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ON w* AND ABSOLUTELY DIVERGENT SERIES 

PETER VOJTAs 

ABSTRACT. In this paper we summarize some of our 
former results on series, ultrafilters and cardinal charac­
teristics in a new unified manner by Galois-Tukey con­
nections. Using some new observations about the connec­
tion between separative factorization of the comparison 
ordering of divergent series and w* we get a new insight 
into these older results. This gives a new type of char­
acterization of points of w* and a (poss,ibly) new sort of 
duality. 

Using Galois-Tukey connections we rephrase some of our 
former results from [VI], [V2] and [CV] in the language of 
[V3]. We recall some basic facts and introduce notation (to be 
selfcontained) concerning w*-the reminder of the Cech-Stone 
compactification of natural numbers, series and cardinal char­
acteristics. Studying nowhere dense subsets of w* generated by 
series we characterize the separative factorization of the com­
parison ordering of absolutely divergent series (downwards). 
Moreover the same structure concerned upwards gives a new 
type of characterization of points of w* (we show it on Q-points 
and rapid ultrafilters). 

This work was supported by the grant 2/1224/94 of the Slovak Grant 
Agency for Science. 
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THE REMAINDER OF THE CECH-STONE COMPAC'rIFICATION 

OF NATURAL NUMBERS. 

Let w denotes the set of natural numbers, [w]W is the system 
of all infinite subsets of w, [w]<w is the system of all finite 
subsets of w, P(w)/fin is the Boolean algebra of subsets of 
w modulo ideal of finite sets (sometimes seen as [w]W). The 
Stone space of algebra P(w)/fin is denoted w* == St(P(w)/fin) 
and equipped with the topology generated by base consisting of 
sets of form: for A ~ w let A* == {j : j is a uniform ultrafilter on 
wand A E j}. We will often without noting switch from j E w* 
to j ~ [w]W and back. For an ideal I on w, I+ == P(w) \ I 
and FI denotes the dual filter (and vice versa for a filter F 
on w, IF is the dual ideal). Ideals and filters on w can be 
viewed (represented) as subsets of w* in the following way: 
a(I) == U{A* : A E I} is the open set corresponding to I 
and 8(F) == n{ A* : A E F} is the closed set corresponding 
to F. For F, Q ~ P(w) , (F U Q) denotes the smallest filter 
(if at all) generated by F U Q. Note that a(I) is open dense 
iff 8(FI ) is nowhere dense iff I is tall (i.e. (\IX E [w]W)(3Y E 
[X]W)(Y E I)). The mapping i : open(w*) -+ ideals on w 
defined by i (G) == {X ~ w : X* ~ G} is order isomorphism 
from (open(w*),~) into (not onto) (ideals on w,~) in some 
sense inverse to a : ideals on w -+ open(w*) defined above. 
(Similarly for filters, 8 and its inverse.) Standard reference 
sources in topology are [E], [vD], [vM], [W]. 

SERIES, COMPARISON AND IDEALS. 

In the whole paper we deal only with absolute convergence 
and divergence, hence our basic object is W (0, +00), the space 
of all sequences of nonnegative reals. Elements of W (0, +00) 
are usually denoted a, b, c; the n-th entry is a(n) or sometimes 
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£00 == {a E W (0, +00) : lim an < +oo} ,
n-+oo 

ho== {a E W (0, +00) : lim an == O} , 
n-+oo 

Co == {a E W(O, +00) : lim an == O} ,
n-+oo 

and for a, b E W (0, +00) we say that a is eventually dOIIJinated 
by b, denoted a :::;* b, if there is a no such that for all n ~ no 
is an :::; bn. For a E W(O, +00) define 

I a == {x ~ w : L an < +oo} , 
nEX 

denote Fa == FIa . Observe that a E Co iff 8(Fa) is nowhere
 
dense iff a(Ia ) is open dense. Moreover
 
a E £1 iff 8(Fa ) == 0 iff a(Ia ) == w*,
 
a E ho \ Co iff Int(8(Fa )) i= 0 and 8(Fa) i= w*,
 
a E W (0, +00) \ ho iff 8(Fa) == w* iff a(Ia) == 0 (because I a ==
 
[w]<W).
 
