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DECOMPOSITION OF THE DISK INTO
 

NON-DEGENERATE ELEMENTS
 

CARL R. SEAQUIST 

1. INTRODUCTION 

The main result of tllis paper is a new construction of a 
continuous decomposition of a two dimensional disk so that 
each point of the decomposition space is a non-degenerate non­
separating continuum. The decomposition space is homeomor­
phic to the disk. Even ~hough R. D. Anderson in [1] described 
a similar non-trivial continuous decomposition of the disk, our 
construction is of interest because in [4] it is extended to cre­
ate a non-trivial continuous decomposition of the Sierpinski 
curvel which is homeomorphic to the Sierpin.ski curve. In [1] 
R. D. Anderson first describes a construction which results in a 
non-trivial continuous decomposition of the plane homeomor­
phic to the plalle2 . He then indicates how the construction can 
be modified in order to obtain a non-trivial decomposition of 
the disk homeomorphic to the disk; however, the details are 
sketchy. The paper goes on to sl10W that there is a continuous 
decomposition of a I-dimensional planar curve homeomorphic 
to the plane. This is done by closing holes in the planar curve. 
Thus it is of interest if closing holes can be avoided or selec­
tively avoided when decomposing tIle Sierpinski curve. Our 
construction described here is based on that of W. Lewis and 

1By the Sierpinski curve we mean Sierpinski's plane universal curve. 
2He also mentions in this paper that the construction can be modified 

so that each member of the decomposition is a pseudo-arc. 
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J. J. Walsh described in [2] where they show in detail how the 
plane can be continuously decomposed into pseudo-arcs. Us­
ing their result it is sinlple to create a non-trivial continuous 
decomposition of the disk with some degenerate members; for 
example, see [3]. In order to force all members of the decom­
position to be non-degenerate we actually modify the details 
of the Lewis and Walsh construction to obtain a new construc­
tion. 

Our strategy in describing our decomposition will be to de­
fine a sequence {Pn}~=t' of partitions of the unit square D = 
[0,1] x [0,1] into cells with non-overlapping interiors so that 
the conditions of Proposition 3.1 ,of [2] are satisfied. For com­
pleteness this proposition is stated as Lemma 1 below. Before 
stating the lemma we introduce the following notation. If P 
is a collection of sets, then P* denotes the union of members 
of P. If P is a set, then st1(p, P) = {p' E P : p' n p =I 0} 
and inductively sti(p, P) = st1(sti-1(p, P)*, P). We abbreviate 
st1(p, P) by st(p, P). 

Lemma 1. [Lewis and Walsh] Let X be a compactum and 

{Pn}~=l be a sequence satisfying: 

(1)	 For each n, Pn is a finite collection of non-empty closed 
subsets of X with P~ = X, with the elements of Pn hav­
ing pairwise disjoint interiors, and with Cl(Int(Pn)) = 
Pn for each Pn E Pn. 

(2)	 For each Pn-l E Pn- 1 , st4 (Pn_l, Pn)* C st(Pn-l' Pn- 1)*. 
(3)	 There is a positive number L such that for each pair 

Pn, p~ E Pn with Pn n p~ =I 0, Pn C NL/2n(p~). 
(4)	 There is a positive number K such that for each Pn E 

Pn, there is a Pn-l E Pn- 1 with Pn n Pn-l =I 0 and 

Pn-l C NK/2n (Pn) . 

Let G be defined by 9 E G if 9 = n~=l st(Pn, Pn)* where 
n~==lPn =I 0,. then G is a continuous decomposition of X . 

The sequence, {Pn}~=l' will be defined inductively. Assum­
ing we have already constructed {Pi} ~==-l, we start stage nJ of 
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the induction given Rn , a division of D into either congruent 
vertical or congruent horizontal strips. 

