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UNCOVERING SEPARATION PROPERTIES IN
 
THE EASTON MODELS
 

PAUL J. SZEPTYCKI 

ABSTRACT. We will be studying separation proper­
ties of N1-paralindelof spaces and countably metacom­
pact spaces in the Easton and reverse Easton models. 
We prove, among other things, that first countable Nl­
paralindelof spaces are cwH in many Easton extensions 
including those violating GCH. This answers a question 
of F.D. Tall. 

1. INTRODUCTION 

A space is said to be N1-paralindelof if every open cover 
of size N1 11as a locally countable refinement. There are a 
number of related results concerning separation properties in 
countably paracompact, normal, N1-paralindelof and countably 
metacompact spaces. There are three models where many of 
these spaces behave nicely: L, the Easton models, and models 
of PMEA. In eacl1 of these models normal spaces and count­
ably paracompact spaces of character :::; ~1 are collectionwise 
Hausdorff. Likewise under V == L, ~l-paralindelof spaces of 
character:::; N2 are collectionwise Hausdorff. In fact, Fleissner 
showed that 0 for stationary systems, which holds in both L 
and the GCH Easton model, suffices. Therefore, as pointed 
out in [T1], we also get that N1-paralindelof spaces of char­
acter ::; W2 are collectionwise Hausdorff in the Easton model 
obtained by adding ~+ many subsets of ~ for every~. Tall 
asked (in [T1] and [T2]) for a forcing proof of this fact and 
whether it also holds in the Easton models violating GCH. We 
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show that the answer is yes in the class of first countable ~I­
paralindelof spaces. The stronger result, even the first step of 
an inductive proof, remains open. 

Question 1.1 (Tall): In the Easton model obtained by adding 
> ~+ many subsets of each regular ~ over a model of GCH, 
are ~ I -paralindelof spaces of character::; W2 (or::; 2W1 

) collec­
tionwise Hausdorff? 

Question 1.2 (Tall): After adding -X > W2 Cohen subsets of WI 
over a model of GCH, are ~I-paralindelof spaces of character 
~ W2 (or ~ -X) < -X-collectionwise Hausdorff? 

Related to the question of when normal, countably paracom­
pact or ~I-paralindelof spaces are collectionwise Hausdorff is 
the question of when closed discrete sets are G8 in first count­
able, countably metacompact T I spaces. In [B] Burke proved 
that they are always G8 assuming PMEA. 

Theorem 1.3. (PMEA) In a countably metacompact TI space 
X oj' character < c, if points are G8 's then every closed discrete 
subset is a G8. 

This raised a natural question. Is the large cardinal inherent 
in the PMEA assumption necessary? In particular, does the 
result hold in either L or the Easton models? Nyikos was able 
to show that under V=L (actually 0 for stationary systems) lo­
cally countable, first countable, countably metacompact spaces 
have closed discrete sets G8 (see [N]). The full result, however, 
does not hold in L as a first countable counterexample has 
recently been constructed by the author assuming 0* ([8]). 
Whether this example can be constructed in one of the Eas­
ton models remains open. By our previous remarks, Nyikos's 
result also holds in the Easton model obtained by adding ~+ 

many subsets of each regular ~. In section 3 we prove that it 
also holds in the Easton models violating the GCH. 

We let E denote the class of regular cardinals. By an Easton 
indexing function we mean any monotone increasing v : E -+ 
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E. In section 2 we are primarily interested in models violat­
ing the GCH obtained by adding V(K) many Cohen subsets of 
each regular K with via product forcing over a model of GCH 
(Easton class forcing). The main theorem of section 2 and its 
proof also holds in the model obtained by iteratively adding 
K+ many subsets of each regular K (reverse Easton forcing). 
The techniques and proofs closely follow those in [TI] and we 
assume the reader is somewl1at familiar with it. Our notation 
and terminology are standard and any unfamiliar notions, in 
particular the basics on both Easton and reverse Easton forc­
ing, can be found in [Ku]. 

