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COHESION IN TOPOLOGICAL SPACES 

P. A. CAIRr~S 

ABSTRACT. Provoked by Arhangel'skil's notion of ab­
solute din1ension, we define the new concept of cohesion 
and examine its properties. In particular, it is shown 
that cohesion is closely related to scattered length and 
cohesion is completely characterised in scattered spaces. 
However, examples are produced ,;vhich are not scattered 
and have cohesion defined. As an appendix, it is shown 
that absolute dimension does not agree with classical di­
n1ension functions on the unit square. 

1. INTRODuc'rION 

In his paper "Cleavability over the Reals" [1], Arhangel'skiY 
defined inductively a "function of the dimensional type" which 
he called absolute dimension. We have amended the base case 
of the definition and extended its ra:nge to the ordinals to give 
the new concept of cohesion. Cohesion can be viewed as as­
serting that if a space has cohesion n then the boundaries of 
all open sets have cohesion less thaIl rli. This is similar to the 
definition of the classical inductive climensions but is in fact a 
much stronger assertion giving very different consequences. If 
a sequential space has cohesion defined on it then it is scat­
tered. The relation between cohesion and scattered spaces is 
examined and cohesion is completely characterised in scattered 
spaces. Cohesion is also considered in. spaces which are crowded 
(dense in themselves) and regular crowded spaces of each finite 
cohesion are produced. However, it is shown that it is difficult 
to do better than this, as there is no regular space of transfinite 
cohesion. The behaviour of cohesioll under various classes of 
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continuous functions is described. We show in the Appendix 
tl1at absolute dimension is not defined on the unit square and 
hence does not agree with the classical dimension functions. 

Cohesion is based on the notion of nowhere dense subsets 
of a space. A subset Y of a space X is nowhere dense in X if 

I ntxyx == 0. From this definition, it is not hard to see that 

if Y is nowhere dense in X then so too is y 
X

. Also, if Z is 
nowhere dense in some subset Y of X then Z is nowhere dense 
in X. 

A space X is said to be scattered if every subset of X has 
an isolated point. Taking X d to denote the set of accumulation 
points of X, we make the following definition: 

X(O) == X , 

XCa+l) == (XCa))d, 

XCA) == nX Ca) for A a limit ordinal. 
aEA 

X is scattered if and only if XC,) == 0 for some ordinal, and 
then the scattered length of X, denoted sl(X), is taken to be 
the smallest such "I. 

A space X is said to be crowded if it has no isolated points. 
This term is from [4] and the author finds it more natural to 
use as an adjective than the usual term "dense in itself" . 

For a continuous surjection f : X -+Y, f is said to be irre­
ducible if there is no closed subset A of X such that A =I- X 
and fl A : A-+Y is surjective. For any 9 : X -+Y the small 
image of A under g denoted g*(A) is defined by: 

g*(A) == {y E Y : g-l(y) ~ A}. 

Remaining terms and notation can be found in Engelking [5] 
and all spaces considered are T 1 unless otherwise stated. 

The author would like to thank Professor Arhangel'skil for 
his interest in this work and Dr. Peter Collins for all his help 
in preparing this paper. 
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2. DEFINITION OF COHESION AN"D ITS BASIC PROPERTIES 

For a topological space X, the cohesion of X, abbreviated 
to cohX, is defined by transfinite recursion as follows: 

cohX == -1 if and only if X == 0, 

for Q E Ord, cohX_ ~ Q if for every nowhere 
dense subset C ~ X, cohC < Q. 

For a space X and ordinal Q, cohX == Q if cohX ~ andQ 

for every (3 < Q it is not the case that cohX :::; (3. 

Remark. Despite the fact that we will prove that there is 
no regular space of transfinite cohesion, we have given the def­
inition in its full generality. This is for two reasons. First, in 
proving this fact we wish to use certain lemmas which tell us 
about the structure of spaces wit]} transfinite cohesion. Sec­
ondly, there may yet be some interesting Hausdorff spaces of 
transfinite cohesion. 

Proposition 2.1. If X is a space such that cohX < Q for 
some ordinal Q and Y ~ X then cohY :::; Q. 

Proposition 2.2. A non-empty space X is discrete if and only 
if cohX == o. 

Proof: If X is discrete then every subset of X is open. This 
means that the only nowhere dense subset of X is the empty 
set so by the definition it follows that cohX == O. 

If cohX == 0 then every nowhere dense subset has a cohe$ion 
of -1. So no non-empty subset is nowhere dense. Consider 
{ x }. This is closed as X is T1 bllt is not nowhere dense so 
contains a non-empty subset open" in X. This must be {x}. 
Hence every point of X is open anld X is discrete. D 

Proposition 2.3. If X is a space such that, for some ordinal 
Q, cohX == a then, for all (3 < a, there exists a closed, nowhere 
dense subset C{3 ~ X such that cohC{3 == (3. 
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Proof: The proof proceeds by transfinite induction. 
If Q = -1 then it is trivial. Assume the proposition has been 

proven for all spaces X such that cohX = (3 where (3 < Q. 

