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FINITELY EQUIVALENT CONTINUA
 
SEMI-LOCALLY-CONNECTED AT NON-CUT
 

POINTS
 

SAM B. NADLER, JR. AND BOB PIERCE 

ABSTRACT. Let X be a nondegenerate continuum that 
is semi-Iocally-connected (sIc) or aposyndetic at each non­
cut (= non-separating) point. It is shown that if X con­
tains only finitely many nondegenerate, mutually non­
homeomorphic subcontinua, then X is a graph. Even 
though a continuum may be sIc at each non-cut point 
without being sIc at every point, it is shown that a con­
tinuum which is aposyndetic at each non-cut point must 
be aposyndetic at every point. 

1. INTRODUCTION. 

A continuum is a nonempty, compact, connected, metric 
space. We refer the reader to [8] and [11] for other basic def­
initions. To avoid confusion, we note that here, as in [8] and 
[11], non-cut point means non-separating point (and cut point 
means separating point). 

A continuum, X is said to be finitely equivalent provided 
that X has only finitely many, nondegenerate, mutually non­
homeomorphic subcontinua. If n is the number of such sub­
continua, then X is said to be n-equivalent. 

Interest in this notion began in 1921 when Mazurkiewicz 
asked if a I-equivalent continuum must be an arc [6]. Moise [7] 
gave a negative answer to this question with the pseudo-arc, 
and Henderson [2] gave an affirmative answer for the case of 
decomposable continua. It is still not known if the arc and the 
pseudo-arc are the only I-equivalent continua. 
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Mahavier [5] obtained several interesting theorems and ex­
amples concerning 2-equivalent continua. In view of the limited 
accessibility of [5], we state the following result since we will 
refer to it in tIle fortllcomillg discussion. The result may be 
proved using Theorem 3.2 of [9]. 

1.1 Mahavier's Theorem [5]. If X is a 2-equivalent contin­
uum that contains an arc, then X is a simple closed curve, 
a simple triod, or a continuum that is irreducible about two 
points. 

When we began the investigations that led to this paper, 
we were motivated by Mahavier's Theorem to try to prove the 
following result: Any 2-equivalent, semi-Iocally-connected (sIc) 
continuum nlust be a simple closed curve or a simple triode We 
proved this by showing that any such continuum must contain 
an arc and then applying Mahavier's Theorem. We can now 
prove much more. We summarize our results below. 

We prove that finitely equivalent continua that are sIc at 
each of their non-cut points must be graphs (3.1). We obtain 
a similar result for continua that are aposyndetic at each of 
their non-cut points (4.4). In fact, for the purpose of proving 
this result, we prove that continua that are aposyndetic at 
each of tlleir non-cut points are actually aposyndetic at every 
point ( 4.3). III contrast, continua that are sIc at each of their 
non-cut points need not be sIc at every point. This is easily 
seen by considering the planar continuum that consists of the 
unit circle centered at (0,0) and the circles of radius (11, - 1)111, 
centered at (l/n,O) for each 11, == 2,3, .... 

The sylllbol cl denotes the closure operator. 

2. A PRELIMINARY RESULT. 

Our purpose is to prove the result in 2.2. It will be used in 
the next section in the proof of our first main theorem. 

The following notation is from 11.29 of [8] and is used through­
out this section. If X is a continuum and if A and Bare 
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nonempty, compact subsets of X, then we write 

C = irr (A, B) 

to mean that C is a Subcolltinuum of X and, as such, is 
irreducible with respect to intersecting both A and B (i.e., 
C n A =I 0, C n B =I 0, and no proper subcontinuum of C 
intersects both A and B). When A or B is a one-point set, we 
omit the set notation. 

It is convenient to have the following lemma for use in the 
proof of 2.2. The lemma is probably well known, but we include 
a proof of it for completeness. 

2.1 Lemma. Let X be a continuum, let M be a subcontinuum 
ofX, and let C be a component of X - M. Let J be a nonempty, 
compact subset of C, and let Q be a subcontinuum of X such 
that 

Q = irr (M, J). 

Then, Q c CUM. 

Proof: Let p E Q n J, and let G denote the component of p in 
Q - M. Then cl(G) is a subcontinuum of Q, cl(G) nJ =I 0, and, 
since Q - M is a nonempty, proper subset of the continuum Q, 

cl(G) n M =I 0 (5.6 of [8]). 

