Topology Proceedings

Web:	http://topology.auburn.edu/tp/
Mail:	Topology Proceedings
	Department of Mathematics & Statistics
	Auburn University, Alabama 36849, USA
E-mail:	topolog@auburn.edu
ISSN:	0146-4124

COPYRIGHT © by Topology Proceedings. All rights reserved.

REMARKS ON NORMALITY OF Σ -**PRODUCTS**

NOBUYUKI KEMOTO AND YUKINOBU YAJIMA

ABSTRACT. We show that a Σ -product of semi-stratifiable spaces, each finite subproduct of which is paracompact, is normal if and only if the Σ -product is countably paracompact. Second, we show that a Σ -product of separable spaces is collectionwise normal if and only if it is normal.

Many results have been obtained for normality of Σ -products. The countably tight condition of Σ -products plays very important roles in this study (see [7, 11]). On the other hand, as seen in [4, 5, 12, 13], it has recently become more important to investigate Σ -products without such a condition. In particular, Yang [14] has recently proved that a Σ -product of paracompact σ -spaces is normal iff it is countably paracompact. He has used an idea in [11, 12] for his proof of the result. In Section 1, we shall extend his result to Σ -products of semi-stratifiable spaces, using an idea in [13] instead of [11, 12].

It is assumed in many cases for normality of Σ -products that the factor spaces are in some class of generalized metric spaces. In Section 2, we deal with normality of Σ -products whose factor spaces are not in such a class.

All spaces are assumed to be Hausdorff, and ω denotes the set of all non-negative integers.

1. Σ -products of semi-stratifiable spaces

Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ be a product of spaces $X_{\lambda}, \lambda \in \Lambda$, where the index set Λ is assumed to be uncountable. Fix a point $s = (s_{\lambda}) \in X$. The subspace $\Sigma = \{x = (x_{\lambda}) \in X : \text{Supp}(x)\}$ is at most countable} of X is called a Σ -product of spaces $X_{\lambda}, \lambda \in \Lambda$, where Supp(x) denotes $\{\lambda \in \Lambda : x_{\lambda} \neq s_{\lambda}\}$. The $s \in \Sigma$ is called a *base point* of Σ . The mention of the base point s is often omitted.

For a set Λ , we denote by $[\Lambda]^{\omega}$ the set of all infinite countable subsets of Λ . For each $R \in [\Lambda]^{\omega}$, we denote by X_R the countable subproduct $\prod_{\lambda \in R} X_{\lambda}$ of X, and denote by p_R the projection of Σ onto X_R .

For an $R \in [\Lambda]^{\omega}$, a subset S of Σ is *R*-cylindrically closed (open) [13] in Σ if $p_R(S)$ is closed (open) in X_R and $p_R^{-1}p_R(S) = S$. For convenience sake, we say that a subset S of Σ is cylindrically closed (open) if it is *R*-cylindrically closed (open) in Σ for some $R \in [\Lambda]^{\omega}$.

Note that *R*-cylindrically closed sets in Σ are also *R'*-cylindrically closed if $R, R' \in [\Lambda]^{\omega}$ with $R \subset R'$. So we have

Proposition 1. Let Σ be a Σ -product, each countable subproduct of which is normal. Then any disjoint cylindrically closed sets in Σ are separated by disjoint (cylindrically) open sets.

For our main result, we state the following auxiliary concept which seems to be useful for the proof.

Definition. A Σ -product Σ is said to be *cylindrically normal* if any disjoint closed sets in Σ , one of which is cylindrically closed, are separated by disjoint open sets.

A space X is countably paracompact if every countable open cover of X has a locally finite open refinement. For a space X, Z is a zero-set in X if $Z = f^{-1}(0)$ for some continuous realvalued function of X. As in [14], we will also use the following:

Lemma 2. [6] Let X be a countably paracompact space. If Z is a zero-set and F is a closed set disjoint from Z in X, then F and Z are separated by disjoint open sets.