2. ~I-PARALINDELOF SPACES 

Theorem 2.1. Let v : E ~ E be an Easton indexing ,function 
satisfying V(K) is never the successor of a singular and let P 
be the Easton forcing for adding v (K) many subsets of K for 
each regular K. If M is a model oj' GCH and G is P-generic 
over M, then in M [G] first countable ~I paralindelof spaces 
are collectionwise Hausdorff. 

We will prove Theorem 2.1 by induction on the cardinal­
ity of the closed discrete sets. For singular strong limit. car­
dinals ;t\ the results of [Ke] (for cof(;t\) ~ WI) and [F] (for 
cof(;t\) = w) imply that < ;t\-collectionwise Hausdorff entails 
;t\-collectionwise Hausdorff in ~I-paralindelof spaces. 

Lemma 2.2. [F] Assume A is a singular strong limit cardinal 
of cofinality w. If X is regular and < A-collectionwise Haus­
dorff, then it is A-collectionwise Hausdorff. 

Lemma 2.3. [K] Assuming the BCH, suppose that;t\ is a sin­
gular strong limit cardinal of cofinality ~ WI. Let X be a reg­
ular 'NI-paralindelof space of character < A. If X is < A­
collectionwise Hausdorff, then it is A-collectionwise Hausdorff. 

Note that in M [G] if A is a singular strong limit cardinal 
then 2A = A+, hence SCH holds in M[G]. To take care of 
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other A (including singular A that are no longer strong lim­
its in M [G]) we prove that for I" regular, < K-collectionwise 
Hausdorff implies < V(K )-collectionwise Hausdorff. 

Lemma 2.4. With M and P as above, ifG is P-generic over 
M and in M [G], X is a first countable ~l-paralindelof space, 
if A and I" are regular cardinals such that v (I") > A, then X is 
< K-collectionwise Hausdorff implies it is also A-collectionwise 
Hausdorff· 

In order to apply the lemmas into an inductive proof of The­
orem 2.1, some assumption on the indexing function is needed. 
If we proceed as in [Tl], we must assume that strong limits are 
preserved (i.e. 'VA singular and 'VI" < A, V(K) < A.) However, 
once we prove Lemma 2.4 it suffices to assume that for each 
regular 1", V(K) is never the successor of a singular (or even 'VA 
singular either 'VI" < A V(K) < A or ::JK < A, V(K) > A+). 

Suppose in M [G] tl1ere is a first countable ~l-paralindelof 

space X which is < A-collectionwise Hausdorff but contains an 
unseparated closed discrete set of size A. When A is a singular 
strong limit cardinal we apply 2.2 and 2.3. If A is singular 
but not a strong limit then by the assumption on v, we may 
fix K < A with V(K) > A+. Then by Lemma 2.4, X is A+­
collectionwise Hausdorff, hence it is A-collectionwise Hausdorff. 
The case A is regular follows again from Lemma 2.4. 

Proof of Lemma 2.4: Let A be the minimal regular cardinal for 
which the Lemma is false and fix I" < A satisfying V(K) > A. Let 
X E M [G] be a first countable ~l-paralindelofspace contain­
ing an unseparated closed discrete subset A == {aa : Q < A}. 
Note that if we modify the topology by isolating every point in 
X \ A, then the resulting space has all the pertinent prop­
erties of the original space. Furthermore, we may assume 
that X has cardinality A since we need only A of the iso­
lated points to witness that A is unseparated. We factor P 
into three pieces: P == P<"" x Fn(v(K), Wl, K) x P>"". For 
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~ > W forcing with P<K, x Fn(v(~),WI,~) is equivalent to forc­
ing with P<K x F11(V(~),~, ",). The initial part of the forcing 
rre<KFn(v(~),WI,~) is denoted by P<K' Similarly P>K denotes 
the tail of the forcing for adding subsets of v(~) for each ~ > "'. 
For any index set I E M let QI denote F'nI(I, WI, "') relativized 
to M. Since QV(K) has the ~+-cc in MP<KXP>K, X, the topol­
ogy and A all appear at some initial stage N == MP<KXQT/XP>K 