These properties of cl(G), together with our assumption that 
Q =irr(M, J), imply that cl(G) = Q. Note that G n C =I 0 
since pEG n J and J c C. Thus, since C is a component 
of X - M and G is a connected subset of'X - M, we see 
that G C C. Hence, using the previously proved fact that 
Q =cl(G), we now see that Q C cl(C). Therefore, since C is 
closed in X - M , it follows immediately that Q c CUM. This 
proves 2.1. 

2.2 Proposition. Let X be a continuum that is slc at each 
of its non-cut points. Let M be a subcontinuum of X such that 
X - M has at least k distinct components for some integer 
k ~ 2. Then, there is a subcontinuum, A k , of X such that 
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A k is irreducible about some k points and A k is not irreducible 
about fewer than k points. 

Proof: Let C 1 , "Ck denote k distinct components of X - M. 
For each i = 1, ,k, let Pi be a non-cut point of X such that 
Pi E Ci (6.8 of [8]). Since X is sIc at each Pi, there is an open 
subset, Ui, of X for each i such that Pi E Ui, cl(Ui) C X - M, 
and X - Ui is a continuum (4.14 of [11, p. 50]). Now, let B i 

denote the component of Pi in Cl(Ui), and note that Bi is a 
continuum such that Bi n Bd(Ui) =f 0 for each i (5.4 of [8]). 
Hence (11.30 of [8]), there is a subcontinuum, K i , of B i for 
each i such that 

(1)	 K i =irr(pi, Bd(Ui)). 

Note the following fact for use later: Since Bi is a subcontin­
uum of X - M and Bi n Ci =f '0 (because Pi E B i nCi ), B i C Ci 
and, hence, 

(2)	 Ki C C i . 

Note that X - Ui is a continuum containing M U Bd(Ui ) and 
that, by (1), K i n Bd(Ui) =f 0. Hence (11.30 of [8]), there is a 
subcontinuum, M i , of X - Ui for each i such that 

(3)	 Mi = irr(M, K i n Bd(Ui)). 

Using (3) to apply 2.1 with J == K i n Bd(Ui), noting that 
J C Ci by (2), we have that 

(4)	 MiCCiUM. 

Next, we prove (5) and (6) below. 

(5)	 K i U M i == irr(pi' M) for each i. 

(6)	 If H is a subcontinuum of K i U M i U M such 
that H = irr(pi' M) for a given i, then 
H == K i U Mi. 

Proof of 5: Fix i. Let L be a subcontinuum of K i U M i such 
that Pi ELand L n M =1= 0. Let S be the component of Pi in 
L n Ui. Since Mi C X - Ui, S C L - Mi. Hence, cl(S) is a 
subcontinuum of K i . Also, since LnUi =1= L (because LnM =1= 0 
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and Ui n M = 0), we have that cl(S) n Bd(Ui) =I 0 (5.6 of [8]). 
Thus, since Pi Ecl(S), we see by (1) that cl(S) = K i Therefore, 

(a) L:J K i . 

Next, note that KinM = 0 (since K i C B i C cl(Ui) C X -M). 
Thus, since L n M =I 0, (L - K i ) n M =I 0. Hence, there is 
a component, T, of L - K i such that T n M =I 0. Since 
L C K i U Mi, T C Mi. Hence, cl(T) is a subcontinuum of 
Mi. By (1), Pi E' K i. Thus, since Pi E L, L - K i =I L; also, 
L - K i =I 0 (since T =I 0). Hence, L - K i being a nonempty, 
proper subset of the continuum L, we see that cl(T) n K i =I 0 
(5.6 of [8]). Since 

cl(T) C M i C X -:- Ui and K i C cl(Ui), 

we see that cl(T) n K i C Bd(Ui). Thus, since cl(T) n K i =I 0, 
we have that 

cl(T) n [Ki n Bd(Ui )] =I 0. 
Hence, recalling that cl(T)nM =10 (since TnM =10) and that 
cl(T) is a subcontinuum, of Mi, we see by (3) that cl(T) = Mi. 
Therefore, 

Since L C K i U M i , we see from (a) and (b) that L = K i U Mi. 
Therefore, in view of how we chose L, we have proved (5). 