A space X is semi-stratifiable [3] if there is a function g of $X \times \omega$ into the topology of X, satisfying

- (i) $\bigcap_{n \in \omega} g(x, n) = \{x\}$ for each $x \in X$,
- (ii) if $\{x_n\}$ is a sequence of points in X with $y \in \bigcap_{n \in \omega} g(x_n, n)$ for some $y \in X$, then $\{x_n\}$ converges to y.

The function g is called a *semi-stratifiable function* of X.

Note that a semi-stratifiable space is perfect, and that the class of semi-stratifiable spaces is countably productive (see [3]).

In the proof of Theorem 3 below, we use the following notaion: For a finite sequence $\xi = (\alpha_0 \cdots \alpha_{n-1} \alpha_n)$, let $\xi_- = (\alpha_0 \cdots \alpha_{n-1})$ and $\xi^{(\alpha)} = (\alpha_0 \cdots \alpha_n \alpha)$. Let Ξ be an index set such that one can assign $R_{\xi} \in [\Lambda]^{\omega}$ for each $\xi \in \Xi$. Then $X_{R_{\xi}}$ and $p_{R_{\xi}}$ are abbreviated by X_{ξ} and p_{ξ} , respectively. For each $\xi, \eta \in \Xi$ with $R_{\xi} \subset R_{\eta}, p_{\xi}^{\eta}$ denotes the projection of X_{η} onto X_{ξ} .

Now, we are ready to prove the main theorem.

Theorem 3. Let Σ be a Σ -product of semi-stratifiable spaces, each finite subproduct of which is paracompact. Then the following are equivalent.

- (a) Σ is normal.
- (b) Σ is cylindrically normal.
- (c) Σ is countably paracompact.

Proof: Let Σ be a Σ -product of spaces $X_{\lambda}, \lambda \in \Lambda$, with some base point $s \in \Sigma$. It follows from [3, Theorem 2.1] and [10, Theorem 4.9] that each countable subproduct of $\prod_{\lambda \in \Lambda} X_{\lambda}$ is paracompact and semi-stratifiable.

(a) \Rightarrow (c): When uncountably many X_{λ} 's have at least two points, this immediately follows from [13, Proposition 3]. Otherwise, this is obvious.

(c) \Rightarrow (b): Let A be an R-cylindrically closed set in Σ for some $R \in [\Lambda]^{\omega}$. Let B be a closed set in Σ disjoint from A. Since X_R is perfectly normal, $p_R(A)$ is a zero-set in X_R . Hence A is a zero-set in Σ . Since Σ is countably paracompact, it follows from Lemma 2 that A and B are separated by disjoint open sets in Σ . (b) \Rightarrow (a): Let A and B be any disjoint closed sets in Σ . Now, for each $n \in \omega$, we construct a collection \mathcal{U}_n of open sets in Σ and an index set Ξ_n of n-tuples such that for each $\xi \in \Xi_n$ one can assign $R_{\xi} \in [\Lambda]^{\omega}, E(\xi) \subset \Sigma, H(\xi) \subset \Sigma, x_{\xi} \in \Sigma$ and a function g_{ξ} , satisfying the following conditions (1)-(7) for each $n \in \omega$:

- (1) \mathcal{U}_n is σ -locally finite in Σ such that $\overline{U} \cap A = \emptyset$ for each $U \in \mathcal{U}_n$ if n is odd, and $\overline{U} \cap B = \emptyset$ for each $U \in \mathcal{U}_n$ if n is even.
- (2) $\xi \in \Xi_n$ implies $\xi_- \in \Xi_{n-1}$, where $\Xi_0 = \{\emptyset\}$.
- (3) For each ξ ∈ Ξ_n, E(ξ) is an R_ξ-cylindrically closed set and H(ξ) is an R_ξ-cylindrically open set set in Σ with E(ξ) ⊂ H(ξ), where E(Ø) = H(Ø) = Σ.
- (4) $\{H(\xi) : \xi \in \Xi_n\}$ is σ -locally finite in Σ .
- (5) For each $\mu \in \Xi_{n-1}$, $E(\mu)$ is covered by $\mathcal{U}_n \bigcup \{E(\xi) : \xi \in \Xi_n \text{ with } \xi_- = \mu\}.$
- (6) For each $\xi \in \Xi_n$, g_{ξ} is a semi-stratifiable function of X_{ξ} such that $p_{\xi_-}^{\xi}(g_{\xi}(x,k)) \subset g_{\xi_-}(p_{\xi_-}^{\xi}(x),k)$ for each $x \in X_{\xi}$ and $k \in \omega$.
- (7) For each ξ ∈ Ξ_n,
 (a) x_ξ ∈ E(ξ₋) ∩ A if n is odd, and x_ξ ∈ E(ξ₋) ∩ B if n is even,
 (b) p_ℓ(E(ξ)) ⊂ g_ℓ(p_ℓ(x_ℓ), n),
 - (c) $R_{\xi} = R_{\xi_{-}} \cup \operatorname{Supp}(x_{\xi}).$

Assume that the above construction has been already performed for no greater than n. Let n be an even number. Pick a $\xi \in \Xi_n$ and fix it. Let

$$\mathcal{W} = \{ g_{\xi}(p_{\xi}(x), n+1) \cap p_{\xi}(E(\xi)) : x \in E(\xi) \cap A \}.$$

Since $p_{\xi}(E(\xi))$ is closed in X_{ξ} and $\bigcup \mathcal{W}$ is an F_{σ} -set in X_{ξ} , there is a σ -locally finite collection \mathcal{F} of closed sets in X_{ξ} such that \mathcal{F} refines \mathcal{W} and $\bigcup \mathcal{F} = \bigcup \mathcal{W}$. Moreover, there is a σ locally finite collection $\{G_F : F \in \mathcal{F}\}$ of open sets in X_{ξ} such that $F \subset G_F \subset p_{\xi}(H(\xi))$ for each $F \in \mathcal{F}$. Let $\mathcal{F}_+ = \{F \in \mathcal{F} : p_{\xi}^{-1}(F) \cap A = \emptyset\}$. Since Σ is cylindrically normal, there is

an open set U(F) in Σ such that $p_{\xi}^{-1}(F) \subset U(F) \subset \overline{U(F)} \subset$ $p_{\xi}^{-1}(G_F) \setminus A$ for each $F \in \mathcal{F}_+$. Let $F_0 = p_{\xi}(E(\xi)) \setminus \bigcup \mathcal{W}$. Then note that $p_{\ell}^{-1}(F_0) \cap A = \emptyset$. Similarly, there is an open set U_0 in Σ such that $p_{\ell}^{-1}(F_0) \subset U_0 \subset \overline{U_0} \subset H(\xi) \setminus A$. We put $\mathcal{U}(\xi) = \{U(F) : F \in \mathcal{F}_+\} \cup \{U_0\}$. On the other hand, we put $\mathcal{F}_{-} = \mathcal{F} \setminus \mathcal{F}_{+}$. Moreover, let Ξ_{ξ} denote an index set of (n+1)tuples such that $\mathcal{F}_{-} = \{F_{\xi \uparrow (\alpha)} : \xi^{\uparrow}(\alpha) \in \Xi_{\xi}\}, \text{ where let } \Xi_{\xi} = \emptyset$ if $\mathcal{F}_{-} = \emptyset$. For each $\eta = \xi^{-}(\alpha) \in \Xi_{\xi}$, let $E(\eta) = p_{\xi}^{-1}(F_{\eta})$ and $H(\eta) = p_{\xi}^{-1}(G_{F_{\eta}})$. Here, letting ξ range over Ξ_n , we set $\mathcal{U}_{n+1} = \bigcup \{ \mathcal{U}(\xi) : \xi \in \Xi_n \}$ and $\Xi_{n+1} = \bigcup \{ \Xi_{\xi} : \xi \in \Xi_n \}$. Then it is easily verified that the conditions (1)-(5) for n + 1 are satisfied. Since \mathcal{F} refines \mathcal{W} , for each $\eta = \xi^{(\alpha)} \in \Xi_{n+1}$, we can pick an $x_n \in E(\xi) \cap A$ such that $F_n \subset g_{\xi}(p_{\xi}(x_n), n+1)$. Moreover, let $R_{\eta} = R_{\xi} \cup \text{Supp}(x_{\eta})$. Then (6) for n + 1 is satisfied. Since p_{ℓ}^{η} is continuous, we can take a semi-stratifiable function g_n of X_n , satisfying (7) for n + 1. For the case that n is odd, we only replace A with B in the above. Thus, we have accomplished the desired construction.