where TJ < v(~). We work now in the intermediate forcing 
extension N. For each a E A let {Vn ( a) : n < w} be a de­
creasing local neighborhood base at a. Now, consider the next 
partition r : A ---t WI generic over N. To be more precise, we 
need to note that r is the name for the generic subset of QI 

where I == {TJ + a : a < A}. Since H- X is ~I-paralindelof, 

in the extension there is a locally countable expansion of the 
partition r. By the ~+-cc and the maximal principle, there is a 
J ~ v( ~) of size A and a sequence of Q IUJ-names {To : a < WI} 
such that 

I~QIUJ {To: : a < WI} is a locally countable 
expansion of the partition r of A. 

To simplify notation we assume wlog that I U J == A+ A and 
that To is the open set containing r-I(a). Therefore there is 
a name a for a function from A to W coding a neigllborhood 
assignment such that 

I~QA+A \/a E A, Va(a)(a) C Tr(a) and 
3~ < WI \/(3 >~, (Va(a) (a) n T{3 == 0). 

For each a E A let Doe QA+A be defined by 

Do == {p E QA+A : a E dom/(p) , 3'n, 31', P I~ a(ao) == 'n, and 
\/(3 > l' (Vn(ao ) n T{3 == 0)}. 

Notice that Do is dense. For each a < A and for each p E 

Q A+A with a E dom, (p) and for each {3 < WI, let po,{3 == p \ 
{(a,p(a))} U {(a,,B)}. So po,{3 is obtained by changing p's 
value at a to {3. For each a E A and {3 E WI, let D~ == {p : 
po,{3 E Do}. 
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Claim: For each a and (3, D~ is dense open in QA+A. 

Proof: Suppose p E QA+A' If a E doml(p) extend po;,{3 to q E 

Do;. Then p' == qo;,p(o;) < p and p' E D~. If a f/. doml(p) , then 
extend p to p' with p' (a) == {3. Then any q < p' in Do; is also 
in D~. 
Let GIbe a QA+A generic filter over N. We work now in the 
generic extension N[G 1]. For each Q and (3 let Po; E G 1 n Do; 
and let Po;,{3 E G 1 n D~. For each a, let no; E w be such that 

(i) Po; Ir- a(ao;) < 1110; 

(ii) P~:~ II- a(aa) < na for uncountably many {3. 

We claim that {Vno (ao;) : a E A} is a locally < K on A cover 
of the discrete set A. So suppose that a E A is such that 
Vno(ao;) n Vne(a~) =1= 0 for at least K many ~ E A. Choose ~ E A 
such that ~ f/. dom(po;) and s'uch that Vno(ao;) n Vne(a~) -I 0. 
There is a , such that for each (3 > " Po; I~ Vno(ao;) n T{3 == 0. 
Choose (3 > 'Y so that P~:~ II- n~ > a(a~). Then 

(1) P~:~ and Pa are compatible. 

(2) P~:~ II- Vne(a~) C Tf3. 
(3) Po; I~ Vno (ao;) n T{3 == 0. 

This contradicts Vno(ao;) n Vne(a~) -I 0. The following lemma 
completes the proof. 

Lemma 2.5. Suppose that X is < K-collectionwise Hausdorff 
and suppose that U == {U (a) : a E A} is a locally < K cover of' 
a closed discrete set A ~ X. Then A is separated. 

Proof': Define an equivalence relation on A by saying that a E A 
is equivalent to b E A if there is a finite path from a to b via 
the cover·U. More precisely, define a b if there is a sequence rv 

(ai : i :::; n) such that ao == a, an == b, and U(ai) n U(ai+l) =I 0 
for each i < 111. As the cover is locally < K, equivalence classes 
are of cardinality < K. If a rf b then U (a)nU (b) == 0. Therefore 
since X is < K-collectionwise Hausdorff, A can be separated. 
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3. COUNTABLY METACOMPACT SPACES. 

