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LOCALLY FINITE NE~~RNESS SPACES 

JOHN W. CARLSON 

ABSTRACT. Locally finite nearness spaces and uniformly 
continuous maps are shown to form a bireflective sub
category of NEAR. The locally finite nearness structure 
generated by the collection of locally finite open covers 
of a symmetric topological space is studied. Under suit
able conditions, the completion of such a space is shown 
to be the smallest paracompact subspace of the Wallman 
compactification containing the original space. 

INTRODUCTION. 

A nearness space is called a locally finite nearness space pro
vided every uniform cover is refined by a locally finite uniform 
cover. These spaces are closely related to the interesting re
sults obtained by Bentley [5] on paracompact nearness spaces 
and the material in this paper parallels the work by the author 
on metacompact nearness spaces [8]. 

It is shown that LFNEAR, the subcategory of ,NEAR con
sisting of the locally finite nearness spaces and uniformly con
tinuous maps, is bireflective in J\fEAR. From this it follows 
that the product of a family of locally finite nearness spaces is 
a locally finite nearness space and a subspace of a locally finite 
nearness space is a locally finite nearness space. 

A particular locally finite nearness structure, denoted by 
/-lLF, is studied in detail. It is defined to be the nearness 
structure on a symmetric topological space X generated by 
the family of all locally finite open covers on the space. It is 
shown that the full subcategory of NEAR consisting of objects 
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64 JOHN W. CARLSON 

of the form (X, J,L LF), where X is a symmetric topological space, 
is isomorphic to the category TOP, of symmetric topological 
spaces and continuous maps. 

It is shown that if Y is a T1 paracompact extensiOll of X 
then J,Ly C J,LLF· Under suitable conditions, (X *, J,LLF*) , the 
completion of the space (X, J,L LF ), is the smallest paracompact 
subspace of wX, the Wallman Compactification of X, contain
ing X. 

1. PRELIMINARIES. 

We will assume that the reader is basically familiar with the 
cOllcept of a nearness space as defined by Herrlich in [7] and 
[8]. 

Definition 1.1 Let X be a set and J,L a collection of covers 
of X, called uniform covers. Then (X, J,L) is a nearness space 
provided: 

Nl. H E J,L and H refines £ implies £ E J,L. 

N2. {X} E J,L and 0 f/. J,L. 

N3. If H E J,L and £ E J,L then H 1\ £ == {H n L: H E Hand 
L E £} E J,L,
 

N4. H E J,L implies {int(H) : H E H} E J,L.
 

(int (H) == {x : {X - {x}, H} E J,L}.)
 

For a given nearness space (X, /-l) the collection of sets that 
are "near" is given by ~ == {H c P(X) : {X - H: H E 

H} fj. /-l}. The closure operator generated by a nearness space 
is given by cl~(A) == {x : {{x},A} E ~}. If we are primar
ily using these "near" collections we will denote the nearness 
space by (X, ~). The underlying topology of a nearness space 
is always symmetric; that is, x E c1e{Y} implies Y E c1e{x}. 
The following notation will be used: R == {fI: H E H} and 
X\R == {X\R : H E H} where fI == cl~(H). 

Definition 1.2. Let (X,~) be a nearness space. The nearness 
space is called: 
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(1)	 topological provided H E ~ implies nfl =1= 0. 
(2)	 complete provided each ~-cluster is fixed; that is, nfl =1= 

ofor each maximal element H in ~. 

(3)	 concrete provided each near collection is contained in 
some ~-cluster. 

(4)	 contigual provided H t/. ~ implies there exists a finite 
£ C H such that £ t/. ~. 

(5)	 totally bounded provided 7-l t/. ~ implies there exists a 
finite £ C H such that n£ == 0. 

Let	 (X, t) be a symmetric topological space. Set: 

~t == {H c P(X) : nfl =1= 0} 

~p	 == {H c P(X) : nfl has f.i.p.} 

~L == {H c P(X) : nfl has c.i·I)·} 

Each of these is a compatible nearness structure on X. They 
can be defined equivalently as follows: 

J-Lt == {£ c P (X): £ is refilled by an open cover of X} 

J-Lp ==	 {£ c P(X): £ is refined by a finite open cover 
of X} 

J-LL·== {£ C P(X): £ is refinee] by a countable open cover 
of X} 

~p is called the Pervin nearness structure on X and ~L the 
Lindel6f nearness structure on X. They are discussed in [5] 
and [4], respectively. 