Definition 2. A vertical (respectively horizontal) division of 
D is the collection R = {[(i - I)a, ia] x [0,1] : i E {I, ... ,1/a}} 
(respectively {[O, 1] x [(i -I)a,ia] : i E {I, ... ,I/a}}) where 
(I/a) E {I, 2,3, ... }. The mesh of R denoted by mesh(R) is 
a. Each member of R is called a vertical strip (respectively 
horizontal strip). 

Given the vertical (respectively horjzontal) division R of D, 
a division R of D is ~ refinement of R if for every strip X E R 
there is a strip Y E R so that X C Y. See Figure 1. 

We first give an overview of our construction. There are 
four positive rational numbers an, a~, bn , and Cn and a pos­
itive integer kn which constrain the construction at stage n. 
Given a vertical (resp. horizontal) division, Rn , we construct 
a refinement, Rn , with mesh an. We then partition D into a 
collection of cells Qn with non-overlapping interiors by parti­
tioning each strip into cells. To facilitate our discussion we give 
an informal description of a typical cell qn E Qn. See Figure 2. 
Note that an defines the width of qn. The cell has a height of 
at least Cn but less than bn + en. The thickness; i.e., vertical 
transverse thickness, of the cell is limited by bn . The integer 
kn defines the number of identical pieces each of width ani kn 
which make up qn. By top boundary of qn we mean the set 
{(x,y) E qn : 'V(x,y') E qn y' ~ y}. By left boundary of qn 
we mean the left most vertical line segment in qn. Bottom and 
right boundaries are similarly defined. Once we have the col­
lection Qn defined, a homeomorphism h n : D ~ D is defined so 
that {h;;:l(qn) : qn E Qn} is a collection of identical rectangles 
with non-over lappillg interiors whose union is D. See Figure 3. 
The set Pn is defined to be {hI 0 .. ·0 hn-I(qn) : qn E Qn}. To 
continue on to stage 171 + 1 we use {h;;:l(qn) : qn E Qn} to define 
Rn+I' a horizontal (resp. vertical) division of D. 

Thus our construction is very similar to the Lewis and Walsh 
construction. It is different in the exact way in which the cells 



252 CARL R. SEAQUIST 

Qn are formed and ill tIle way the function hn is defined. For 
example, in Lewis and Walsh when vertical strips are being 
partitioned the top boundary of a cell is simply the vertical 
displacement of the bottom boundary by the constant bn . In 
our construction, cells within a strip of a vertical division, Rn , 

do not have congruent top and bottom boundaries. (It is true, 
however, that because of the restrictions on the cell thickness 
the top boundary of a cell will lie completely below the dis­
placement of the bottom boundary by bn .) In addition sp~cial 

attention must be paid in defining hn within the strips of Rn+1 

that are along the boundary of D. We use the positive real 
number a~ < mesh(Rn+1) to control hn . Tllese changes will 
complicate somewhat the proof that the construction results in 
a continuous decomposition of D. Notice that like the Lewis 
and Walsh construction our construction alternates between 
wor~ing with vertical and horizontal divisions. AIbitrarily, we 
let Rn be a vertical division when n is odd and Rn be a hori­
zontal division when n is even. 

2. THE CONSTRUCTION 

We now describe in more detail our construction at stage 
n where n > 1 is odd. (When n is even, the construction is 
similar and can be visualized by rotating all figures by ninety 
degrees.) To start, we create R n , the refinement of Rn , by 
choosing an so that it divides mesh(Rn ). 

2.1. Creation of the Cells. To create Qn, we wiIi define two 
disjoint polygonal arcs M~ and M~; the first running along the 
bottom of D, the second running along the top of D. See 
Figure 4. These polygonal arcs will determine the general 
shape of the cells of Qn. We use these two polygonal arcs 
to help define a sequence of polygonal arcs {L~}j~o so that 
L~ == M~ and Lr;:n == M~. We use the notation L~(x) to de­
note y when (x, y) E L~. In order to control the shape of the 
elements of Qn we .will define {L~}j~o so that the following 
conditions are satisfied: 
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(i)	 bn 2: max{IL~(x) - L~-l(x)1 : x E [0, I]} for every j E 

{I, ... , m n }. Thus bn will control the thickness of cells. 
(ii)	 Cn ~ max{IL~(x) - L~(x')1 : x,x' E [0, I]} for every 

j E {O, 1, ... , m n }. Thus Cn will control the height of 
cells. 

