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TIGHT GAPS IN P(w) 

MARIUSZ RABUS 

ABSTRACT. We prove some results on gaps in P(w). 
In particular we prove that the following statement is 
consistent. 

(*) Every ~* -increasing wI-sequence in P(w) is the 
bottom half of some tight (WI,w2).;:gap. 

1. INTRODUCTION 

In this paper we prove the theorem stated in the abstract. It 
answers a question of P. Nyikos who derived various topological 
consequences of the statement (*), (see [N]). 

Most of our set-theoretical notation is standard. Let A == 

{aa : a E K} be ~*-increasing and B ==, {b,6 : (3 E A*} be ~*
decreasing sequence in P(w). We say that (A, B) is a (K, A*)
pre-gap if aa ~* b,6 for a E K and (3 E A. (a ~* b means 
that a - b is finite). A pre-gap (A, B) is a gap if there is no 
c ~ w which splits (A, B), i.e., such that aa ~* c for a E K and 
c ~* b,6 for (3 E A. Generalizing slightly the definition in [N] 
we say that an infinite set c ~ w is beside the pre-gap (A, B) 
if it is almost contained in every element of B but it is not in 
the ideal generated by A, i.e., c - aa is infinite for all a E K. 

A tight gap is a pre-gap with no set beside it. For every pre
gap (A, B) there is a natural splitting forcing associated with 
(A,B). 
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lP(A,B)	 == {(X, y, 8) : x is a finite subset of K, y is a finite 
subsets of A 8 E n{o, I} and UaEx(aa -n) ~ n,sEY b,s} 

Order lP(A,B) by: (Xl, Y1, 81) ::; (X2' Y2, 82) if Xl 2 X2, Y1 2 Y2, 
81 2 82 and for i E dom(81) - dom(82) if i E UaEx2 aa, then 
81 (i) == 1 and if i tJ. n,sEY2 b,s, then 81 (i) == O. 

Note that if G is lP(A,B)-generic, then c == U{8 : 3x, y( (X, Y, 8) E 
G)} splits (A, B). We say that c is a generic splitting set for 
(A, B). We recall the following facts from [B]. If a pre-gap 
(A, B) is not a gap or its type is not (WI, wi), then lP(A,B) is 
ccc. There are (W1,w;)-gaps, e.g. the Hausdorff gap, such that 
the corresponding forcing is not ccc. Moreover for any (WI, wi)
gap (A, B) there is a ccc forcing which adds an uncountable 
antichain to lP(A,B). Note that if IP(A,B) is not ccc then (A, B) 
is an absolute gap, it can not be split without collapsing ~1. 

The ·paper is organised as follows. In section 2 we iterate 
splitting forcings and simultaneously build (W1,W;) gaps by 
induction. We use the method of Laver [L], the upper halfs of 
the gaps consist of the generic splitting sets. This is essential 
in proving that the iteration is ccc. In section 3 we prove a 
preservation lemma and as a result we prove that the statement 
(*) is consistent with Martin's Axiom as well as with different 
values of the continuum. 

2. THE ITERATION OF THE SPLITTING POSET 

Let A = {a", : "l E WI} be ~*-increasingw1-sequenceinP(w). 
In this section we prove the following theorem. 

Theorem 1. There is a ccc poset lP which forces ~* -decreasing 
W2-sequence B, such that (A,B) is a tight (W1,w~)-gap. More
over lP	 is an iteration of forcings of cardinality ~1. 

Proof: We define a finite support ccc iteration (lPa; Qa : a ::; 
W2). Along with the iteration we build B == {bry : , E W2}. For 
a E W2 let Ba == {bry : , < a}. The induction hypothesis at 
stage a is 

(*a) (A, Ba) is a pre-gap. 
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Suppose that Q..." and b..." have been defined for, < a. Let Qa 
be the splitting forcing IF(A,Ba ) and let ba be a generic splitting 
set for (A, Ba ). It is obvious that the induction hypothesis 
is satisfied. Hence, if IFW2 is ccc, then (A, B) is a pre-gap. 
Moreover since every real is in some intermediate model, a 
standard density argument shows that (A, B) is a tight gap. 