We set $\mathcal{U} = \bigcup_{n \in \omega} \mathcal{U}_n$. By (1), \mathcal{U} is a σ -locally finite collection of open sets in Σ such that $\overline{U} \cap A = \emptyset$ or $\overline{U} \cap B = \emptyset$ for each $U \in \mathcal{U}$. So it suffices to show that \mathcal{U} covers Σ . Now, assume that there is some $y \in \Sigma \setminus \bigcup \mathcal{U}$. By (5), we can inductively choose a sequence $\{\xi^n\}$ of finite sequences such that $\xi^n \in \Xi_n, \xi_-^{n+1} = \xi^n$ and $y \in E(\xi^n)$ for each $n \in \omega$. By (6) and (7b), the sequence $\{p_{\xi^{m-1}}(x_{\xi^n}) : n \geq m\}$ converges to $p_{\xi^{m-1}}(y)$ (see the proof of Claim 2 in that of [13, Theorem 1]). Let $R = \bigcup_{n \in \omega} R_{\xi^n}$. We can take the point $z \in \Sigma$ defined by $p_R(z) = p_R(y)$ and $p_{\Lambda \setminus R}(z) = p_{\Lambda \setminus R}(s)$. Then it follows from (7c) that $\{x_{\xi^n} : n \in \omega\}$ converges to z. It follows from (7a) that $x_{\xi^{2n-1}} \in A$ and $x_{\xi^{2n}} \in B$ for each $n \in \omega$. This implies $z \in A \cap B$, which is a contradiction. \Box

Theorem 3 immediately yields

Corollary 4. [14] A Σ -product of paracompact σ -spaces is normal if and only if it is countably paracompact.

2. Σ -products of separable spaces

In this section, each factor space X_{λ} of infinite products and Σ -products is assumed to have at least two points. Let κ be an infinite cardinal.

Recall that a space X is κ -collectionwise normal if every discrete collection of closed sets in X with cardinality $\leq \kappa$ can be separated by disjoint open sets.

Lemma 5. [2, p. 80] Assume that an infinite product $X = \prod_{\lambda \in \Lambda} X_{\lambda}$ is normal. If each finite subproduct of X is κ -collectionwise normal, then X is κ -collectionwise normal.

Proposition 6. Let Σ be Σ -product of κ many spaces. Then Σ is normal if and only if it is κ -collectionwise normal.

Proof: Let Σ be a normal Σ -product of spaces $X_{\lambda}, \lambda \in \Lambda$, with a base point $s \in \Sigma$, where $|\Lambda| = \kappa$. We may assume $\kappa > \omega$. Let $\{\Lambda_n : n \in \omega\}$ be a partition of Λ such that $|\Lambda_n| = \kappa$ for each $n \in \omega$. Let Σ_n be the Σ -product of the spaces $X_{\lambda}, \lambda \in \Lambda_n$, with the base point $p_{\Lambda_n}(s)$. Let $A(\kappa)$ be the onepoint compactification of a discrete space of cardinality of κ . Then note that $A(\kappa)$ is embedded in Σ_n . Since $\prod_{i < n} \Sigma_i \times A(\kappa)$ is closed in Σ , it is normal. So it follows from [1, Theorem 2] that $\prod_{i < n} \Sigma_i$ is κ -collectionwise normal for each $n \in \omega$. Hence, by Lemma 5, $\Sigma = \prod_{i \in \omega} \Sigma_i$ is κ -collectionwise normal. \Box

Recall that a space X is *ccc* if every disjoint collection of open sets in X is at most countable.