Consider the case where Q = ry + 1. If every nowhere dense 
subset of X has cohesion less than ry then by definition, cohX ::; 
ry. Since this is not the case it must be that there is a nowhere 

-x
dense subset A of X such that cohA = ry. Define C, = A so 
C, is nowhere dense in X. Hence cohC, ::; ry and A ~ C, so 
by Proposition 2.1, cohC, ~ cohA = rye Therefore cohC, = rye 

Now suppose (3 < Q. If (3 = ry then C(3 is already defined. If 
(3 < ry then by the inductive hypothesis there exists a C(3 ~ C, 
closed and nowhere dense in C, such that cohC(3 = (3. But then 
C(3 is also closed and nowhere dense in X and tIle hypothesis 
holds for Q. 

Consider now the case where Q is a limit ordinal. For every 
(3 < Q, there exist 'Y < Q and a nowhere dense subset of X, 
A" such that (3 < ry and cohA, == 'Y (otherwise cohX ~ (3 + 1). 

As before taking C = A'Yx, C is closed and nowhere dense in 
X with'Y ::; cohC < Q. Then cohC > (3 and, by the inductive 
hypothesis, there exists a C(3 closed and nowhere dense in C 
and hence in X such that cohC(3 = (3. 

The proof is complete. D 

One other useful property is: 

Proposition 2.4. If {U.x : ,.\ E A} is an open cover for X such 
that for some 'n, E w, coh,U.x ~ 'n, f'or all ,.\ E A then 

coh,X ::; rL 

Proof': Suppose cohU.x ~ -1 for all ,.\ E A, then they are all 
empty but still form a cover of X so X is empty and cohX ~ 

-1. 
Assume now that, for any space X and some 'n, E w, the 

proposition holds and consider the case where cohU.x ~ n + 1 
for all ,.\ E A. 

Suppose A is nowhere dense in X. Taking C == A, C is 
nowhere dense and closed in X. Thus cnu.x is nowhere dense 
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in UA as it is closed in UA and if if ~ C n UA for some U open 
and non-empty in VA then U is open in X and U ~ C. This 
contradicts the fact that C is nov~here dense in X. 

But then by definition of cohesion, 

coh(C n U)J :S n. 

Taking VA == C n UA, {VA: A, E A} is an open cover for 
C such that cohVA :S n, for all .A E A. So by the inductive 
hypothesis, cohC :S n giving cohj~ :S n and hence 

cohX :S 111 + 1. D 

The next lemma is useful throughout this work. It seems 
to be well-known but the author was unable to find it proven 
anywhere so a proof is given here for completeness. 

Lemma 2.5. If X is a scattered space then X d is nowhere 
dense in X. 

Proof: Suppose X is  scattered space and that U is a nOll­
empty open subset of X. By definition of scattered spaces, 
there exists x E U which is isolated in U. {x} is then open in 
U and hence in X. Therefore x E U \ X d which means that no 
non-empty open subset of X is contained in X d

, that is, X d is 
nowhere dense in X. D 

This next lemma is also very useful. 

Lemma 2.6. If X is scattered a~nd Y is nowhere dense in X 
then Y ~ x d . 

Proof': Suppose Y ~ X d
. Then Y contains an isolated point of 

X so in particular contains a non-empty open set. Hence Y is 
not nowhere dense in X. D 

Examples. Take C1 ~ lR to be (~\ == {O} U {* :111 E W \ {O}}. 
This is clearly non-empty and not discrete. By Lemmas 2.5 
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and 2.6, the only possible non-empty, nowhere dense subset of 
C1 is {O} which clearly has a cohesion of o. 

:. cohC1 = 1. 

Taking C1 to be the base space, for each nEw, inductively 
define scattered, closed subsets of Q, call them Cn, such that 
cohCn = n as follows: 

1 1 
Cn+1 = CnU{ -+...+- : k i+1 ~ 2k i (k i -1) for i = 1, ... ,n-1}.

k1 kn 

This gives sequences of points which converge down to every 
point of Cn. Hence C~+l = Cn and since en is scattered so too 
is Cn+1 . If A is nowhere dense in Cn+1 then, by , A ~ Cn and 
cohA ::; n. However, Cn is nowhere dense in Cn+1, by Lemma 
2.5, and cohCn = n so by definition of cohesion 

cohCn+1 = n + 1. 

Since each of these spaces is a subset of Q this shows that if 
cohQ exists then it is transfinite. However, we in fact have: 

Theorem 2.7. cohQ is not defined. 

This is actually a consequence of Theorem 3.1 but the fol­
lowing proof is somewhat shorter. 

Proof: Suppose for contradiction that cohQ is defined. Q is 
homeomorphic to Q x Q which contains {O} x Q as a nowhere 
dense subset. Thus, by definition of cohesion, coh({O} x Q) < 
coh(Q x Q). But as {O} x Q is also homeomorphic to Q this 
gives us our required contradiction. D 

3. COHESION AND SCATTERED SPACES 

The last theorem of the previous section was shown essen­
tially by finding a nowhere dense subspace of Q which was 
homeomorphic to Q. The result then followed directly from 
the definition of cohesion. This is not in general possible but it 
is possible to find in certain spaces a subspace which contains 
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a nowhere dense homeomorph of itself. It then follows, as for 
(Q, that such spaces cannot have cohesion defined on them. 