(iii) For	 each j E {I, ... ,m/n } and for every x E [0, 
1 - an] L~(x) == L~(x + an), and the sub-polygonal 
arc {L~ : x E [0, an]} can be divided into kn congruent 
pieces so that given any two pieces, one is the horizon­
tal displacement of the other. This condition will insure 
that each cell is made up of kn identical pieces. 

To define M~ and M~ we define a set of points: 

n 
kn/a {( ) ( (2·-1) )}

An = ild ~: (i - 1), 0 , ~: 2 2 ' en U {(1, O)}. 

Define in to be the polygonal arc obtained by joining the points 
of An in ascending order by abscissa. Let M~ == in + bn and 
M~ == 1- (in +bn). Now we can define a sequence of polygonal 
arcs {L~}j::o satisfying (i)-(iii) if ~cn + 2bn < 1. The fact that 
we can do this follows from Lemma 3. 

Lemma 3. Let c > b > O. Let MO be the polygonal arc con­
necting the points A == {(a, 0), (1/2, c), (1, a)} in order and let 
M 1 be the polygonal arc connecting the points {(O, r), (1/2, r ­
c),(I,r)} in order. If' (5/2)c < r andm E {I,2,3, ... }, then 
there exists an integerm/ > msuch that I/(m/+2) < b and a se­
quence of polygonal arcs {Lj}~o with LO == MO a11:d Lm == M 1 

such that 
(i)	 b 2: max{ILj(x) - Lj-l(x)1 : x E [0, I]} for every 

jE{l, ... ,m}; 
(ii)	 c ~ max{ILj(x) - Lj(x')1 : x, x' E [0, I]} f'or every 

j E {a, 1, ... ,m/}, 

Proof: See Figure 5. Let N > max{4, m,/6} be a natural 
number so that 

I c b 2r - 5c b 
b == - < - and so that € == < -. 

2N 2	 12N 2 
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Thus b' + E < b. Let m == 6N. 
Let LO == MO. 
For j == 1, ... , N let Aj be the set of points 

{(o,j€ + LO(O)), (0.25,j(b' + €) + LO(0.25)), 

(0.5,j€ + LO(0.5)), 

(0.75,j(b' + €) + LO(0.75)), (l,j€ + LO(l))}. 

and define Lj to be the polygonal arc connecting the points of 
Aj in order. 

For j == 1, ... , 2N let Aj+N be the set of points 

{(O,j(b' + €) + LN(O)), (0.25,j(b' + €) + LN(0.25)), 

(0.5, j€ + LN (0.5)) , 

(0.75, j (b' +€)+ LN(0.75)), bigl(l, j (b' +€)+ LN(1)) }. 

and define Lj+N to be the polygonal arc connecting the points 
of Aj+N in order. 

For j == 1, ... , 2N let Aj+3N be the set of points 

{(0, j(b' + €) + L3N (0)), (0.25, j€ + L3N (0.25)), 

(0.5, j€ + L 3N (0.5)),
 

(O.75,jE + L3N(O.75)), (l,j(b' + E) + L3N(1))}.
 

and define Lj+3N to be the polygonal arc connecting the points 
of Aj+3N in order. 

For j == 1, ... , N let Aj+5N be the set of points 

{(O,j(b' +E) +L5N(0)), (0.25,j€ + L5N (0.25)), 

(0.5, j (b' + €) + L5N (0.5)) , 

(O.75,j€ + L5N(O.75)) , (l,j(b' + €) + L5N(l))} 

and define Lj+5N to be the polygonal arc connecting the points 
of Aj+5N in order. 
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Now L m = M 1 since 

Lm(O) N €+ 5N (b' + €) = r, 
L m (O.25) c/2 + 3N(b' + €) + 3N€ = r - c/2, 
L m (O.5) c + 5N€+ N(b' + €) = r - c, 

L m (O.75) c/2 + 3N(b' + €) + 3N€ = r - c/2, 
Lm (l) N E+ 5N (b' + E) = r. 