The following is an extention of [8, Proposition 3].

Proposition 7. Let Σ be a Σ -product, each finite subproduct of which is ccc. If Σ is normal, then each closed discrete subset of Σ is at most countable.

Proof: Let Σ be a Σ -product of spaces $X_{\lambda}, \lambda \in \Lambda$. Let $X = \prod_{\lambda \in \Lambda} X_{\lambda}$. Since each finite subproduct of X is ccc, it follows that X is ccc (see [9, Theorem 2.1.9]). Since Σ is dense in X, Σ is ccc. By Proposition 6, Σ is $|\Lambda|$ -collectionwise normal. Hence Σ is ω_1 -collectionwise normal. Thus the ccc of Σ does

not allow the existence of an uncountable discrete closed sets in Σ . \Box

Proposition 7 immediately yields

Corollary 8. A Σ -product of separable spaces is collectionwise normal if and only if it is normal.

Remark. In Proposition 7, we cannot exclude the normality of Σ in ZFC. In fact, it was shown in the proof of [5, Theorem 2.1] that if a space X is left-separated in type ω_1 , first countable and ccc, then $X \times \Sigma \omega^{\omega_1}$ has an uncountable closed discrete subset. Since the product of a ccc space and a separable space is ccc, each finite subproduct of this Σ -product is ccc.

References

- 1. O. T. Alas, On a characterization of collectionwise normality, Canad. Math. Bull. 14 (1971), 13-15.
- 2. A. Bešlagić, Normality in products, Topology Appl., 22 (1986), 71-82.
- G. D. Creed, Concerning semi-stratifiable spaces, Pacific J. Math., 32 (1970), 47-54.
- 4. K. Eda, G. Gruenhage, P. Koszmider, K. Tamano and S. Todorčević, Sequential fans in topology, (to appear).
- T. Daniel and G. Gruenhage, Some non-normal Σ-products, Topology and Appl. 43 (1992), 19-25
- T. Hoshina Products of normal spaces with Lašnev spaces, Fund. Math., 124 (1984), 143-153
- 7. A. P. Kombarov, On tightness and normality of Σ -products, Soviet Math. Dokl., 19 (1978), 403-407.
- A. P. Kombarov and V. I. Malyhin, On Σ-products, Soviet. Math. Dokl., 14 (1973), 1780-1783.
- 9. K. Kunen Set Theory, North-Holland, Amsterdam, 1990.
- A. Okuyama, Some generalizations of metric spaces, their metrization theorems and product spaces, Sci. Rep. Tokyo Kyouiku Daigaku Sect. A, 9 (1967), 236-254.
- Y. Yajima On Σ-products of Σ-spaces, Fund. Math., 123 (1984), 29– 37.
- 12. —, The normality of Σ -products and the perfect κ -normality of Cartesian products, J. Math. Soc. Japan, **36** (1984), 689-699.
- On Σ-products of semi-stratifiable spaces, Topology and Appl.,
 25 (1987), 1-11.

168 NOBUYUKI KEMOTO AND YUKINOBU YAJIMA

14. L. Yang, Countable paracompactness of Σ -products, Proc. Amer. Math. Soc., **122** (1994), 949–956.

Faculty of Education Oita University Dannoharu, Oita 870-11 JAPAN *e-mail address:* nkemoto@oita-cc.oita-u.ac.jp

Kanagawa University Yokohama 221, JAPAN *e-mail address:* yuki@cc.kanagawa-u.ac.jp