The following theorem gives the details of how such sub­
spaces can be constructed in the general setting. 

Theorem 3.1. If X is T2, sequential and cohX exists then X 
is scattered. 

Proof: Suppose X is not scattered. So there exists A ~ X 

which has no isolated points. Define Y = Ax. Y is a closed 
subset of X so is also T2 and seq"uential. Moreover, if Y E Y is 
an isolated point of Y then there exists U ~ X which is open 
in X such that U n Y = {y}. BIlt if y rJ. A then U is an open 

set about an element of AX whicfl does not intersect A. As this 
is not possible, it must be that yEA. But then UnA = {y} 
so Y is an isolated point of A which is also not possible. Thus 
Y has no isolated points. 

This means that for all y E Y: y E Y \ {y}Y. So Y \ {y} =I­
Y \ {y} Y or more simply Y \ {y} is not closed in Y. Since Y is 
sequential, this implies that there exists a sequence in Y \ {y} 
which converges to a point outside of Y \ {y}. There is only 
one possible point left in Y whicll this sequence could converge 
to and this is y. Denote such a sequence by {Yn}~=o and since 
Y is Hausdorff we can assume all elements of the sequence are 
distinct. 

We need to separate the points of such sequences quite some 
way so we require the following: 

Fact. "In E w, 3Un{y) ~ Y ope:n in Y such that Yn E Un(y), 
Y rJ. Un{y) and Un(y) n Um(y) == 0 whenever 'n, mJ E wand 
'n "1m). 

This can be proved using only the fact that Y is Hausdorff. 

We now show how, for a given x E Y contained in some 
open set U, there exist sets In(x, U) ~ U for each nEw such 
that (In+1(x, U))d = In(x, U) , I~n)(x, U) = {x} and Vz E 

In+1(x, U) \ In(x, U) , :3Uz ~ X which is open in X with [fz n 
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In+1 (x, U) = {z} and whenever z =I z', Uz n Uz' = 0. These 
In are the equivalent of the en in Section 2. 

Take Io(x,U) = {x} and define Ux = U. This trivially 
satisfies the conditions. 

Suppose then that for some nEw, if i ~ n the set Ii(x, U) 
and the corresponding Uz's are defined. Consider a z E In(x, U)\ 
In - 1(x, U) (taking I_ 1(x, U) = 0). Take {Zk} to be the se­
quence contained in Uz converging to z whose existence is 
demonstrated at the beginning of this proof. Define 

In+l(X, U) = In(x, U)U{:Zk : z E In(x, U)\In- 1(x, U) and k E w} 

UZk = Uz n Uk(Z) as given by the Fact. 

Suppose z, z' E In(x, U) \ In- 1(x, U). If z =1= z' then for 
all j, k E w, UZj n Uz~ ~ UZ n Uz' = 0. And if z = z' then 
for j, k E w with j =1= k, UZj n Uz~ ~ Uj(z) n Uk(Z) .= 0 by 
their definition. From this, UZk does not contain any zj for 
(j .=1= k) V (z =1= z'). Moreover, from the-- Fact z tJ UZk hence 
UZk n In+1 = {Zk}. Thus the UZk are the open sets required in 
the definition of In +1(x, U). 

The UZk also show that if z tJ In+1(x, U) \ In(x, U) then z 
is an isolated point of In+1(x, U). And if zEIn then by its 
definition there is a sequence in I n+1 converging to z. These 
two statenlents together give 

(In+1(x, U))d == In(x, U) 

from which it follows by part of the inductioll hypothesis that 

(In+1 ( x, U) )(n+1) = {x}. 

Hence I n +1 is scattered. 
We now take 

z == U In(Yn, Un(y)). 
nEw 

If z E Z is isolated then, by the definition of the In, it cannot 
be the case that z E In- 1(Yn, Un(y)) for any nEw and so it 
must be that z is isolated in some In(Yn, Un(y)). In the opposite 
direction, if z is isolated in In(Yn, Un(y)) for some 11 E w then 
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{z} == Vnln(Yn,Un(y)) for SODle V open in Y. But then 
{z} == Z n (V n Un(y)) as In(Yn, U"n(Y)) ~ Un(y) and the Un(y) 
are pairwise disjoint. This means z is isolated in Z. Hence we 
have 

Zd == U(In(Yn, Un(y)))d 
nEw 

Zd == U In(Yn+l' Un+1(Y)) 
nEw 

which is clearly homeomorphic to Z. It is not hard to see that 
Z is scattered (with sl(x) == w + 1) giving that Zd is nowhere 
dense in Z. 

But if X has a definable cohesion then so too does Y and 
thus Z. By the definition, cohZd < cohZ which is impossible 
since Zd is homeomorphic to Z. l'hus we have a contradiction. 

Hence it must be the case that X is scattered. D 

In spaces which have a defined cohesion and are scattered, 
we have two numbers attached to the space, the cohesion and 
the scattered length. The next tVlO theorems give the relation 
between them in scattered spaces. 

Theorem 3.2. For X a scattered space and 11 E w, 

sl(X) == n if and only if cohX == n - 1. 

Proof: Firstly suppose X is scattered with sl(X) == O. Then 
X == X(O) == 0 and hence cohX == -1. 