To finish the proof of the theorem it is enough to show that 
IFW2 is ccc. This will be done in two steps. First we will show 
that for every a :::; W2 and p E lPa there is a stronger condition 
Pwhich is determined. Then we show that every uncountable 
collection of determined conditions contains an uncountable 
subcollection of pairwise compatible conditions. Thus lPW2 has 
property K. 

Lemma 1. For all a ~ W2 if P E IFaJ k E wand F ~ a finite J 

then there is p :::; p in IFa such that 

(1)	 There is an x E [WI] <wand n ~ k such that: For each 
(3 ESUPP(p) there exist a Y{3 E [,B]<w and an s{3 En {a, I} 
such that p r(3 H- p(,B) == (x, Y{3, s(3). 

(2)	 For,B ESUPP(p) J Y{3 ~supp(p). 

(3)	 F ~ supp(p) 

Proof: We proceed by induction on a. Suppose that the lemma 
is true for all ,B < a. Let p E IFa, F ~ a finite and k E w. 

Let,B == max{supp(p) U F} and r ~ p r (3, r E IF{3 be such 
that r determines p(,B), i.e. r Ir p(,B) == (X{3, Y{3, s(3) for some 
X{3 E [Wl]<w, Y{3 E [,8] <wand S{3 E l{ 0, I}, 1 E w. Let E == 
Y{3 U (F n (3) and let m == max{k, l}. Applying the induction 
hypothesis to r, E and m we get q :::; r in IF{3, n ~ m and 
x E [WI]<w such that the conditions of the lemma are satisfied. 
For e E 'supp(q) let q(e) == (x,Ye,se). We define p in the 
following way: supp(p) == supp(q) U {(3}. For eE supp(p) we 
define x, Ye, se and then put p(e) == (x, Ye, se)· Let x == x U X{3 
and for eE supp(q) let Ye == Ye and se == See Now we define 
p((3). Let Y{3 == Y{3· Before we will define s{3 let us recall that 
S{3 E I{O, I}, 1 :::; nand n is the domain of every Se such that 
eE supp(q). For i E n - 1 let s{3(i) == °if there is 'fJ E Y{3 
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such that sT](i) == o. Otherwise let s{3(i) == 1. This completes 
the definition of p. It follows from the construction that the 
conditions of the lemma are satisfied. 

To finish the proof of the lemma we have to show that p E lPa. 

Let {~o, ... ,~t} be an increasing enumeration of supp(p). We 
show, by induction on j :::; t, that p rej Ir p(~j) EQej. Let j == o. 
Recall that p(~o) == (x,Yeo,seo). We claim that Yeo == 0. Note 
that Yeo ~ supp(p) by property (2). Now the claim follows 
from the minimality of eo. By the definition of the splitting 
poset (x, 0, s) is a condition for all x and s. 

Suppose now that p rejlr p(~j) E Qej. We prove the in
duction step. Assume first that j + 1 < t. We have to show 
that 

ji rej+l If- U7jEx(a7) - n) ~ n-YEilej+l b-y 

where aT], bry are the names for the elements of the pre-gap we 
consider (by our construction bry is generic over Qry). Note that 
Yej+l ~ {~o, ... ,~j} and by the induction hypothesis p(~i) == 
(x, Yei' Sei) is an element of Qei. Hence it forces that UT]Ex( aT] 
n) ~ bei . Thus p rej+l forces required property. 

Finally we show thatp r{3lrp(,B)EQ{3 and p(,B):::;(x{3,Y{3,s{3). 
The proof that p(,B) is an element of Q{3 is similar to the one 
in the induction step from j to j + 1. Therefore we only show 
that p((3) is an extension of (x(3, Y(3, s(3). It is enough to check 
that p r(3 forces that for i E n -1 if i f/. nryEY~ bry, then s(3( i) == 0 
and if i E UryEX~ ary, then s{3(i) == 1. The first case easily follows 
from the definition of s{3. Note that for TJ E Y{3, sT] is the char
acteristic function of an initial part of bTl. As for the second 
case, p r {3 forces that (x(3, Y{3, s(3) is an element of Q(3, i.e. the 
following holds 

UT]EX~ (a77 - 1) ~ nryEY~ bry. 