Hence a E Co \£1 iff 0 i= 8(Fa) is closed nowhere dense subset of
 
w*, and those we are interested in. Standard reference source
 
for real analysis is [F].
 

CARDINAL CHARACTERISTICS, GALOIS-TUKEY
 

CONNECTIONS.
 

There is a large variety of cardinal characteristics studied 
in applications of set theory in real analysis, topology, alge­
bra etc. (see [vD], [vM] , [V]). An attempt of a unifying ap­
proach was given in [V3] (we follow it here). For arbitrary 
binary relation R we say that D ~ rng(R) is R-dominating 
if (Vx E dom(R))(3y E D)((x, y) E R) and B ~ dom(R) is 
R-unbounded if (Vy E rng(R))(3x E B)((x, y) t/. R). Define 

b(R) == min{IBI : B ~ dom(R) and B is R-unbounded }, 

i)(R) == min{IDI : D ~ rng(R) and D is R-dominating }. 
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Lot of cardinal invariants studied in [vD], [vM], [V] are of this 
form. To prove inequalities between cardinal characteristics we 
introduced in [V3] the following machinery: A pair of functions 
(E, F) is called a Galois-Tukey connection from R to 3 if E : 
dom(R) ~ dom(3) and F: rng(3) ~ rng(R) and (E(x),v) E 
3 implies (x, F(v)) E R. Note that if there is a Galois-Tukey 
connection from R to 3 then 0(3) ::; b(R) and '0(3) ~ 'O(R). 
The fact that there is a conIlection from R to S will be denoted 
by R ~ S. 

NOWHERE DENSE SETS OF w* GENERATED BY SERIES. 

Observe that a ::;* b implies 8(Fa) ~ 8(Fb). 

Lemma. For a, b E W (0, +00) is 8(Fa)n8(Fb) = 8(Fmin(a,b)) = 

8((Fa U Fb))· 

Proof: (1 st eq., ~) Let j E 8(Fa) n 8(Fb) i.e. Fa U Fb ~ j. 
We try to prove Fmin(a,b) ~ j. Suppose Y E Fmin(a,b) i.e. for 
X = w \ Y we have EnEX min(a, b)(n) < +00. Denote Xl = 
{n EX: a(n) < b(n)}, X2 = {n EX: a(n) = b(n)} and 
X3 = {n EX: a(n) > b(n)}. Then Xl E I a because on Xl is 
a(n) = min(a(n), b(n)), similarly X 2 E I a nIb, and X 2 E I b. 
So W \ Xl E Fa ~ j, w \ X2 E Fa ~ j, w \ X3 E Fb ~ j hence 
y == w \ X == n7=1 (w \ Xi) E j. 

(1st eq., 2) Easy. 
(2nd eq.) As w* is regular and all sets involved are closed, it 

is enough to notice that 8(Fa) n 8(Fb) and 8( (Fa U Fb)) have 
same neighborhoods. 

Corollary. 8(Fa ) n 8(Fb) == 0 iff min(a, b) E fl. 

Lemma. 8(Fa ) U 8(Fb) = 8(Fmax(a,b)). 

Proof: (2) Take j E w* such that Fmax(a,b) ~ j we are going 
to prove that either Fa ~ j or Fb ~ j. Suppose not, i.e. we 
have X E Fa \ j and Y E Fb \ j (i.e. EnEw\X a(n) < 00 and 
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EnEw\Y b(n) < (0). But then for Z == (w \ X) n (w \ Y) == 
(w \ (X U Y)) we have 

~ max(a, b)(n) ~ ~ a(n) + ~ b(n) < +00 
nEZ nEw\X nEw\Y 

hence X U Y E Fmax(a,b) ~ j but X U Y E j gives, as j is an 
ultrafilter, either X E j or Y E j contradiction. 