Proof of (6): Fix i, and let H satisfy the hypothesis of (6). 
Noting that Pi E H - M, let Dbe the component of Pi in 
H - M. Then, since H - M is a nonempty, proper subset of 
the continuum H, cl(D) n M =I 0 (5.6 of [8]). Also, since 
Pi E D, Pi E cl(D). Thus since cl(D) is a subcontinuum of H 
and H =irr(pi, M) (by the hypothesis in (6)), we have that 

cl(D) = H; 

also, since D C H - M C K i U Mi (see (6)), cl(D) is a subcon­
tinuum of K i U M i and, thus, by (5), we have that 

cl(D) = K i U Mi. 
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Therefore, H == K i U Mi. This proves (6). 

Next, we define A k and prove that Ak satisfies the conclusion 
to 2.2. First, define Nand Q as follows: 

N == M U [U:=I(Ki U Mi )], Q == M U (U:=IMi ). 

By (5), K i U M i is a continuum containing Pi and intersecting 
M for each i. Hence, it follows easily that N is a continuum 
and that Pi E N for each i. Therefore, there is a subcontinuum, 
A k, of N such that Ak.is irreducible about {PI, . .. ,Pk} (4.35 
(a) of [8] ). 

We prove (7), (8), and (9) below. 

(7) Ak :J Uf=1 (Ki U M i ). 

(8) Ak n Q is a continuum. 

(9) Pi fj. Q for any i. 

Proof of (7): Fix j ~ k. We prove (7) by proving that K j U 
M j C Ak. Recall that Pi E Ak n Ci for each i. Hence, A k is a 
subcontinuum of X and A k intersects each of the k components 
Ci of X - M. Thus, since k ~ 2 (by assumption in 2.2), it 
follows immediately that AknM =I 0. Therefore, since Pj E A k, 
there is a subcontinuum, H j , of Ak such that (11.30 of [8]) 

(c) H j == irr(pj, M). 

Thus, since Pj E Cj, we see by 2.1 that H j C Cj U M. There­
fore, since H j C A k C Nand MeN, 

(d) H j C (Cj U M) n N == (Cj n N) U M. 

We now show that (*) CjnN c KjUMjUM. Let x E 

Cjn(N -M). Then, by the definition of N, x E Cjn(KfUMf) 
for some f. If x E Cj n Kf' then, by (2), x E Cj n Cf; if 
x E Cj n Mf' then, by (4) and the fact that x fj. M, we have 
again that x E Cj n Cf. Thus, since the sets C 1 , ... ,Ck are 
mutually disjoint, f == j. Hence, x E KjUMj . This proves (*). 
By (d) and (*), we have that 
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(e) H j C KjUMjUM. 

Now, by (c) and (e), we may apply (6) to conclude that Hj = 
K j U M j . Therefore, since H j C Ak' K j U M j C A k. This 
proves (7). 

Proof of (8): By (7), Mi C AknQ for each i; hence, AknQ =1= 0. 
Also, clearly, A k n Q is compact. Therefore, to prove (8), it 
remains to show that A k n Q is connected. We obtain some 
preliminary facts in (f)-(i) below for use in the proof. Since 
Uf=l Mi C Ak n Q (by (7)), we see that 

(f) A k n Q = (Ak n M) U (Uf=lMi). 

By (7), Uf=l Ki C A k. Also, since Ak C N, Ak - Q C Uf=lKi. 
Hence, 

(g) Ak = (A k n Q) U (Uf=l K i ) .. 

Since C i C X - M for each i, we have by (2) that 

(h) K i n M = 0 for each i. 

By (3), K i n Mi =1= 0 for each i. Also, by (4) and (h), K i n 
M j C Cj and, by (2), K i n M j C Ci . Therefore, since the sets 
C1 , ... ,Ck are mutually disjoint, we see that 

(i) Kin M j =1= 0 if and only if i = j. 

Now, suppose that Ak n Q is not connected. Then, there are 
nonempty, mutually separated sets, E and F, such that 

(j) A k n Q = E U F 

Define two sets, PE and PF, as follows: 

We show that the two sets E U PE and F U PF form a separation 
of A k (thereby obtaining a contradiction). By (i), K i n M i =1= 0 
for each i and, by (f) and (j), M i C E U F for each i. Hence, 
K i n (E U F) =1= 0 for each i. Thus, 

PE U PF = U7=1 K i · 
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Therefore, recalling (g) and (j), we see that 

(k) A k = (E U PE) U (F U PF). 