Assume for the purposes of indllction that if sl(X) == n, then 
cohX == n - 1. 

Consider a space X of scattered. length n + 1. X d is nowhere 
dense in X and clearly has scattered length n,. Thus coh,X d == 
n, - 1. 

If C is a nowhere dense subset of X then, by Lemma 2.6, 
C ~ X d . By Proposition 2.1, this gives us that for eve~y 
nowhere dense subset C of X, 

cohC ~ n, - 1. 
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So by the definition of cohesion, 

cohX ~ n. 

However X d is a nowhere dense subset of X of cohesion 'n - 1. 
Hence 

cohX == rlJ. 

So by induction, 

if sl(X) == n then cohJX == n - 1. 

To do the reverse implication, if cohX == -1 then X == 0 
and hence sl(X) == O. Assume now that if cohX == n - 1 then 
sl(X) == n. If X is a scattered space such that cohX == n, then 
X d is nowhere dense in X and, since any nowhere dense subset 
of X is contained in X d , this gives 

cohX d == 11 - 1. 

But then by the inductive hypothesis, 

sl(Xd
) == 11 

which clearly implies that 

sl(X) == 'n + 1. 

So by induction, 

if cohX == n - 1 then sl(X) == n. D 

Theorem 3.3. If X is scattered and cohX is defined then 
sl(X) is finite. 

Proof: Suppose sl(X) == K and cohX == J-L for some K, J-L E Ord. 
Suppose K is infinite. Define a function j : W ---+ J-L by 

j('n) == cohX(n) for rI, E w. 

Since x(n+l) 

Thus 
cohX(n+l) < cohX(n). 
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But then {f(n) : nEw} forms a strictly decreasing sequence in 
the ordinal Jl which contradicts the well-ordering of Jl. Hence 
~ cannot be infinite and we have 

sl(X) is finite. D 

Putting these last three results together we have the follow­
ing: 

Corollary 3.4. If X is a sequential Hausdorff space and cohX 
exists then X is scattered and sl(X) == n for some nEw. 

Moreover, cohX == n - 1. 

4. COHESION IN NON-SCATTERED SPACES 

The theorems of the previous section show how cohesion and 
scattered spaces are related. Ho,vever, are there spaces which 
are crowded but for which cohesion still exists? Moreover, 
what cohesions can such spaces llave? The answer to the first 
question is in the affirmative. T:he examples which we use are 
called nodec spaces which were first defined by van Douwen 
[3] as those spaces for" which e,rery NOwhere DEnse subset 
is Closed. From the definition, it follows that every nowhere 
dense subspace of a nodec space is discrete. However, this 
simply means that a nodec space has cohesion of at most one. 

Van Douwen showed in [4] that any crowded maximal topol­
ogy is nodec but such examples Inay only be Hausdorff. In [3] 
though, he proved that there is a countable, regular, crowded, 
T1 nodec space, 8. We give here a description of 8 and we 
would like to thank Ian Stares for his very useful exposition of 
the construction of e which was given in [8]. 

The Construction of e Given a regular crowded space X 
with topology T, by Zorn's Lemlna, we can find a topology on 
X which is maximal with respect to being crowded and regular 
and also contains T. Such spaces are called ultraregular spaces 
and more can be found on these spaces in Bourbaki, p139 [2]. 

For a countable ultraregular space X, define a subspace ex 
by: 
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ex == {x EX: there is no nowhere dense subset 
A of X such that x E A \ A}. 

ex is clearly a nodec space and it can be shown for any ul­
traregular space X that ex is non-empty. It then follows that 
ex is dense in X. If this were not the case, as X is count­
able and regular hence zero-dimensional, we co~ld find a clopen 
non-empty subset U of X such that U n ex == 0. But as a 
clopen subset of an ultraregular space, U is ultraregular and 
eu == U n ex == 0 which is a contradiction. Moreover, ex is 
crowded otherwise it has an isolated point which must also be 
isolated in ex == X. This is impossible as X is assumed to be 
crowded. 

We will use these spaces as building blocks to construct 
(countable) regular crowded spaces of each finite cohesion. 

Theorem 4.1. If X and Yare topological spaces such that 
cohX == n for some nEw and Y is a crowded nodec space 
then (X x Y, T) is a topological space such that 

coh (X x Y) == n + 1, 

where T is the topology determined by the following basis: 
Fix Yo E Y and then for (x, y) E X x Y a basic open neigh­

bourhood is of the form: 

(1)	 {x} x U when y =I- Yo and where U is open in Y with 
Yo fj. U. 

(2)	 U{{a} x Ua : a E V} when y == Yo and where V is an 
open neighbourhood of x in X and, j·or all a E V, Ua is 
an open neighbourhood oj· Yo in Y. 

Proof: It is not too hard to check that the definition given does 
indeed define a topology on X x Y. 

First of all, we shall s-how that coh(X x Y) ~ n + 1. 
The set X x {Yo} is a subset of X x Y. It is closed since if 

(x,y) tJ. X x Y then y =1= Yo and {x} x (Y \ {Yo}), is an open 
neighbourhood of (x, y) which misses X x {Yo}. Moreover it 
is nowhere dense because any open set, say V, about (x, Yo) E 
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x x Y contains {x} x U for some open neighbourhood U of 
Yo. But Yo is not isolated so for some y E Y \ {Yo}, (x, y) E 

{x}	 x U ~ V. Thus V cannot be a subset of X x {Yo}. 
Clearly coh(X x {Yo}) = n and so by definition of cohesion, 

coh(X x Y) ~: TIl + 1. 