Hence p forces that if i E n - 1and i E UT]EX~ aT]' then Sry ( i) == 1 
for every, E Y(3 · It follows by the definition of S{3, that S{3 (i) == 
1 in this case. This completes the proof of the lemma. 
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We are ready to prove that lPW2 is ccc. Let {Pa : Q E WI} ~ 

lPW2. For every Q E WI let Pa :::; Pa be a condition satisfying 
conditions (1),(2) and (3) of the previous lemma. For e E 

sUPP(Pa), put Pa(e) == (x a,Ye' se) and let na be the domain of 
S-a . 

Using the ~-lemma and thinning out if necessary we can 
assume that: 

(1)	 There is nEw such that n == na for all Q E WI. 

(2)	 The collection {suPP(Pa) : Q E WI} forms a ~-system 

with the root ~. 

(3)	 s'l = s: for eE ~ and (x, (3 E WI' 

We claim that any two conditions are compatible. Let Q, (3 E 
WI. We define P and then show by induction that P reE lPe and 
P re extends both Pa re and P{3 reo Let supp(p) == sUPP(Pa) U 
sUPP(P{3)· For eE supp(p) we define p(~) == (x, Ye, se). Let 
x == xa U xf3 • To define Ye and Se we have to distinguish three 
cases depending on whether eis in ~ or not. 

(a) eE~. Let Ye = fir Ufi: and Se = s'l(= s:). 
(b)	 eE sUPP(Pa) -~. Let Ye == Ye and Se == se· 
(c) eE supp(P,B) -~. Let Ye = fi: and Se = sr 

This completes the definition of p. Let {ei : i Em} be an 
increasing enumeration of supp(p). We show by induction on 
i E m that p fei H- p(ei) E Qei and p fei ~ Pa fei,P{3 fei· Notice 
that the latter is obvious since the functions Se appearing in 
p are equal to the corresponding functions in Pa or P{3 and we 
extended only xe and Ye for eE supp(p). 

We prove that p fei1r P(~i) E Qei. Assume that i == o. 
Since eo is minimal it follows that Yeo == 0 and thus (x, 0, seo) 
is a condition in Qeo. Suppose now that the claim is true for 
i < m. We assume that ~i+1 E ~, the other two cases are 
similar. We have to show that 

We proceed as in the proof of the lemma. Recall that Yei+l ~ 

{eo, ... ,~i} and for 1:::; i, p(~l) == (x,Yepsez) forces that (a71 
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n) ~ bel for all TJ E x. Hence p f ei+l If- p(ez) E Qel. This 
completes the proof. 

Recall that t is the minimal cardinality of an increasing tower 
in P(w). 

Theorem 2. The statement (*) is consistent with t == N2 • 

Proof: We show how to adapt the proof of the previous theo
rem. We start with V F 2N1 == N2 and define a finite support 
ccc iteration (IFQ; QQ : a ~ W2). For (3 E W2 let {A~ : p E W2} be 
a list of all nice IF,a-names for a ~* -increasing wI-sequence. Let 
a function f : W2 X W2 ---+ P(W2) be such that minf((3, p) 2: (3, 
f((3, p) is cofinal in W2 and f((3, p) n f( a,,) == 0 for ((3, p) ~ 

(a,,). Note that the order type of f((3,p) is W2. We shall 
use f ((3, p) as an index set enumerating B~, a ~* -decreasing 
w2-sequence corresponding to A~. We define an auxiliary func
tion h : W2 ---+ (W2 x W2) U {OJ. At stage a of the iteration h(a) 
will tell which increasing sequence we should take care of. Let 
h(a) == ((3, p) if there are (3, p such that a E f((3, p), otherwise 
leth(a)=O. 

The induction hypothesis at stage a E W2 is 

(*Q)	 For (3,p E w2(A~,B~,Q) is a pre-gap in V][DQ, 
where B~,Q == {be : ~ E !({3,p) n a} and be is 
generic over Qe. 