We prove that (EUPE)n(FUPF) = 0. Suppose that PEnPF =1= 

0. Then, since the sets K 1 , . .. ,Kk are mutually disjoint (by 
(2) ), there exists a single index, f, such that K I! n E =1= 0 and 
KI! n F t 0. By (j) and (h), 

KI! nEe (A k n Q) - M. 

Hence, by (f) and (i), KI! nEe MI!. Thus, since KI! n E =1= 

0, MI! nEt 0. Similarly, MI! n F =1= 0. Therefore, since 
MI! C E U F (by (f) and (j)) and since E and F are mutually 
separated, we have a contradiction to the connectedness of MI!. 
Thus, we have proved that 

(f) PE n PF = 0. 

By (f), K i et PE n PF for any i. In other words, if K i C PE 
then K i n F = 0, and if K i c PF then K i n E = 0. Therefore, 

(m) PE n F = 0 and PF n E = 0. 

By (f), (m), and the fact that E nF = 0, we have that 

(n) (E U PE) n (F U PF) = 0. 

It is easy to see that E U PE and F U PF are nonempty and 
closed in X. Hence, by (k) and (n), we have a contradiction to 
the connectedness of Ak. Thus, our supposition that A k n Q is 
not connected is false. Therefore, A k n Q is connected. This 
completes the proof of (8). 

Proof of(9): Fix i. Recall from above (1) that Pi E Ui C X-M 
and, from above (3), that M i C X - Ui. Hence, 

(0) Pi tt. M U Mi. 

By (1), Pi E K i . Thus, by (i) in the proof of (8), 

(p) Pi tt. M j for any j =I i. 

Combining (0) and (p) proves (9). 
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Finally, we complete the proof of 2.2 as follows. 
By the definition of A k (above (7)), A k is a subcontinuum of 

X such that Ak is irreducible about the k points PI, ... ,Pk(Pi i= 
Pi when i =1= j since Pi E Ci for each i). Therefore, it only 
remains to prove that A k is not irreducible about any fewer 
than k points. Let Xl, . .. ,Xm be any mJ points of A k where 
m < k. Then, since the k sets C l , ... ,Ck are mutually disjoint, 
there exists t ~ k such that Xi tt Ct for any i ~ m. Let 

Z = (Ak n Q) U (Ui,ttKi)' 

By (7), Ak n Q :) M i for each i and, by (3), M i n K i i= 0 for 
each i. Hence, 

(A k n Q) n K i i= 0 for each i. 

Therefore, using (8), we see that Z is a continuum. Further­
more, by (7), Z c A k. Next, note that the sets K l , . .. ,Kk are 
mutually disjoint (by (2)) and that Pt E K t (by (1)). Hence, 

Pt f/. Ui,ttKi. 

Thus, by (9), Pt f/. Z. Therefore, since Pt E Ak , Z i= Ak . 

We have now proved that Z is a proper subcontinuum of A k . 

Finally, we prove that Xi E Z for each i ~ mJ. Fix j :::; mJ. 

If xi E Ak n Q, then xi E Z. So, assume for the proof that 
xi f/. A k n Q. Then, since xi E A k (by the way xi was chosen), 
we see from (g) in the proof of (8) that 

Also, by our choice of t, Xi f/. Ct and, hence, by (2), xi tJ K t . 

Thus, 

Xj E Ui,ttKi. 

Hence, Xj E Z. Therefore, we have proved that Xi E Z for each 
i :::; mi. This completes the proof of 2.2. 
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3.	 FINITELY EQUIVALENT CONTINUA SLC AT EACH 

NON-CUT POINT 

We prove the result in 3.1. Recall that a continuum is called 
a On-continuum (some n = 1,2, ... ) provided that no subcon­
tinuum of it separates it into more than n components ([1], 
[10]). 

3.1 Theorem. Let X be a continuum that is slc at each of its 
non-cut points. It X is finitely equivalent, then X is a graph 
(and conversely). Furthermore, if X is n-equivalent, every sub­
continuum of X is a On+l -continuum. 