Definition 1.3. Let:F be a close<i filter in a topological space 
(X, t). Set A(F) == {A : A E F}. If F is a prime closed filter, 
set 0 (F) == {O E t: X - 0 t/. F}. 

If F is a prime closed filter thefL O(F) is a prime open filter 
and if F is a closed ultrafilter then O(F) is a minimal prime 
open filter and in this case O(F) == {O E t: there exists 
F E F with 0 ~ F}. T11at is; if .r is a closed ultrafilter then 
the open envelope of :F is a mininlal prime open filter [6]. 
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2. LOCALLY FINITE NEARNESS SPACES 

Definition 2.1. A nearness space (X, J-l) is called a locally 
finite nearness space if for each H E J-l there exists a £ E J-l 
such that £ refines Hand £ is locally finite. If (X, t) is a 
symmetric topological space, set J-lLF = {£ c P(X): There 
exists a locally finite open cover of X that refines £ }. 

Theorem 2.2. Let (X, t) be a symmetric topological space. 
Then: 

(1)	 J-l LF is a compatible locally finite nearness structure on 
X. 

(2)	 ~LF = {H c P(X) : X\11, is not refined by a locally 
finite open cover oj' X}. 

(3)	 Ij' J-l is a compatible locally finite nearness structure on 
X then J-l C J-l LF . 

Theorem 2.3. Let (X, t) be a symmetric topological space. 
Then: 

(1)	 ~t C ~LF C ~p 

(2)	 J-lp C J-lLF C J-lt· 

The proof of the following theorem parallels the proof of 
theorem 2.4 in Carlson [8]. 

Theorem 2.4. (1) If H E ~LF then 11, has the finite inter
section property. 

(2)	 Ij' H E ~LF then the closed filter F generated by 11, be
longs to ~LF. 

(3)	 Ij'H is a ~LF-cluster and F is the closed filter generated 
by 11, then F· is a prime closed filter. 

Theorem 2.5. let X be a symmetric topological space. Then: 

(1)	 J-lt = J-l LF iff X is paracompact. 
(2)	 /-LL C /-LLF iff X is countably paracompact. 
(3)	 J-lLF C J-lL iff every locally finite open cover of X has a 

countable subcover. 
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Theorem 2.6. Let X be a symmetric topological space. The 
following statements are equivalent 

(1) /-lP == /-lLF 
(2) Every locally finite open cover oj' X has a finite subcover. 
(3) /-lLF is totally bounded. 
(4) /-l LF is contigual. 

Definition 2.7. A nearness space (X, /-l) is called regular if 
for each U E /-l there exists V E /-l such that V strictly refines 
U, (Recall: V strictly refines U if for each V E V there exists 
U E U such that V < U : that is, {U, X\V} E /-l). 

Theorem 2.8. Let (X, t) be a normal topological space. Then 
(X, /-lLF) is a regular nearness space. 

Proof: Easily A <LF B iff {B,;r\A} E /-lLF iff A c intB. 
Let U E /-lLF. Then there exists a locally finite open cover 
o == {Oa : ex E A} that refines U. Since X is normal and 0 
is point finite it is shrinkable (Willard [11], Theorem 15.10). 
Thus, there exists an open cover () == {Sa : ex E A} such that 
Sa cint Oa for each ex E A and hence S is a strict refinement 
of O. Easily S is locally finite and thus S E /-lLF and (X, /-lLF) 
is regular. 

Locally fine nearness spaces are studied in [4] and used ex
tensively by Bentley in [5]. 

Definition 2.9. A nearness space is called locally fine if it is 
a uniform covering of X and (BA)AEA is a family of uniform 
covers of X then {A n B : A E A. and B EBA} is a uniform 
cover of X. 

Theorem 2.10. Let (X, t) be a symmetric topological space. 
Then (X, /-l LF) is as locally fine nearness space. 

Proof: Let A E /-lLF and for each A E A let BA E /-lLF. Now 
there exists a locally finite open cover 0 that refines A. 
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Let 0 E 0, then there exists A E A such that 0 C A. Now 
BA E /-l LF and so there exists a locally finite open cover Uo 
that refines BA. 

Now 0 /\ Uo == {O n U: 0 E 0 and U E Uo} is a locally 
finite open cover which refines {A n B: A E A and B E BA }. 