(~) is again easy. 

Definition For a E Co \ £1 and X E [w]W denote a r X series 
defined by 

(a rX)(n) == a(n) if n E X, 
(a rX)(n) == 0 ifn f/.: X. 

Lemma. (i) a r X E Co \ £1 iff X* n 8(Fa ) i= 0 iff X E I:. 
(ii) 8(FafX) == 8(Fa) n X* == 8((FaU {X})). 

Proof: (i) is easy. 
(ii, ~) Let j E 8(Fa) n X* i.e. Fa ~ j, X E j and take 

Y E Fafx. We show that Y E j. Let us calculate how the sum 
EnEw\y(a rX)(n) < 00 is brought up. For nEw \ (X U Y) is 
(a r X)(n) == 0 so remaining part EnEX\y(a r X)(n) < 00 i.e. 
X \ Y E I a so 

w \ (X \ Y) E Fa ~ j and this together with X E j gives 
w \ (X \ Y) n X == X n Y E j hence Y E j. 

(~) as a r X ~ a and X E F afX (if at all) and we are done. 

Corollary. (Va E Co \ £1)(8(Fa ) is dense in itself). 

Proof: If not, then for some X ~ w is 8(Fa ) nx* an ultrafilter, 
but as we can easily see, for all a E Co \ £1, Fa is not an 
ultrafilter. Indeed, any Y E Fa can be split to Y1 , Y2 in such 
a way that EnEY1 a(n) == EnEY2 a(n) == +00, i.e. both Y}, Y2 E 

It· 
Of course not all dense in itself nwd subsets of w* are of form 

8(Fa ), but we do not deal with this characterization problem 
here. 
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We finished this introductory part and we recall now (a re­
formulated version of) results from [VI], [V2] and [CV]. We 
show how they are interrelated and what does this say about 
the structure of nowhere dense subsets of w* generated by se­
rIes. 

RAPID ULTERAFILTERS AND THEIR NONCENTERED
 

VERSION.
 

Definition We define binary relation CONY ~ Co x [w]W as 
follows 

(a,X) E CONY iff L: a(n) < 00. 
nEX 

Theorem 1. (see [VI]). Relation CONVand «*n(ww )2) are 
Galois- Tukey equivalent (i. e. there are Galois- Tukey connec­
tions in both directions). 

Proof: (i) Galois-Tukey connection from (Ww, <*) (exactly speak­
ing we consider only increasing functions) to CONY. For 
J E W w define E(J)(i) = lO~:il) if i E (J(n - l),J(n)) for 
n > 0, else arbitrary and for X E [w]W put F(X) = ex where 
ex is the unique increasing enumeration of X. We have to 
prove that (E(f), X) E CONY implies f <* ex. Indeed, if 
there are infinitely many n's with ex (n) ~ f (n) then 

00 • log(n + 1)L: a(n) = L: a(ex(n)) ~ 11m (n + 1) = +00. 
n-+oo n + 1nEX n=O 

Let us note, that the proof of this part of the theorem owes 
much to a result of E. Coplakova, which was a part of prelim­
inary version of [CY] but did not appear in the final one. 

(ii) conversely for a E Co put H(a)(k) = min{i : (Vj ~ 

i)(a(j) < 2\)} and J«g) = rng(g). Again easily H(a) <* 9 
implies (a,rng(g)) E CONY. 
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Definition (G. Choquet) An ultrafilter j E w* is said to 
be rapid if the family of functions enumerating elements of j, 
{ex: X E j} is a dominating family in (Ww , <*). 

Corollary. TFAE. 

(i) j is rapid. 
(ii)	 (Va E co)(3X E j)(LnEXa(n) < +(0) z.e. (Va E 

co)(3X E j)(X E I a ). 

(iii)	 j E naEco a(Ia ). 

(iv)	 j E w* \ UaEco 8(Fa ). 