Secondly, we show that coh(X >< Y) :::; n + 1 and then the 
proof is complete. 

Suppose C is nowhere dense X x Y. Since for all x EX, 
{x}x(Y\{Yo}) is open in XxY thenCx = Cn({x}x(Y\{yo})) 
is nowhere dense in {x} x (Y \ {Yo}) and hence in {x} x Y. 
Clearly coh( {x} x Y) = 1 giving us: that cohCx = 0, that is, C x 

is closed and discrete in {x} x Y. (Note also that Cx is open 
in C). But then there exists an 0llen neighbourhood Ux of Yo 
such that ({x} x Ux ) n Cx = 0. 

Take V = UXEX ( {x} X Ux). By· definition of T, V is open 
in X x Y and by definition of the Ux's, C n V ~ X x {Yo} so 
that coh(C n V) :::; n. 

But we now have that {C n V} u {Cx : x E X} is an open 
cover of C such that each element of the cover has cohesion at 
most n. So by Proposition 2.4, 

cohC :::; ~n. 

Hence by defillition of cohesion, 

cohI (X X Y) :::; r~ + 1. D 

It is now reasonably easy to show: 

Theorem 4.2. For all nEw \ {O} there exists a space X n 

which is countable, crowded, regular and cohXn = n. 

Proof: For n = 1, take Xl to be a regular nodec space. Assume 
X n has been shown to exist. Now apply the previous theorem 
with X = X n and Y a regular nodec space. Define X n+l to be 
this new space. 

It is clear to see that X n+l is cOllntable and t.hat cohXn+1 = 
n+l by the previous result. That )(n+l is crowded follows since 
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every open neigllbourhood of a point (x, y) E X n x Y contains 
a set of the form {x} x U where U is an open neighbourhood 
of y in Y. But no y E Y is isolated so U contains some point 
other than y and hence the neighbourhood of (x, y) contains 
some point other than (x, y ) . 

We must show tllat X n +1 is also a TI-space. Consider (x, y) E 

X n +l . The set U == (Xn \ {x}) x Y is a basic open set as X n 

is TI . Also V == Y \ {y} is open in Y as Y is TI. 
Case (1): If y # Yo of the last theorem then X n+1 \ {(x, y)} == 

U{{a} x Ua : a E X} where Ua == Y for a # x and Ux == V. 
Hence the point (x, y) is closed. 

Case (2): If ,y == Yo then {x} x V is open in X n +1 and then 
complement of (x, y) is U U V which is open and hence (x, y) 
is closed. 

It remains to show that X n +1 is regular. Suppose U is an 
open neighbourhood of (x, y) in X n+l . We need to find an open 

V 
Xn 1set V ~ X n +1 such that (x,y) E V ~ + ~ U. 

Case (1): If y # Yo then U contains an open set of the form 
{x} X U' for some U' open in Y. In this case there exists a 

-y
V ~ Y open such that y E V ~ V ~ U'. It is not too hard 

---XnxY -Y 
to see that {x} x V == {x} x V and so {x} x V is our 
required open set. 

Case (2): If y == Yo, then U contains an open set of the form 
U{{a}xUa : a E W}whereWisanopenneighbourhoodofxin 
X n and each Ua is an open neighbourhood of Yo in Y. Take G to 
be an open set in X n such that x E G ~ G

Xn 
~ W. Then for all 

-x -y  
a E G n take an Ha open in Y such that Yo E Ha ~ Ha ~ Ua. 
Setting V == U{{a} x H a : a E G}, it is clear to see that V 
is an open neighbourhood of (x, y) which is contained in the 

closed set U{ {a} x HaY: a E G
Xn 

} which is in turn contained 
in U. 

Hence X n +1 is regular and so by induction on the natural 
numbers the theorem is proven. D 

Having found spaces of each finite cohesion, can we do better 
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and find one of transfinite cohesion? The answer to this is 
almost always "No" as this next tlleorem shows. 

Theorem 4.3. There is no regular space of transfinite cohe­
S'lon. 

We actually demonstrate that there is no regular space of 
cohesion w. This suffices since Proposition 2.3 says that any 
regular space of transfinite cohesion contains a subset of cohe­
sion w which is necessarily regular. 

The proof proceeds by demonstrating that if a space of co­
hesion w exists then it contains a nowhere dense subset also 
of cohesion w but that then contradicts the definition of cohe­
sion. To construct this nowhere dense subset we need a couple 
of technical lemmas. 

Lemma 4.4. If A, U ~ X and U is open with coh(A \ U) ~ n 
and cohU ~ mJ then coh(A U U) ~ 'n + mJ + 1. 

Proof: Induct on mJ for a given r1J. Assume mJ == -1 so U == 0 
and cohA ~ n. Hence coh(A U U) ~ r1J + -1 + 1 as required. 