The fact that {Lj}~o meets the constraints (i) and (ii) above 
follows directly from the co~struction. 

We let d = l/(m + 2). Note that 

NE+5N(b'+€)+2bn 5, 1 
d < < € + -b + -bn < bn

6N + 2 6 3N 

when N > 4. D 

Letting r = 1-2bn we see that we can apply the above lemma 
when b = bn and c = Cn are small enough in order to obtain 
mn = m and {L~}j~o. Let L;;:l(x) = 0 and L~n+l(x) = 1 
for all x E [0,1]. See Figure 6. For i E {I, ... , l/an} and 
j E {O, ... , (mn + I)} define the cells of Qn as follows: 

qi,j = {(x,y) ED: (i -l)an ~ x ~ ian and 
L~-l(x) ~ y ~ L~(x)}. 

Thus 
1 

Qn == {qiJ· : i E {I, ... , -} and j E {a, ... , (mn + I)}}. 
, an 

We let dn = l/(mJn + 2) and so dn < bn. Also note that the 
values of dn and m n are independent of kn and an. 

2.2. Definition of hn • We now define a homeomorphism hn : 

D ----+ D so that h;;:l straightens the polygonal arcs {Lj}j~!l 
and so that the distance between the straightened polygonal 
arcs is dn . We will define hn so it will map vertical lines onto 
themselves in a piecewise linear fashion. For the cells which 
lie along either the top or bottom boundaries of D a great 
deal of stretching can occur. For example, a vertical segment 
lying in the center of a symmetrical piece of a cell has length 
Cn+bn whereas its pre-image under hn l1as length dn. We define 
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hn carefully so we can control exactly where this stretching 
occurs. We force this stretching to occur between y = a~/16 

and y = a~/8. Let en denote a~/16 and assume that a~ < bn. 
First we define f n : D ---+ JR. 

y if a ::; y < en; 

2en + fn(x) (V~:n) 
if en ~ y < 2en; 

2en + fn(x) + (bn - 2en)(l~;;J 
if 2en ::; y < dn; 

L~-I(X) + (L~(x) - L~-I(x))(Vd~dn)
fn(x, y) = 

if 3j E {I, ... , mn}jdn < y < (j + l)dn; 

1 - 2en - fn(x) - (bn - 2en)(Id,,2~2;:n 
if (mn + l)dn ::; y < 1 - 2en; 

1 - 2en - fn(x)(l-::-V) 
if 1 - 2en ::; y < 1 - en; 

y if 1 - en ~ y ~ 1. 

Define hn(x, y) = (x, fn(x, y)). See Figure 7. Thus h~1 trans­
forms cells in Qn into rectangles with non-overlapping interiors 
each with dimension an X dn ; that is, 

h:;;I(Qn) = {[(i-l)an,ian]x[jdn, (j+l)dn] : i E {I, ... , a~} and 

j E {a, ... , (mJn + I)}}. 

2.3. Creation of Pn and preparation of stage (n+l). We 
set 

Pn = Hn(Qn) = {hI 0 .. · 0 hn-I(q) : q E Qn}. 

To continue the construction we define 

Rn+1 = {[a, 1] x [jdn, (j + l)dn] : j E {a, ... , (mJn + I)}}. 
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Thus Rn +l is a horizontal division of D and the construction 
can continue to stage (1l + 1). Note that mesh(Rn+l ) == dn == 
1/(mln + 2). We define H n+l to be H n 0 hn == hI 0 .. ·0 hn. 
Figure 8 shows the relationship among the various functions 
and collections defined. Note that H;;21(Pn ) is the collection 
of rectangles 

{[(i - l)an, ian] X [jdn, (j + l)dn] : i E {I, ... , ..l..} .and 
an 

j E {O, ... ,(mn +1)}}. 

