of continuum and above. If we Levy­
collapse a supercompact cardinal to N2, we will obtain a model 
of CH in which there are no stout archvillains of size larger than 
continuum. Therefore the non-existence of stout archvillains of 
size larger than or equal to the continuum is independent of the 
Continuum Hypothesis. The proof of the Levy-collapse result 
is similar to but easier than the proof via Mitchell-collapse. 
We leave it to the reader. 

4. ",+ -SOUSLIN TREES 

Todorcevic [T2] has shown that archvillains can be construct­
ed from what he calls coherent ",+ -Souslin trees, which he notes 
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can be constructed from D's and O's in a fashion similar to 
that of Jensen's K+ -Souslin trees. It follows by covering lemma 
considerations that obtaining the consistency of no perfectly 
normal non-metrizable non-archimedean space requires large 
cardinals (and possibly 0 == 1!). 

Todorcevic's spaces are first countable linearly ordered spaces 
with cellularity less than density, in which subspaces of weight 
not exceeding the cellularity are metrizable. Assuming the con­
sistency of a supercompact cardinal, we shall show it consistent 
that no such space exists. 

It is an open problem whether it is consistent with GCH that 
there are no K-Souslin trees, even for K == W2. However we can 
prove, consistent with GCH, that coherent K+-Souslin trees do 
not exist, assuming large cardinals, since, as Todorcevic notes, 
the corresponding spaces have small subspaces metrizable. 

Theorem 4.1. If it is consistent that there is a supercompact 
(weakly compact) cardinal, it is consistent with GCH that there 
is no first countable linearly ordered topological space X (of size 
:::; N2) with c(X) < d(X) such that subspaces of X of size N1 

are metrizable. 

Proof: We work in the model obtained by Levy-collapsing a 
supercompact (or weakly compact) cardinal to W2 with count­
able conditions. By [QT], as a first countable linearly ordered 
topological space, X has a dense non-archimedean subspace Y. 
It suffices to show that Y has au-disjoint 1r-base since then 
c(X) == c(Y) == d(Y) ~ d(X). 

Suppose Y did not have a u-disjoint 1r-base~ Then by Lem­
ma 1.3, some open subspace Y' of it would have au-dense 
tree base. Note Y' is uncountable. Countably closed forcing 
preserves u-density, so by the usual reflection argument, some 
subspace Y" of Y' of cardinality N1 would have a u-dense tree 
base. But that would contradict the assumed metrizability of 
y", since by Lemma 1.3, a non-archimedean space with a u­
dense tree base is not metrizable (and of course subspaces of 
metrizable spaces are metrizable). 



PERFECTLY NORMAL NON-ARCHIMEDEAN SPACES 243 

We can't so quickly wave our hands at the weakly compact 
case, since as noted earlier the existence of a a-dense tree base 
is unlikely to be ITt. Instead, as in section 3, we have to work 
with a pair, say (Y', T), reflect, and then note the resulting 
non-archimedean space is a subspace of (Y', T). D 
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