Thus suppose it has been provren for mJ == k and assume 
mJ == k + 1. If C is nowhere dense in A U U, then C n U is 
nowhere dense in U as U is open in AUU. Thus coh(CnU) ~ k. 
But also C \ U ~ A \ U so that coh(C \ U) ~ r1J by Proposition 
2.1. 

So taking C == X in the inductive hypothesis, and noting 
that C n U is open in C, 

cohC == coh((C \ U) u (C n U)) ::; 11J + k + 1. 

But this was for an arbitrary novlhere dense subset of A u U 
hence 

coh(A U U) ::; 'n + k + 2 == 'n + (k + 1) + 1. 

By induction the theorem holds for all mJ. D 

Lemma 4.5. If" X is regular and cohX == w then for all 11 E w, 
there exist A, U ~ X such that A is nowhere dense in X, 
cohA == r1J, U is open in X, A ~ f.I and coh(X \ U) == w. 
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Proof: By Proposition 2.3, for X as in the statement of the 
lemma and some nEw, there exists A ~ X which is closed 
and nowhere dense in X such that cohA == TL 

Suppose that for all open sets U in X which contain A, 
coh(X \ U) < w. Taking X \ U to be A in Lemma 4.4, if 
cohU < w then cohX < w. Hence cohU == w for all such U. 
Define U to be the collection of all open sets containing A and 
index this set by A. 

Claim. 

A == nUA 
AEA 

Certainly A ~ nAEA UA so consider x f/. A. By regularity, there 
exists A E A such that 

But then x (j. UA and moreover x (j. nAEA UA. Hence 

and we have our claim. 
Suppose now that coh(X \ UA) ~ M for all A E A and some 

MEw. 
The set {X \ UA : A E A} is an open cover for X \ A by the 

claim. Thus by Proposition 2.4, 

coh(X \ A) ~M. 

But we now have that cohA == rlJ, coh(X \ A) ~ M and X \ A 
is open in X so, by Lemma 4.4, coh((X \ A) U A) ~ M + n + 1 
or in other words, 

cohX < w 

which is a contradiction. 
Therefore, for the given n, there exists A E A such that 

coh(X \ UA) ~ n + 1. By Proposition 2.3, take B to be a 
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subset of X \ U,\ which is nowhere dense in X \ U,\ and for 
which cohB == n. This gives that 

A ~ U,\ ~ U,\ ~ X \ B. 

Define W == X \ u,\ so that B ~ W, cohB == nand w 2:: 
coh(X \ W) == cohU,\ 2:: cohU,\ == w. B is also nowhere dense in 
X and hence Band Ware the sets 'which satisfy the conditions 
on the A and U in the statement of the lemma. D 

This last lemma allows us to find. nowhere dense subsets of 
a space of cohesion w of eacll finite cohesion, which are suffi­
ciently well spaced so that their Ullion is still nowhere dense. 
But then, this nowhere dense subset has cohesion wand this 
is the set we require for the contradiction. The details are as 
follows: 

Proof of Theorem 4.3: Suppose X is a regular space of cohesion 
w. First of all we construct nowhere dense subsets of X of 
each finite cohesion in a particularly nice way. By Lemma 
4.5, we can find Co, Uo ~ X where Co is nowhere dense in X, 
cohCo == 0, Uo is open in X, Co ~ Uo and coh(X \ Uo) == w. 

We now define inductively Ck, UJ~ ~ X such that: 

(1) Ck is nowhere dense in X 

(2) COhCk == k 

(3) Uk is open with Ck ~ Uk 

(4) cohJ(X \ Uk) == w 

(5) Ui ~ Ui+1 for i == 0,1,2, ... , k - 1 

(6) Ci+1 ~ X \ Ui for i == 0, 1,2, ... , k - 1 

Assume that, for i ~ n, C i and fJi have been defined satis­
fying the inductive assumptions. D1efine Cn+1 , V ~ X \ Un as 
given by Lenlma 4.5, so that Cn +1 is nowhere dense subset of 
X \ Un, and hence of X, contained in the set V open in X \ Un 
such that cohCn+1 == r1J + 1 and, coh((X \ Un) \ V) == w. 
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Take V'to be a set open in X such that V == V' n (X \ Un). 
Take Un +1 == V/UUn . It is easy to see from their definitions that 
Cn+1 and Un+1 satisfy all the inductive conditions for k == n+l 
except (4). But note 

X \ Un+1 == X \ (V I U Un) == (X \ Un) \ V' == (X \ Un) \ V 

Hence 

coh(X \ Un+1) == coh((X \ Un) \ V) == w 

Thus Cn +1 and Un+1 are sets satisfying all of the inductive 
conditions for k == n + 1 and so the induction is complete. 

Define C == U~=O Cn· Clearly cohC 2:: cohCn for all 'n E w 

and C ~ X so 
cohC == w. 

It remains to show that C is nowhere dense in X and we 
have our contradiction. Suppose not then there is an open set 
U of X such that U ~ C. Thus U n C =I 0 and therefore, for 
some nJ E w, U n Cn t 0. Since Cn ~ Un, V == U n Un is a 
non-empty open set in X. 