Hence (X, /-lLF) is a locally finite nearness space. 
Bentley [5], in his interesting paper on paracompact nearness 

spaces defines a collection C of sets to be locally finite provided 
there exists a uniform cover U such that each member of U 
meets only finitely many members of C. In order to distinguish 
this important concept from the usual topological concept of 
locally finite we will for the purposes of this paper only refer to 
his concept as "uniformly" locally finite. Then his definition 
of a paracompact nearness space can be stated as follows: 

Definition 2.11. A nearness space (X, /-l) is called paracom
pact if every uniform cover of (X, /-l) is refined by some uni
fornlly locally finite uniform cover. 

Specifically, if U E /-l then there exists V E /-l and W E /-l 

such that V refines U and each W E W meets only finitely 
many members of V. 

Theorem 2.12. Every paracompact nearness space is a locally 
finite nearness space. 

Theorem 2.13. (Bentley [5]) A topological nearness space is 
paracompact (as a nearness space) iff it is paracompact as a 
topological space in the usual sense. 

In the following section, the class of topological spaces for 
which /-lLF is paracompact plays a crucial role. 

It is well-know that the category of symmetric topological 
spaces is isonl0rphic to the subcategory of Near consisting of 
all topological nearness spaces and uniformly continuous maps. 
Since they are isomorphic, we identify them and call it TOP. 
The isomorphism maps (X, t) to (X, ~t). 
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It was shown in [6] that tIle categories of Pervin nearness 
space and nearness maps and Lindel6f nearness spaces and 
uniformly continuous maps are each isomorphic to TOP. 

Let LFNEAR denote the full su"bcategory of NEAR consist
ing of all locally finite nearness spaces and uniformly continu
ous maps. 

Define T : NEAR ~ LFNEAFt by T(X, JL) == (X, T(JL)), 
where T(JL) == {H E JL : there exists £ E JL wllich refines Hand 
is locally finite }. 

Theorem 2.14. 1. LFNEAR is Q, birefiective full subcategory 
oj' NEAR. 

2. The restriction of T to TOP is an isomorphism. 

Prooj': Let (X, JL) be a nearness space and 9 : (X, JL) ~ (Y, v) 
be a uniformly continuous map wllere (Y, v) is a locally finite 
nearness space. Defi11e h: (X,T(fJ~)) ~ (Y,v) by h(x) == g(x) 
for all x EX. 

To see that h is uniformly contillUOUS let C E v. Then there 
exists P E v such that P is locall:y finite and refines C. Now 
int(P) is in v and is also locally fillite. g-l(int(P)) is an open 
locally finite cover of X. Hence g-l(int(P)) belongs to T(JL) 
and therefore h-1(C) E T(J.L). 

To see (2), note tllat T(X, J.Lt) == (~, JLLF)' The only part 
of the proof that is not immediately evident is if f : (X, t) ~ 

(Y, s) is a continuous map then f : (X, JLLF) ~ (Y, VLF) is 
uniformly continuous. Let C E VLp. Then there exists a locally 
finite open cover P of Y that refines C. Since I is continuous, 
1-1 (P) is a locally finite open cover of X. Hence 1-1 (C) E J.LLF 
and I is uniformly continuous. 

Since NEAR is a properly fibred topological category, it 
is known, Herrlich [10], that an epireflective subcategory of 
NEAR is closed under the formation of subobjects and prod
ucts. Thus, we have the following result. 

Corollary 2.15. The product of a nonempty j'amily of locally 
finite nearness space is a locally finite nearness space. The 
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subspaces of a locally finite nearness space is a locally finite 
nearness space. 

3. EXTENSIONS 

All spaces in this section are assumed to be T I . An extension 
Y of a space X is a space in which X is densely embedded. 
Unless otherwise noted, we will assume for notational conve
nience that X C Y. It is well known that for any extension Y 
of X tllere exists an equivalent extension Y ' with X c Y ' . 

It Y is an extension of X then ~ == {A c P(X): n 
clyA =1= 0} is called the nearness structure on X induced by 
Y. Equivalently, J1 == {U C P(X): Uop(U) == Y} where 
op(U) == { op(U): U E U} and op(U) == Y - cly(X - U). 

Let (Y, t) be a topological space and X == Y. For each y E Y, 
set a y == {O n X : yEO E t}. Then {a y : y E Y} is called 
the filter trace of Y on X. 

The strict extension topology (See Banaschewski [1]) on Y 
is generated by the base {O* : 0 E t(X)}, where 0* == {y E 

Y : 0 E ay}. Let Y be a TI extension of X. Then Y is a strict 
extension of X if and only if {clyA: A eX} is a base for the 
closed sets in Y. 