Theorem 3.1. Let 1I : E ~ E be an Easton indexing function 
satisfying 1I (~) is never a successor of a singular and let P 
be the Easton forcing for adding 1I (~) subsets of each regular 
~. Then in locally countable, countably metacompact spaces, 
closed discrete sets are C 6. 

The forcing proof of The~rem 3.1 is almost identical to the 
proof of 2.1 and Tall's proof that countably paracompact spaces 
are collectionwise Hausdorff in the Easton models modulo the 
main inductive lemmas which we present. We leave it to the 
reader to fill in the rest of the details. 

Lemma 3.2. Let A < ~ be regular cardinals and force with 
Fn(~, w, WI) over a model of eCHo Then in locally countable, 
countably metacompact TI spaces, closed discrete sets of size A 
are G6. 

Proof: Suppose H- A c X is closed discrete a'nd IAI = A. 
As in the proof of Lemma 2.4 if we modify the topology of X 
by isolating every point of X \ A, then the resulting space is 
countably metacompact and A is still not a C6. Since X is 
locally countable, we nlay assume that H- IXI = A. Therefore 
we may assume that X and A appear after adding the first A 
Cohen subset of WI. Henceforth we are working in M [G] where 
G is FnJ('x,w,Wl) generic over M. Let r be the canonical name 
for the next generic function from A ~ wadded. As in [Tl], 
we may assume that GMA(A) for Cohen forcing holds in M[C]. 
Considering r as a partition of A, if it is forced to have a point 
finite open expansion in the extension then in M [G] there is a 
(j eventually point countable sequence of open covers of A. I.e., 
there are open covers W n = {Wn(a) : a E A} such that for each 
x E X there is an N such that \lmJ > N {a E A : x E Wm(a)} 
is countable. We may also assume that each W n witnesses 
the discreteness of A and that each Wn(a) is countable. The 
proof of this fact is similar to the proof of Lemma 2.4 and 
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almost identical to the proof of the analogous fact in the proof 
of Theorem 5 in [Tl]. Partition X \ A into countably many 
pieces {Xn : n < w} where for each n, 

X n = {x : ord(x, W n ) ::; ~o}. 

It is easy to see that if for each n, A is a G£> in the subspace 
X n U A, then A is a G£> in X. The rest of the proof is standard. 
For each n, {Wn(a) n (Xn U A); a E A} is a star countable 
collection in the subspace X n U A. For a and b in A, define 
a rv b if there is a finite path from a to b as in the proof of 
Lemma 2.5. This is an equivalence relation. Each equivalence 
class is countable and equivalence classes are separated. This 
implies that A is ill fact separated in X n U A hence a G£>. 

The proof for ~ regular and larger than WI is similar. In­
stead of using that countable closed discrete sets are G£>'s we 
need to use the inductive hypothesis that closed discrete sets 
of size < ~ are G£>'s to step up using Fn(lI(~),w,~) to closed 
discrete sets of regular size < 1I(~) are G£>. For A singular, the 
following lemma generalizes a result of Nyikos who proved the 
same result assuming GCR. 

Lemma 3.3. Assume SCH and fix ~ a singular strong limit 
cardinal. Suppose X is a T I locally countable, countably meta­
compact space and A c X is a closed discrete set of size"". If 
subsets of A of size < ~ are G £> 's then so is A. 

The proof of 3.3 is almost identical to the Nyikos's GCR result; 
for completelless sake we include the proof. 

Proof: If ,\ is of cofinality w, partition A into countably many 
pieces {An: n < w} each of size < "". By assumption each is a 
G£> and the fact that X is countably metacompact easily implies 
that A is a G£>. Otherwise we modify Nyikos's GCH proof much 
of which we lift verbatum from [N] pp 4-5,8-10. Let {~a : a < 
cof(~)} be a club in ~ such that for each a < ~, 2K 

a: = ~t. 