3. ApPLICATION OF CONSTRUCTION 

We will show that we can apply the above construction to 
create a sequence {Pn}~=l which satisfies Conditions (1)-(4) 
of Lemma 1. From the above description it can be seen that 
tIle exact details of the construction at stage 111 are controlled 
by an, a~, bn, Cn, and kn. We now show that at each stage 111 

we can choose an, a~, bn, Cn, and kn so that {Pn}i=l satisfies 
the Conditions (1)-(4) of Lemma 1 and so {Pn}~l induces the 
desired continuous decomposition of D. 

At stage 1, let al == 1/128 so 

1 1 
Rl = {[(i - 1) 128' i 128] x [0,1] : i E {1, ... , 128}}. 

Let CI == 1/4 and bl == 1/2048. Since (5/2)CI + 2b l == 5/8 + 
1/1024 < 1 we can use Lemma 3 to compute mIl and dl . Let 
a~ == dl /4. Let k l 2: 8 so that 41k l and k l > al/a~. Construct 
QI as above. Let HI == IdD· Thus PI == HI(QI) == QI. We 
define hI as above and H2 == hI. Finally set R2 == {[O, 1] X 

[jd l , (j + l)d l ] : j E {a, ... , (mIl + I)}}. At the end of stage 
1, Condition (1) holds immediately. Conditions (2) and (4) 
hold vacuously. For Condition (3) let L == 1/64. The fact that 
we have al + bl < 1/64 guarantees that Condition (3) is also 
satisfied. 

Now assume we are at the b.-eginning of stage 111 of our con­
struction having just created R n . Thus the collections Ri' Qi 
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and Pi and the homeomorphism hi have been defined as de­
scribed previously for i E {I, ... , (711 - I)}, along with the func­
tion Hi for i E {I, ... , n}. Let ai, a~, bi , Ci, and ki be as de­
scribed above for each stage i for i E {I, ... , (n -I)}. As above 
we use following notation. Let m1i + 2 be the number of strips 
in the division Ri+1 and let mesh(R i +l ) = di = 1/(m1i + 2) for 
i E {I, ... , (711 - I)}. In addition let 8i > 0 so that Ix - x'i < 
8i ::::} IHi(x) - Hi(x')1 < 1/2i +7 for i E {I, ... , n}. 

At stage i = n we proceed as follows: 

Let ai = a~-I and let Ci = ai-I/2. 
Let bi > 0 so that 

1a) bi < 8i /3; 
1b) bi < ail (2ki- I ). 

Define m1i and di using Lemma 2. 
Let a~ = di /4. 
Let ki be an integer so that 

2a) k i ~ 8; 
2b) 4lki ; 

2c) k{ > ai/a~. 

Now construct Qi as described above in 2.1 and let Pi 
H i (Qi). Define hi as d~cribed above in 2.2 and let H i+1 

hI 0 .. · 0 hi; and define Ri+l. We assume that choices of these 
parameters in previous stages i E { 1, ... , (111 - I)} were also 
chosen in the above manner. We will now Sl10W that {Pi }r=l 
satisfies Conditions (1)-(4) if {Pi}?:::-l does. We assume without 
loss of generality that 711 is odd. 

3.1. Conditions (1) and (2). That Condition (1) is satisfied 
is immediate. That Condition (2) holds is shown as in [2]. 

3.2. Condition (3). We will show that for each pair Pn, P~ E 

Pn with Pn n P~ =f 0 then Pn C NL/2n(p~) where L = 1/64. 
Let Pn, p~ E Pn with Pn n p~ =f 0. Let qn = H:;l(Pn) and 
q~ = H:;l(p~). Thus both qn, and q~ are in Qn. We consider 
two cases: 

Case 1: (Assume neither qn nor q~ intersects a vertical edge 
of D). See Figure 9 showing this case. Now consider hn- 1(qn) 
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and hn-I(q~). A worst case.-possibility would be for qn and q~, 

to be in different strips of Rn . In this case 

hn-I(qn) C N2an-l/kn-l+bn-l (hn-I(q~)). 