Herrlich's completion of a nearness space [9] can be described 
as follows. Let (X,~) be a T1 nearness space. Let X* be the set 
of all ~-clusters and for A c X let cl(A) == {A E X*: A E A}. 
A nearness structure ~* is defined on X* as follows: 

B E ~.* provided {A eX: there exists B E B with B c 
cl(A)} E~. (X*,~*) is a complete nearness space and cl~X == 
X*. Also, for A C X, cl~*(A) == cl(A). 

Herrlich and Bentley [3], also describe the completion in the 
following equivalent manner. The function e : X ~ X* maps 
every x E X onto the cluster Ax, consisting of those subsets 
of X which have x as an adherent point. For any subset B of 
X, the set B* denotes the set of all p E X* such that B meets 
every nlember of the cluster p. A cover C of X* belongs to J.L* 
provided there exists P E J.L such that {p* : PEP} refines C. 
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The following two important theorems are due to Bentley 
and Herrlich [2]. 

Theorem A. For any T1 nearness space (X,~) the j'ollowing 
conditions are equivalent. 

(1)	 ~ is a nearness structure ~:nduced on X by a strict ex
tension. 

(2)	 The completion X* of X is topological. 
(3)	 ~ is concrete. 

Theorem B. Strict extensions are equivalent if and only ij' 
they induce the same nearness structure. 

Theorem C. (Carlson [6]) Let (JC, t) be a T1 topological space. 
Then: 

(1)	 ~p is a compatible concrete contigual nearness structure 
onX. 

(2)	 The ~p-clusters are oj' the j'orm A(F) == {A eX: A E 

F}, where F is a closed ultrafilter on X . 
(3)	 ~p == {A c P(X) : A C A.(F) for some closed ultrafil

ter F }. 
(4)	 (X*, ~;) is the Wallman compactification of (X, t). 
(5)	 If (X, t) is normal then (X *, ~p) is the Stone- Cech com

pactification of (X, t) . 

Theorem D. (Carlson [6]) Let (.X,~) ,be a T1 nearness space 
and (X*, ~*) its completion. Then the trace filters on X are 
given by 

(1)	 Ox == {O E t(~) : x E O} f'or x EX, and 
(2)	 0A == {O E t(~) : X - 0 rJ:' A} f'or A E X* - X. 

Thus, if X is a T1 topological sJpace and ~p the Pervin near
ness structure on X then the trace filters of (X *, ~p) are of the 
form 0 A(F) == O(F) where F is a closed ultrafilter on X. 

Let (X,~) be a T1 nearness space and (X*, ~*) its completion. 
Recall that op(A) == X*- cl~*(X - A) for A C X. Moreover, 
the notation U*, for U eX, has been used to indicate the 
collection of ~-clusters A such that unA =1= 0 for each A E A 
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and also, if U is open in X, to denote the family of ~-clusters A 
such that 0 A, the trace filter of A, contains U. The following 
theoren1 notes tl1at this notation is consistent. 

Theorem 3.1 Let (X,~) be a T1 nearness space and 0 an open 
set in X. Then: 

op(O) == {AEX*:OnA~0foreachAEA} 

== {AEX*:OEOA}==O*. 

Theorem 3.2. Let (X, J-l) be a T 1 nearness space. Then: 

(1) U E J-l iff U* E J-l* 
(2) Let 0 be an open cover oj' X. Then 0 E J-l iff 0* E J-l*. 

It follows that if (X, J-lLF) is concrete then 11, E J-lLF* if and 
only if there exists a locally finite open cover P of X such that 
P* refines U. 

Recall that the Wallman compactification for a T1 topolog
ical space can be described as the collection wX of closed 
ultrafilters on X with the base for the closed sets given by 
{F* : F closed in X } where F* == {F E wX: F E F}. Now 
wX ~ (X*, J-l;) and the elements of X* are of the form A(F) 
for F a closed ultrafilter on X. 

Definition 3.3. Let (X, t) be a T1 topological space. Let 
S == {F E wX : X\F does not have a locally finite subcover} 
S' == {A(F) : F E S}. 
Now S c wX and S' is a subset of (X*, J-l;). Since S' is the 
image of S under the homeomorphism from wX to (X *, J-l;) we 
will identify them and by abuse of the notation not distinguish 
between them when no confusion can occur. 