We define QQ depending on h(a). If h(a) == ((3, p), then 
let Qa be lP(A~,Bg.Q)' If h(a:) = 0 let Qa be a trivial forcing. 
Suppose that (*Q) holds for a < A. It is easy to see that (*.x) 
holds too. Hence it is enough to show that IFW2 is ccc. The 
proof of this fact is similar to the respective part of the proof 
of Theorem 1. Therefore we only state the key lemma and 
leave its proof to the reader. 

Lemma 2. For all a ~ W2 if pElFQ, k E wand F ~ a finite, 
then there is p ~ p in IFQ and n 2::: k such that 
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(1)	 For all (3 ESUpp(p) if h((3) = (a, p), then P r(3 H- p((3) = 
(x{3,Y{3,s{3) for some X{3 E [Wl]<w, Y{3 E [f(a,p) n (3]<w 
and s{3 En {a, I}. 

(2)	 For (3 ESUpp(p) ifp((3) = (x{3, Y{3, s(3), then Y{3 ~supp(p). 

(3)	 F ~ supp(p) 
(4)	 If (31,(32 ESUpp(p) are such that h((31) = h((32), then 

X{31 = X{32· 

To finish the proof of the theorem note that 2No = N2 and 
(*) imply that t = N2 • 

3. PRESERVATION OF GAPS BY FORCING 

In this section we prove that the statement (*) is consistent 
with Martin's Axiom. We start with the following easy obser
vation. Let A = {aO! : a E WI} and B = {bO! : a E W2} be such 
that (A, B) is a pre-gap. Then (A, B) is a tight gap if and only 
if for all E ~ W2 of cardinality N2 the set nO!EE bO! is not beside 
the pre-gap (A, B). 

Lemma 3. Thight (Wl,w;)-gaps are preserved by a finite sup
port ccc iteration of posets of cardinality N1 . 

Proof: Let (lPO!; QO! : a E K) be a ccc iteration of posets of car
dinality N1 and let (A, B) be a tight gap in the ground model 
V. We proceed by induction on K. For su~cessor stage, sup
pose that K = , + 1. We use the above characterization of 
tight gaps. Note that since Q'Y is a ccc forcing of cardinality 
N1 then for every E ~ W2 of cardinality N2 in VJEDK there is a 
set F of cardinality N2 in VJED-y such that F ~ E. Obviously 
nO!EE bO! ~ nO!EF bO! so by induction hypothesis we are done. 
Similar argument works for K of cofinality w, we use the fol
lowing well-known fact. 

Fact. Let (lRn : nEw) be a finite support ccc iteration of 
length w. In VJm.w let E ~ W2 be a set of cardinality N2 • Then 
there is nEw and a set F E VJm. n such that F has cardinality 
N2 and F ~ E. 
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Finally note that no new reals are added at stages of un
countable cofinality. 

Theorem 3. The statement (*) is consistent with any of the 
following two conditions: 

(a) MA 
(b) continuum arbitrary large and t == W2. 

Proof: To prove (a) we start with a model of 2N1 == ~2 and 
define a finite support ccc iteration of length W2 as follows. At 
even stages we consider a ~* -increasing Wt-sequence A (given 
by some bookkeeping function) and force with 1PW2 from Theo
rem 2. At odd stages we force with a ccc forcing of cardinality 
~t (again given by some bookkeeping function). It is easy to 
see that 2No == ~2 and that MA holds in the resulting model. 
To show that the (*) holds note that every wt-increasing se
quence A appears at some intermediate stage. Therefore the 
next time we force with forcing from Theorem 2 we introduce 
an upper half B such that (A, B) is a tight gap. By Lemma 3 
it follows that (A, B) remains to be a tight gap to the end of 
the iteration. 

The proof of {b) is similar. We start with a model of t == ~2 

and define ccc iteration as above, i.e. at odd stages we force 
with arbitrary ccc forcing of cardinality ~t and at even stages 
we make sure that the condition (*) holds in the resulting 
model. Now a tower of size ~2 is preserved by the iteration, so 
t ::; ~2 in the extension. On the other hand (*) implies that 
t ~ ~2. This finishes the proof since the iteration can be as 
long as we want. 
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