This follows from the fact that by (lb) we have bn < an/2kn- I < 
an-I/2kn- I and the fact that en == an-I/2 > an-I/ kn- I . Since 
an-II kn- I < a~_l == an by (2c) we have that 

hn-I(qn) C N2an+bn-l (hn-I(q~)). 

But an == a~-I == dn- I/4 < bn- I; so by (la) 2an + bn- I < bn-I. 
Thus 

hn- I(qn) C N8n -l (hn- I(q~)). 

But by choice of bn-I we have that 

Pn C Hn-IOhn-I(qn) 

C NI/2n+6(Hn- I ° hn-I(q~J) 

N1/2n+6 (p~) 

C NL/2n(p~) 

where L == 1/64. 
Case 2: (Assume qn intersects a vertical edge of D). See Fig­

ure 10. It will suffice to show both hn-I(qn) C N8n_ 1 (hn-I(q~)) 

and hn-I(q~) c N8n_1 (hn- I (qn)). Notice that both qn and 
q~ must be in the same strip of Rn since qn is assumed to 
intersect a vertical edge of of R n and an == dn- I /4. Now 
en-I == a~_1/16 == an/16 since an == a~-I. Since qn consists 
of more than two pieces by (2a) at least one piece, q~, must be 
at a distance greater that an /8 from the left or right edge of 
D. Thus 

hn-I(q~) C N2an+bn_l(hn-l(q~)) C N8n_l(hn- l (qn)). 

Since an-I/ kn- I < an we also have that 
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Thus 

hn-1(qn) C N 3bn_1 (hn-l(q~)) C N8n - 1 (hn-l(q~)). 

3.3. Condition (4). Let Pn E Pn. We will show that there 
is a Pn-l E Pn- 1 with Pn n Pn-l i= 0 so that Pn-l C N K/2n(Pn) 
where K == 1/16. To accomplish this we will prove two lemmas. 
In order to state the lemmas we must introduce the following 
notation and terminology. For any qn E Qn let q~ be any piece 
of qn' Note that the width of q~ is ani kn. We say that qn E Qn 
crosses q~-l if qn intersects both top and bottom boundaries of 
h;;~l(q~-l). Note that h;;~l(q~-l) is a rectangle of width dn- 1 
and height an-lI kn- 1· 

We now state and prove the following lemmas. Note that 
we state them for the case when n is odd; however, entirely 
analogous lemmas exist in the case when n is even. 

Lemma 4. If' qn E Qn and q~ is further than anl8 from a ver­
tical edge of' D, then we have that hn- 1(qn) C N8 n - 1 (hn- 1(q~)). 

Proof': Let qn E Qn. We will consider two cases: 
Case 1: (qn does not intersect a vertical edge of D). See 

Figure 11 which illustrates this case. As can be seen 

hn-1(qn) C N bn- 1 (hn-l(q~)) C N8n_ 1 (hn-l(q~)). 

leaSe 2: (qn intersects a vertical edge of D). See Figure 12 which 
illustrates this case. Now q~ lies at a distance of more than 
anl8 from the left and right boundaries of D. Thus hn-1(qn) C 

Nbn- 1 +an ( hn - 1 ( q~) ). Therefore 

hn- 1(qn) C Nbn-l+an(hn- 1(q~)) c Nc5n -l (hn- 1(q~)) 

and the lemma holds. D 

Lemma 5. If' qn E Qn crosses q~-l where qn-l E Qn-l, then 
q~-l C N8n_1 (hn- 1(qn)). 