Definition 3.4. Let (X, t) be a T1 topological space and J-lp 
the Pervin, nearness structure on X. Let 0 be an open cover 
of X and set 

Y(O) == U{O*: 0 EO}. 

Theorem 3.5. Let (X, t) be a T1 topological space. Then: 

(1) If 0 is an open cover a'nd 0 E JlLF then S c Y(O). 
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(2) S == n{Y(O): 0 an open cover of X and 0 E J.lLF}. 
(3) S == n{Y(O): 0 is a locally finite open cover of X}. 

If J.lLF is concrete and each ~LF,-cluster is a ~p-cluster then 
(X*,J.lLF*) is a subspace of (X*,/-lp*), the Wallman compacti
fication of X. 

Condition A. For each open cover 0 that has no locally finite 
open refinement there exists F E ~) such that 0 C X\F. 

Condition B. For every locally fin.ite open cover U there exists 
a locally finite open cover V that refines U and a locally finite 
open cover W such that each nlember of W meets only finitely 
many members of V. 

Condition C. For each locally finite open cover U there exists 
a locally finite open cover V that refines U such that for each 
F E S there exists 0 E O(F) SUC]1 that 0 meets only finitely 
many members of V. 

Theorem 3.6. Let (X, t) be a symmetric topologicGl space. 
Then: 

(1)	 (X, t) satisfies Condition A iff /-lLF == /-ls. 
(2)	 (X, t) satisfies Condition A iff J.lLF is concrete and every 

~LF-cluster is a ~p-cluster. 

(3)	 (X, t) satisfies condition B iff J.lLF is paracompact. 

Theorelll 3.7. Let (X, t) be a topological space. Then: 

(1)	 Condition B implies Condition C. 
(2)	 Condition A plus Conditior~ C implies Condition B. 

Proof: (1) Let U be a locally finite open cover of X. By Condi
tion B there exists a locally finite open cover V that refines U 
and a locally finite open cover W SllCh that each W E W meets 
only finitely nlany members of V. IJet F E S. Then W ct X\F 
and thus there exists aWE W such that W E O(F). 

(2) Let U be a locally finite open cover of X. By condition 
C there exists a locally finite open cover V that refines U such 
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that for each F E S there exist 0 E O(F) such that 0 meets 
only finitely many merrlbers of V. 

Set 0 = {o: 0 is open and 0 meets only finitely many 
members of V}. 

o is an open cover of X since V is locally finite. By the 
definition of 0 any open refinement of 0 must be a subcover 
of O. If 0 has a locally finite open refinement we are through. 
Suppose it does (not. Then, by Condition A, there exists F E S 
such that 0 C '"X\F. but, by Condition C, there exists 0 E 

O(F) that meets only finitely many members of V. But this 
implies that 0 E 0 and we have a contradiction. Hence, there 
exists a locally finite open cover W that refines O. Therefore, 
W c 0 and thus each member of W meets orlly finitely many 
members of V. Hence Condition C holds. 

Theorem 3.8. Let (X, t) be a T1 topological space satisfying 
Condition A and Condition C. Then S is paracompact. 

Proof: Every basic open cover of S is of the form U* = {U* : 
U E U} where U is an open cover of X and S C uU*. Let U* 
be a basic open cover of S. Suppose U is not locally finite. 
Then, since Condition A holds, there exists F E S such that 
U C X\F. But then F ~ U U* and we have a contradiction. 
Thus, U must be locally finite and by Condition C there exists 
a locally finite open cover V that refines U such that for each 
F E S there exists an 0 E O(F) that meets only finitely many 
members of V. Then V* refines U* and F E 0* where 0* meets 
only finitely many members of V*. Hence S is paracompact. 

Theorem 3.9. Let (X, t) be a T 1 topological space. The~: 

(1) /-lp C /-lLF C /-ls C /-It 
(2) ~t c ~s C ~LF C ~p 

Theorem 3.10. Let Y be a strict T 1 extension oj· X. If Y is 
paracompact then /-lY C /-lLF· 

Theorem 3.11. (Bentley [5]) A nearness space is concrete 
and paracompact iff its completion is topological and paracom
pact. 
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Corollary 3.12. Let (X, t) be a T1 topological space. The fol
lowing statements are equivalent. 

(1) (X, J-l LF) is concrete and IJaraCompact. 
(2) (X*, J-lLF*) is topological and paracompact. 

Theorem 3.13. Let (X, t) be a ~rl topological space such that 
J-lLF is concrete. Then 8' == (X*,J-lLF*) iff each ~LF-cluster is 
a ~p-cluster. 