Proof: We first show that X is locally connected. Suppose that 
X is not locally connected. Then, X contains a convergence 
continuum, K, such that X is not connected im kleinen (cik) 
at any point of K (5.22(b) and 5.12 of [8]). There is a non-cut 
point, p, of X such that p E K (6.29(b) of [8]). Since X is not 
cik at p, there exists E > 0 such' that any neighborhood of p 
of diameter < E has infinitely many components. We choose 
a subcontinuum, M, of X as follows. Since p is a non-cut 
point of X, X is sIc at p (by an assumption in our theorem). 
Therefore, there is an open neighborhood, V, of p of diameter 
< E such that X - V is a continuum (4.14 of [11, p. 50]). 
Let M = X - V. Note that, since V is a neighborhood of 
p of diameter < E, X - M has infinitely many components. 
Hence, the hypotl1esis of 2.2 are satisfied for each k 2:: 2. Thus, 
on applyi11g 2.2 for each such k, we see that X is not finitely 
equivalent. This contradicts an assumption in our theorem. 
Therefore, we have proved that X is locally connected. Since 
X is n-equivalent for some n (finite), we see using 2.2 again that 
X is a On+l-continuum. Thus, since X is locally connected, X 
is a graph (4.7 of [1, p. 156]). We prove the second part of 
3.1 as follows. Let Y be a subcontinuum of X. Since X is 
n-equivalent, clearly Y is mJ-equivalent for some mJ ::; rL Since 
X is a graph, Y is locally connected (9.4 of [8]); hence, Y is 
sIc (8.44{d) of [8]). Thus, we may now apply 2.2 to Y to see 
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that Y is a Om+l-continuunl. Tllerefore, Y is a On+l-continuum. 
This completes the proof of 3.1. 

Recalling our original interest from the discussion following 
1.1, let us note some special cases of 3.1. It follows immediately 
from 3.1 that the only 2-equivalent, sIc continua are a simple 
closed curve and a simple triode Also, by 3.1, an arc is the 
only I-equivalent, sIc continuum (though this can be proved 
with simpler methods). Continuing in this vein, we see using 
3.1 that the only 3-equivalent, sIc continua are a figure X and 
a figure H (since it follows from 3.1 that such a continuum 
must be a tree, otherwise it would contain a noose, which is 4­
equivalent). It would be of interest to determine which graphs, 
or at least how many, are n-equivalent for each n. 

Regarding the last part of 3.1, we mention that On+l is not 
always best possible (e.g., consider a simple closed curve). 

4.	 CONTINUA THAT ARE APOSYNDETIC AT EACH NON-CUT 

POINT 

We prove that such continua are aposyndetic at every point. 
As a corollary, we obtain a result similar to 3.1. First, we prove 
two lemmas. Recall that non-cut point means non-separating 
point. 

4.1 Lemma. Let X be a continuum that is aposyndetic at each 
of its non-cut points. Then, f'or each c EX, the collection of 
all of the components of X - {c} is a null sequence ( i. e., f'or 
each E > 0, only finitely many components of X - {c} have 
diameter ~ E). 

Proof: Suppose that, for some c E X and some E > 0, there 
are infinitely many distinct components, Ci(i = 1,2, ... ), of 
X - {c} such that diameter (Ci ) ~ E for each i. Note that 
Ci U {c} is a continuum for each i ( 5.9 of [8]). Let d denote 
the metric for X. Let B denote the open d-ball in X with 
center c and radius E/4. Let Xi E Ci for each i such that 
d(Xi,C) ~ E/2 (Xi exists since CiU{c} is compact and has· 
diameter ~ E). Finally, let K i denote the component of C i - B 
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containing Xi for each i. Then, by applying 5.6 of [8] to the 
continuum Ci U {c} for each i, we see that Kin cl(B) =I- 0 for 
each i; thus, 

diameter (Ki ) ~ E/4 for each i. 

Also, by 4.18 of [8], there is a subsequence, {Ki(j)}~l' of the 
sequence {Ki}~l such that {Ki(j)}~l converges, 

~im Ki(j) == K, where K is a continuum. 
)---+00 

Hence, it follows easily that K is a convergence continuum 
(since K is nondegenerate, its diameter being ~ E/4, and since 
KnKi(j) == 0 for all but at most one j - see 5.11 of [8]). There­
fore, K contains a non-cut point, p, of X (6.29(b) of [8]). Now, 
let A be a subcontinuum of X such that A contains p in its 
interior (in X). Then, A must intersect Ki(j) , hence Ci(j), for 
infinitely many j. Thus, since the sets Ci(j) are distinct com­
ponents of X - {c}, it must be that c EA. This argument with 
A proves that X is not aposyndetic at p (with respect to c). 
Thus, since p is a non-cut point of X, we have a contradiction 
to the assumption in 4.1. Therefore, we have proved 4.1. 