Proof: Let qn E Qn, and qn-l E Qn-l with q~-l so that qn 
crosses q~-l; that is, qn contains points on both the top and 
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bottom boundaries of the rectangle h;;:~l(q~-l). We will look 
at two cases: 

Case 1: (qn does not intersect a vertical edge of D). See 
Figure 13 which shows this case and that 

q~-l C Nbn_l(hn-l(qn)) C N8n_l(hn- l (qn)). 

Case 2: (qn intersects a vertical edge of D). See Figure 14 
which illustrate this case. Let q~ be a piece of qn which is at 
a distance of more than an l8 from the left or right edge of D. 

Recall that an == a~-l < dn- l < bn- l < bn-1/3. Thus 

q~-l C Nan+bn_l(hn-l(q~)) C N8n_1 (h n- l (qn)) 

and the lemma holds. D 

Now we can verify that Condition (4) holds. Let qn == 
H;;l (Pn). There are two cases: 

Case 1: If qn intersects the bottom or top edges of D then 
since Cn == an-1/2 > 2(an-I/kn- l ) + an-1/8 there is a q~-l fur­
ther than an-1/8 from a horizontal edge of D which qn crosses. 

Case 2: If qn does not intersect the bottom or top edges of 
D then since height of qn is greater than Cn == an-1/2 and since 
at least half of this height must lie in a strip of Rn - l and since 
the height of any rectangle h;;:~l (q~-l) is an-II kn- l < an-1/2, 
there must exist a q~-l further than an -1/8 from a horizontal 
edge of D whicl1 qn crosses. 

In any case we will be able to apply Lemma 4. (Actually 
the n even version of Lemma 4). Let Pn-l == Hn-l(qn-l). 
Note that Pn-l n Pn =1= 0. Now by Lemma 5 we have that 
q~-l C N8n _l(hn - 1 (qn)) and 

Hn-l(q~-l) C N1/2n+6(Hn- 1 0 hn-1(qn)) == N1/2n+6(Pn). 

But by Lemma 4 we have that 

hn- 2(qn-l) C N8n_2(hn-2(q~-I))). 

But Pn-l is Hn-1(qn-l) and 
Hn-l(qn-l) Hn-2 0 hn- 2(qn-l) 

C N 1/2n+5(Hn- 2 0 hn-2(q~-1)) 

N1/2n +5 (Hn-l (q~-l)). 
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Therefore Pn-l C N 1/ 2n+4(Pn) and Pn-l C NK / 2n(Pn) where 
K == 1/16. 

Theorem 6. There is a continuous decomposition oj' a disk 
into non-degenerate non-separating continua so that the de­
composition space is homeomorphic to a two dimensional disk. 

Proof: Consider the unit disk D and apply the construction as 
described above to create a decomposition G of D. By Lemma 
1 the resulting decomposition is continuous. Since none of the 
members of Pn for any 'n separates D, none of the menlbers of G 
separates D. We can extend G to obtain G' a decomposition of 
the plane by adding to G the points not in D. Now G' is upper 
semi-continuous, and so by Moore's theorem is homeomorphic 
to the plane. Thus G is planar. Also diam(g) 2 1/16 for 
all 9 E G; Le., each 9 EGis non-degellerate. This follows 
from the facts that L == 1/64, K == 1/16, and diam(Pl) > 
1/4. See Claim C in appendix of [2]. Finally note that each 
member of G intersects the boundary of D at no more than one 
point. Thus tIle natural projection 7f : D ~ G maps Bd(D) 
homeomorphically onto the Bd(G). Therefore G is bounded 
by a simple closed curve and is a disk. 
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kn = 3 

MO 
n 

1 
b"TI.... an 

FIGURE 4. Defining M~ and M~ along top and 
bottom of disk. 



267 DECOMPOSITION OF THE DISK 

r 

FIGURE 5. Sequence of polygonal arcs {Lj}1~1 
in Lemma 3. 
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FIGURE 6. The Sequence of polygonal arcs {L~}T~!"l. 
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