Definition 3.14 A closed filter ~'F is called a p-filter if x\F is 
not refined by a locally finite open cover. Let Y be a topological 
space and X C Y. X is said to be relatively paracompact in Y 
if for each open cover 0 of Y t11ere exists a locall.y finite open 
cover of X that refines {O n X: 0 EO}. 

It is evident that a space is relatively paracompact in itself 
if and only if it is paracompact. It is also clear that every 
subspace of a paracompact space is relatively paracompact in 
that space. 

Theorem 3.15. Let Y be a tOlJological space and X c Y. 
Then X is relatively paracompact in Y iff each p-filter on X 
clusters in Y . 

Proof": Suppose X is relatively paracompact in Y and let F be 
a p-filter in X. If F does not cluster in Y then for each y E Y 
there exists an open set Oy in Y containing y and an Fy E F 
such that Oy n Fy = 0. Then (JI == {Oy : y E Y} is an open 
cover of Y and hence 0 1\ {X} is an open cover of X. Since 
X is relatively paracompact in )( there exists a locally finite 
open cover S of X that refines 01\ {X}. Hence S refines X\F 
which is impossible since F is a l1-filter. Thus, each p-filter on 
X must cluster in Y. 

On the other hand, suppose that each p-filter on X does 
cluster in Y and suppose that c.J is an open cover of Y such 
that 0 1\ {X} is not refined by a locally finite open cover of X . 
Let F be the closed filter generated by the closed filter subbase 
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{X - (0 n X): 0 EO}. Then:F is a p-filter on X that does 
not cluster in Y and we have a contradiction. Therefore, X is 
relatively paracompact in Y. 

Theorem 3.16. Let (X, t) be a T1 topological space. The j·ol
lowing statements are equivalent. 

(1)	 S is paracompact. 
(2)	 f..LLF is concrete and paracompact and each ~LF-cluster 

is a ~p-cluster. 

(3)	 (X*, f..LLF*) is a paracompact topological space and each 
~LF-cluster is a ~p-cluster. 

(4)	 f..LLF == f..Ls and f..LLF is paracompact. 
(5)	 X is relatively paracompact in Sand f..L LF is paracom

pact. 

Proof: (1) implies (2). Suppose ~LF is not concrete. Then there 
exists a p-filter :F such that :F is not contained in any ~LF
cluster. Thus:F et M for each M E S. Set 0 == X\:F. Then 
S C U 0* and since 0 has no locally finite open refinement 
it follows that S is not paracompact. But this is impossible 
and hence ~LF must be concrete and each ~LF-cluster must be 
a ~p-cluster. 

Finally f..LLF C f..Ls and if S is paracompact then, by theorem 
3.10, f..Ls C f..LLF· Hence, ~LF == ~s and thus each ~LF-cluster is 
a ~ -cluster . 

To see that f..LLF is paracompact let U E f..LLF. T11en S C U U* 
and since S is paracompact there exists a locally finite open 
cover 0 of S that refines U*. Let N == {Np : pES} be a 
collection of open neighborhoods of the points of S such that 
each N p meets only finitely many members of O. 

Now N is also an open cover of S and since S is paracompact 
there exists a locally finite open cover W of S that refines N. 
Let V == {OnX : 0 E O} a11d 'H == {Wnx: W E W}. Now 
V E J-l LF and V refines U. Now 'H E J-l LF and for each W nX E 
H there exists an N p E N with W C N p . Since N p meets only 
finitely many n1embers of 0 it follows that W n X meets only 
finitely many members of V. Hence f..LLF is paracompact. 
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(2) implies (1). This holds by t:heorem 3.6 and theorem 3.8. 
(2) iff (3). This holds by theorem 3.11. 
(2) iff (4). Assume that (2) holds. By theorem 3.9, J-lLF C 

J-lp. Since (2) implies (1), S is paracompact and J-ls C J-lLF by 
theorem 3.10. Hence (4) holds. That (4) implies (2) is clear. 

(1) implies (5). If S is paraconapact then, since xeS, it 
follows that X is relatively paracolnpact in S. Since (1) implies 
(2)	 it follows that J-lLF is paracompact. 

(5) implies (2). A p-filter :f on )( clusters in S iff there exists 
M E S with :F c ·M. This is equivalent to J-lLF being concrete 
and each ~LF-cluster being a ~p-clllster. Thus (2) holds. 
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