Moreover for all i 2:: n + 1, Ci+1 ~ X \ Ui ~ X \ Un by (5) 
and (6) of t'he inductive assumptions. Thus Un n Ci+1 == 0 for 
all i 2:: n. Thus 

00 

Un n U Ci == 0 
i=n+1 

and therefore, 

00 

(1)	 Un n U Ci == 0. 
i=n+1 

Now U ~ C so V ~ C, that is, 

00 

V ~ Co U C 1 U ... U Cn U U C i 

i=n+l 

But by (1), this implies 

V ~ Co U C1 U ... U Cn. 
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This Ineans that the closure of the union of the first n of the 
Ck contains a non-empty open set and hence the union of the 
first n of the Ck is not nowhere dense. But this contradicts the 
fact that a finite union of nowhere ,dense sets is nowhere dense. 

Thus C must be nowhere dense in X and we can conclude 
that there is no regular space of transfinite cohesion. D 

Given this result we may now feel justified in upgrading 
Lemma 4.4 to give a theorem very much like a dimension sum 
theorem. 

Theorem 4.6. If A and Bare s'l'J,bsets oj' some space X, at 
least one of which is closed, such that cohA ~ r1J, cohB ~ mJ 
and A U B == X then cohJX ~ r1J +mJ + 1. 

Proof: Assunle without loss of generality that A is closed. Then 
take U == X \ A so that U is open in X, U ~ B giving cohU :::; 
m and coh(A \ U) :::; n. Applying Lemma 4.4, we get that 
coh(A U U) :::; n + mJ + 1, that is, 

cohX :::; r1J + m + 1. D 

5. Two MAPPING THEOREMS 

There are some contilluoUS ma:ppings on scattered spaces 
which preserve "scattered-ness", so, by the results relating co­
hesion to scattered spaces, it is reaso~able to suppose that 
these mappings also preserve cohesion. However, as the two 
concepts are not the same, we need a somewhat different ap­
proach. 

Theorem 5.1. If f : X ----+ Y is an open, continuous surjection 
and cohX :::; a j'or some a E Ord then 

cohY :::; lX. 

Proof: The proof is by transfinite induction. 
If cohX == -1 then X is empty and f is surjective so it must 

be that Y is empty and hence coh~V == -1. 
Thus assume that the theorem 110lds for all ordinals (3 < a 

and that cohX == a. Consider C ~~ Y which is nowhere dense 
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in Y. If f -1 (C) is not nowhere dense in X then there exist 
U ~ X, open in X such that U ~ f-1(C). But f is continuous 
so f- 1(C) ~ f-1(C). Hence 

U ~ f- 1(C),
 

and f(U) ~ C.
 

But f is open so f(U) is open and non-empty in Y gIvIng
 
Y

IntyC =1= 0, contradicting the fact that C is nowhere dense. 
Therefore f- 1(C) is nowhere dense in X and cohf-1(C) < Q. 

Define 9 == f If-l(C) so that 9 : f- 1(C) ~ C is a continuous 
surjection. 9 is also open since if V ~ f- 1(C) is open in f- 1(C) 
then V == U n f- 1(C) for some U open in X. But then 

g(V) = f(U n f- 1(C)) == f(U) n f(f-1(C)) == f(U) n C. 

And f(U) is open in Y so g(V) is open in C. 
Now from the inductive hypothesis cohC < Q. But this is 

for an arbitrary nowhere dense subset of Y hence 

cohY ::; Q. D 

The technique of this last proof can be carried over for per­
fect maps using the next two lemnlas which may be found in 
[7]. 

Lemma 5.2. For f : X ~ Y a continuous surjection, f is 
closed and irreducible iff f'or every non-empty open subset U of 
X, f*(U) is non-empty and open in Y. 

To apply this usefully we need one more tool: 

Lemma 5.3. If f : X ~ Y is perfOect then there exists A ~ X 
which is closed in X such that f IA: A ~ Y is irreducible and 
perfect. 

We can now prove our second mapping theorem. 

Theorem 5.4. Ifo f X ~ Y is perfOect and cohX < Q fOor 
some Q E Ord then 

cohY ::; Q. 
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Proof: Assume for the purposes of induction that for all (3 < a 
the theorem is true and that cohJ~ == a. 

Take A ~ X and 9 == f IA: 1t ----+ Y as given in Lemma 
Y

5.3. If C is a nowhere dense subset of Y so too is D == C
Suppose g-l(D) is not nowhere dellse in A. Then there exists a 

non-empty open set U ~ A such that U ~ g-l(D)(= g-l(D( 
as D is closed and 9 is continuous). But then, by Lemma 
5.2, g*(U) is non-empty and open. in Y since 9 is irreducible. 
Also g*(U) ~ g(U) ~ D which contradicts the fact that D is 
nowhere dense in Y. Therefore g-l(D) is nowhere dense in X 
and hence for'some (3 < a 

Define h == 9 I g-l(D): g-l(D) ----+D. h is clearly a continuous 
surjection. As g-l(D) is closed it follows that h is perfect. 
Hence by the induction hypothesis 

cohD ::; (3 < a. 

But C ~ D so by Propositioll 2.1, 

cohC < O~, 

and C was an arbitrary nowhere d.ense subset of Y so, by def­
inition of cohesion, 

cohY ~ a. D 

Examples. Let f : w ----+ e be a denumeration of the nodec 
space, then f is a continuous bijection. However, cohw == 0 
and cohe == 1; so, continuous maps in general do not lower 
cohesion. 