That such a sequence exists follows from cof (K) ~ WI and the 
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SCH (see [J] Lemma 8.1). Fix X countably metacompact and 
a subset D ~ X which is closed discrete, size", and not a G8. 

By our previous remarks we may assume that X \ D == 

",' == U{["'o, "'t) : a < cof(",)} and that ",' consists of iso­
lated points. Enumerate D as {d, : "Y E ",'}. For each ~ E '" 

let ~' == ~ n ",'. 

Definition 3.4. For each f : a' ~ w where a < '" and each 
~ E ",' and n < w, let 

En(f,~) == {d, : "Y ~ ~, "Y E ",', d, E j-l{O, ... , n} n ~'}. 

We say f is thin if IEn(f,~)1 ~ I~I for all n and all ~ E ",'. 

Lemma 3.5. There is a thin f : ",' ~ w. 

Proof. List all partial functions 9 : A' ~ w where A E ",' as 
{g~ : ~ E ",'} so that if A E ["'0' ",t) and domJ(g) == A' then 
9 == g~ for some ~ E ["'0' "'t). We may do this since 2KQ == "'t. 

Define subsets FnC,.,) of D for rJ E ",' by transfinite recursion, 
letting Fn == U{Fn(rJ) : rJ E ",'}. Assume Fn(rJ) has been 
defined for all rJ E ~' wl1ere ~ E ",'. If for each n 

En(g~,~) ~ U{Fm(rJ) : mJ < w, rJ E ~'} 

let Fn(~) == U{Fn(rJ) : rJ E ~'}. If not, fix n minimal such that 

En(g~,~) ~ U{Fm(rJ) : mJ < w, rJ E ~'} 

and fix l' E ~' minimal such that d, E En(ge,~) \U{Fm (1]) : 1] E 

~'}. Let Fn+l(~) == U{Fn+1(rJ) : rJ E ~'} U {d,}. For k i= n + 1 
let Fk(~) == U{Fk(rJ) : rJ E ~'}. 

Let D n == Ui~n Fn then nn<w D n == 0. Therefore since X 
is countably metacompact, there exist a decreasing sequence 
of open sets Gn ~ D n such that nn<w Gn == 0. Finally define 
f : ",' ~ W by 

Claim: f is thin. 
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Proof: If 110t, fix ~ E K' minimal such that IEn(f,~)I > I~I == K o 

for some nEw. Fix ~o E [Ko , Kt) such that f r~ == g~o' Then 

En (geo , ~o) ~ U{FmC,,) : mJ < w, 1] E ~b} 

since the first set has cardinality> K o and the latter ~ K o . 

Assume that n is minimal satisfying the above and choose 'Y 
minimal such that 

Therefore, by construction d, E Fn+1 . Then d, E f-l{O ...n} 
and Gn+1 n f- 1{O ...n} == 0 contradicts d, E Gn+1 and that 
Gn+1 is open. 

As the above proof didn't depend on how D or the isolated 
points X \ D were enumerated in K', if we reindex them with 
injections p and a : K' ~ K' we may define 

En(f,~, p, a) ==	 {d, : p('Y) 2: ~, 'Y E K', 
d, E f-1{O, ... , n} n a-l(~')}. 

We say fisthinwithrespectto. (p,a)ifIEn(f,~,p,a)1~ I~I 

for all n and all ~ E K'. As above we have 

Lemma 3.6. For any injective p, a : K' ~ K' there is an f : 
K' ~ w thin with respect to. (p, a). 

For every 'Y E K' let W, be a countable neighborhood of d, 
such that W, n D == {d,}. The following Lemma is a restate­
ment of Lemma 2 of [N] and its proof is identical. 

Lemma 3.7. For each injection p : K' ~ K', there is an injec­
tion a : K' ~ K' such that p( 'Y) == 8 implies a(W, \ {d,}) ~ 

w8+w. 