4.2 Lemma. Let X be a continuum that is aposyndetic at each 
of its non-cut points. Let c EX, let C be a component of 
X - {c}, and let M == C U {c} (M is a continuum by 5.9 oj· 
[8]). Then, for p, q E M, X is aposyndetic at p with respect 
to q if and only if M is aposyndetic at p with respect to q. 

Proof: Assume that X is aposyndetic at p with respect to q. 
Then there is a subcontinuum, A, of X containing p in its 
interior (in X) such that q ~ A. It follows easily from 4.1 that 
AnM is connected (M is the A-set in 3.1 of [11, p.67] ). Hence, 
A n M is a subcontinuum of M containing p in its interior in 
M such that q ~ A (] M. Therefore, M is aposyndetic at p 
with respect to q. Conversely, assume that M is aposyndetic 
at p with respect to q. Then there is a subcontinuum, B, of 
M containing p in its interior in M such that q ~ B. First, 
assume that p =1= c. Then, by 4.1, p is in the interior of B in X; 
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thus, X is aposyndetic at p with respect to q. Next, assume 
that p == c. Then, let 

Z == B U [U{G : G is a component of X - {c} and G =I C}]. 

Note that c E B (since c == p). Thus, for each component 
G of X - {c}, G U B is a continuum (5.9 of [8]). Hence, Z 
is connected. Also, it follows from 4.1 that Z is compact. 
Therefore, Z is a continuum. Furthermore, since p == c is in 
the interior of B in M, clearly p is in the interior of Z in X. 
Also, q tt Z (since q E M - B ). Therefore, we have proved 
tl1at X is aposyndetic at p with respect to q (whether p == c or 
p =I c). This completes the proof of 4.2. 

4.3 Theorem. If a continuum, X, is aposyndetic at each of 
its non-cut points, then X is aposyndetic (at every point). 

Proof: Let c EX, and let M be as in 4.2. Let q E M such 
that q =I c. Then, according to 4.2, it suffices to prove that M 
is aposyndetic at c with respect to q. Suppose that M is not 
aposyndetic at c witl1 respect to q. We make use of Jones's L 
set, 

L q == {x E M - {q} : M is not aposyndetic at 
x with respect to q}. 

By Theorem 3 of [4]. L q U {q} is a continuum. Thus, since 
c E L q (recall that c i= q), we see that L q is uncountable. Note 
that, by 4.2, X is not aposyndetic at any point of L q . Hence, 
by the assumption in our theorem, each point of L q is a cut 
point of X. Thus, since L q is uncountable, there are three 
points 

r, S, t E L q 

such that rand t are separated in X by S ( 6.29 (a) of [8]). 
This means that there are two mutually separated sets, E and 
F, such that 

X - {s} == E U F with r E E and t E F. 
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Recall from the definition of L q that q f/. L q . Thus, since 
s E L q , q f s. Hence, q E E or q E F, say q E E. Now, 
note the following facts: F U {s} is a continuum ( 6.3 of [8]); 
F U {s} contains t in its interior in X (since E and Fare 
mutually separated sets whose union is X - {s} and t E F); 
and q f/: F U {s} (since q E E and E n F == 0). These facts 
show that X is aposyndetic at t with respect to q. Thus, by 
4.2, M is aposyndetic at t with respect to q. This contradicts 
that t E L q . Therefore, we have proved that M is aposyndetic 
at c with respect to q. As noted above, this proves 4.3. 

As a consequence of 4.3, 3.1, and a result of Jones, we have 
the following result. 

4.4 Corollary. Let X be a continuum that is aposyndetic at 
each of its non-cut points. If X is finitely equivalent, then X 
is a graph. Furthermore, if X is rl,-equivalent, every subcontin­
uum of X is a 8 n +1 -continuum. 

Proof: By 4.3, X is aposyndetic at every point. Hence, by 
Theorem 4 of [3], X is sIc at every point. Therefore, 4.4 now 
follows from 3.1. 
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