Moreover, if 9 : w ----+ Q is a derlumeratioll of the rationals, 
then it is a continuous bijection with domain having cohesion 
obut for which the range does not even have cohesion defined! 
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6. SOME FURTHER PROBLEMS 

There remain some interesting problems which, up until now, 
the author has not been able to answer. Having found that 
there are no regular spaces of transfinite cohesion, would it 
be possible to come up with an Hausdorff example? Such an 
example would be difficult to find as it must not be sequential, 
scattered or regular. 

Question 6.1. Is there any space oj'trartsfinite cohesion? 

The following question is due to Arhangel'skil: 

Question 6.2. Is there a crowded, compact Hausdorff space 
whose cohesion is defined?1 

By Theorem 4.3, such a space has finite cohesion. Also, any 
compact crowded space is uncountable (as compact countable 
spaces have an isolated point). But in a compact space of 
cohesion 1, every nowhere dense subset is closed, so compact, 
and discrete hence finite. An uncountable crowded space whose 
nowhere dense subsets are countable is called a Lusin space. 
Kunen [6] has shown that under MA + -,CH there are no 
Lusin spaces. Hence we have the partial result: 

Proposition 6.3. (MA ~- -,CH) There is no compact crowded 
space of cohesion 1. 

This however does not exclude the possibility of examples 
with higher cohesion in ZFC but simply requires that all sub­
spaces of cohesion 1 of such spaces have to be countable. 

The author is very grateful to R. W. Pack for drawing his 
attention to Kunen's result. 

With regard to mappings on spaces of a given cohesion, no 
space with cohesion was found which had a closed image with 
higher cohesion. 

Question 6.4. Is there a closed (or even, just a quotient) map 
which raises cohesion? 

1I have answered this in the negative in ZFC 
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ApPENDIX: ABSOLtJTE DIMENSION 

In [1], the absolute dimension of a space X, denoted 
adimX is defined inductively to be: 

adimX = -1 if and only if X = 0, 

adimX = 0 if and only if in,dX = 0, 

for nEw \ {O}, adim,X 5:.n if for every nowhere 
dense subset C ·of X, adimC < n. 

For a space X, adimX = n, means that adim,X 5:. n but 
for any kEw such that k < n it is not true that adimX 5:.k. 

Arhangel'skir went on from this definition to show that a space 
which is cleavable over the reals ~has an absolute dimension of 
at most one. For our purposes it is sufficient to know that ev­
ery subset of lR is cleavable over the reals. It is straightforward 
to see that for a space X, if adim,X = n for sonle nEW, then, 
for every A ~ X, adimA 5:. n holds. 

The definition of cohesion is t~ased on that of absolute di­
mension. So, it will come as no surprise that absolute dimen­
sion has rather different properties from the usual inductive 
dimension functions. In particular, absolute dimension does 
not agree with these functions on compact metric spaces. If [ 
denotes the closed unit interval of lR, then we have: 

Theorem. adim[2 is not defined. 

Proof: Suppose adim,[2 is defined. We shall construct nowhere 
dense subsets Cn of 12 for each TI,Ew such that adimCn 2: n. 

The definition of adim, then gives that adim,12 2:: n + 1 Vn, E w 
which obviously contradicts the fact that adim12 is defined. 

Trivially Co = {(O, O)} satisfies the case when nJ = O. Take 
C1 = [ X {Ole C1 is cleavable over the reals as it is embeddable 
in the real line and it is not e:rnpty or zero-dimensional so 
adim,C1 = 1. Clearly C1 is closed and contains no open set in 
[2 hence C1 is nowhere dense in 12 . 
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Define C2 == 1 x ({O} U {~ : nEw and n ~ 2}). This gives 
a sequence of lines converging down to Cl. As a product of 
two closed subsets of 1, C2 is closed in 12 and clearly it cannot 

·contain any open subset of 12 so C2 is nowhere dense in 12 . 

Any open set, U, in C2 about a point (x,O) E 1 x {O} contains 
an open ball of radius € so tin E w such that ~ :::; €, (x, ~) E U. 
Thus C l contains no non-enlpty open subset of C2 and is closed 
in C2 so Cl is nowhere dense in C2. But adimJCl == 1 hence 
adimC2 ~ 2. (adimC2 exists because of the assumption that 
adim12 exists.) 

In general given Ck and noting that n~1 - ~ = n(nl_I)' define 

Ck+1 = Ck U {~1 + ... + ~k : nl 2:: 2, niH 2:: 2ni(ni - 1) for i = 
1, ... ,k - I}. As before this gives a sequence of lines con­
verging down to each line in C k. It can be seen that Ck+l is 
clo~ed and nowhere dense in 12 (as a countable collection of 
horizontal lines, Ck+l cannot contain a non-empty open subset 
of 12). As for Cl in C 2, Ck is nowhere dense in Ck+l and hence 
adimCk+l ~ k + 1. 

Therefore, tin E w ~Cn ~ 12 such that adimJCn ~ ~ which 
are the sets prophesied at the beginning of the proof and we 
are done. 0 
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