We follow Nyikos's proof and define recursively sets D n ~ D, 
An C K ' InJec Ions t· an, Pn : K ~ K and func Ions f_ , . . " t· n: K ' ~ w. 
Let C be the set of limit ordinals in COf(K). Therefore for each 
a E C, Ka' has cardinality K o . Fix Bo ~ K~ for each a E C 
such that IBol == K oand Bon B{j == 0 for each {3 < a fronl C. 
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We can do this by partitioning each interval in ",' into cof ("')
 
many pieces of equal size.
 
Let Do == D, Ao == ",', and Po == l10 == id f ",'. Having Ai, Di, Pi
 
and l1i, let !i be thin with respect to (pi, l1i). For a E C let
 

E(i, a) == Di n UEn(!i, "'a, Pi, l1i). 
n<w 

Then IE(i, a)1 ::; "'a. Let Di+l == UaEC E(i, a) and let Ai+l == 
{1' : d"( E Di+l }. Let Pi+l : ",' ~ ",' be such that for each a E C 

Pi+l : E(i, a) \ U E(i, (3) ~ B a · 

(3ECna 

Pick l1i+l : ",' ~ ",' satisfying the conclusion of Lemma: Pi+l (1') == 

8 implies l1i+l(W"( \ {d"(} ~ w8 + w. 

Claim: nn<w An == 0 

Proof. Suppose ~ E A i +l , then D~ E E(i, a) for some a E C. 
By definition of E(i, a) Pi(~) ~ "'a and by definition of Pi+l, 
"'a > Pi+l(~). Therefore any ~ E nn<w An would define an 
infinite strictly decreasing sequence of ordinals. 

As X is coulltably metacompact, the following claim com­
pletes the proof of 3.3. 

Claim: For each i < w Di \ Di+l is a G8. 

Proof. For each a E C let a(+) be the successor of a in C (so 
a (+) == a + w ). For a E C let 

D (a) == {d"( : "'a ::; Pi (1') < "'a(+) , d"( E D i \ D i+I}. 

Then since ID(a)1 < "', D(a) is a G8. Fix a sequence of open 
neighborhoods of D(a), 

{Vn ( a) : 'n < w} 

such that nn<w Vn(a) == D(a). Also, D(a) n E(i, a) == 0 so for 
each n < w there is an open Un(a) ~ D(a) such that 

Un(a) n j-l{O, ... , n} n l1il(",~) == 0. 
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Furthermor~:assume that for each Q , Un (Q) refines both Vn(Q ) 

and U{W, : 'd, E D(Q)}. Let Un == UoEC Un(Q). We claim that 
nn<w Un == .Di \ Di+1· To see this, fix (3 E K' and fix Q E C 
such that (Ji((3) E [Ko ' Ko (+)). Fix m, and Tl, such that 

(3 f/. Vm(Q) and 
fi((3) == n. 

Let N == max{n,m}. We claim that (3 f/. UN. It suffices to 
show that for each rJ E C, (3 f/. UN(rJ)· 

Case 1: TJ == By choice of m,.Q. 

Case 2: TJ < Q. Notice if d, E D(TJ), then Pi('Y) E K~ hence 
(Ji(W, \ {d,}) ~ K~ while (Ji((3) > K o · Therefore (3 f/. any Ui(rJ) 
for rJ < Q since each Ui(rJ) refines U{W, : 'Y E [K1]' K1](+)) and 
for each such 'Y, (3 f/. W,. 

Case 3: rJ > Q. As fi((3) == n, we chose Un(rJ) so that in 
particular, 

Un(rJ) n fi- 1
( n) n (Jil(K~) == 0. 

But (Ji((3) E [Ko , K o (+)) ~ K1]' Therefore (3 E fi- 1 (n) n (Jil(K~) 
hence (3 f/. Un(TJ) :2 UN(TJ). This completes the proof. 
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