Proof (i) ---+ (ii) If {ex: X E j} is dominating then {!«ex): 
X E j} = j is CONY-dominating. !< being that of Theorem 
1 (ii). Conversely (ii) ~ (i) is emphasized by the mapping F 
of Theorem 1 (i). (ii) ~ (iii) ~ (iv) is easy. 

Let us notify (though we will emphasize it later) that this 
gives a new type of characterization of a class of ultrafilters. 

Q-POINTS. 

Similar idea (though not precisely formulated there) is be­
hind the main result of [CV]. Recall that j E w* is a' Q-point 
if for every disjoint partition of w into finite pieces R ~ [w]<w 
there is an X E j such that for all R E R is IX n RI ~ 1. 
In order to fit in the previous pattern we have to change it 
(equivalently) . 
Definition. Denote lR the system of all R ~ [w]<w disjoint 
partitionsofw, put In = {X ~ w: (3k)(VR E R)IRnXI ::; k}. 
The dual filter we denote Fn . For R, S E lR define R ~ S iff 
In ~ Is· 

Observation. TFAE. 

(i) j is a Q-point. 
(ii)	 (Vn E ~)(3X E j)(3k E w)(VR E R)(IR n Xl ~ k) i.e. 

X EIn . 
(iii)	 j E nnElIR a(In ). 
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(iv) j E w* \ UnEJR 8(:Fn). 

Proof: Easy, just observe that if X E j is such that for all 
R E R is IX n RI ~ k we can split X into k disjoint pieces, 
each hitting R at most once and as j is ultrafilter, one of these 
k-many pieces is in j. 

Theorem 2. (see [CV]). There is a Galois-Tukey connection 
from (lR,~) to (Ww, ~*). 

Proof: First for given partition R we construct a mapping fn 
(the E-mapping of the very connection). We follow the proof of 
[CV]. By glueing together elements of R and "rounding" it we 
can obtain an interval partition R' >i= R, defined by function 
fn. By induction, enumerate R == {Rn : nEw}, 

fn(O) == max{max(R) : R E R&R n (0, max(Ro)) =I 0}, 
fn(n + 1) == max{max(R) : R E R&R n (O,max(Rn +1 )+ 

fn(n) + 1) =I 0}, 

put R' == {(fn(n),fn(n+1)): n E w}U{(O,fn(O))}. For 
X E In' take k such that (VR E R')(IX n RI ~ k) then (VR E 
R)(IX n RI ~ 2k + 1). For a monotone function 9 E W w we 
would like to define F(g) a partition such that the apropriate 
implication involved in this connection is valid. F(g) will be an 
interval partition generated by function 9 defined by induction 
g(O) == g(O) +1, g(n +1) == g(g(n) +g(n) +1) +1. Note that if 
for some monotone f E W w dominated by 9 and eE w we have 
f(~) < g(n) ~ f(~ + 1) then g(n + 1) > g(g(n) +g(n) + 1) ~ 

f(y(n) + g(n) + 1) ~ f(f(~) + 1) ~ I(e + 1). Now assume 
E(R) == fn ~* 9 and F(g) is the partition given by g. If 
X ~ wand k E ware such that (VR E F(g))(IX n RI ~ k) 
then (VR E R')(IX n RI ~ 2k + c) (the constant c depending 
on where fron~ 9 dominates In) and (VR E R)(IX n RI < 
2(2k + c) + 1) i.e. E(R) ~* 9 implies R ~ F(g). 
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EXISTENCE THEOREMS. 

Definition Let n(w*) be minimal size of a family of nowhere 
dense subsets of w* covering the whole w*. 

Note first that each Q-point is rapid, but because of the 
later problem of considering properties of induced ordering of 
nwd subsets of w* also downwards we deal with both types of 
existence theorems. As the size of Co \ £1 and of lR is c and 
ideals I a and In are tall it can be proved that t = c implies 
there are Q-points (and rapids) just by induction building a 
tower of witnesses for each a E Co \ £1 (or R E 1R) . Using 
tallness of ideals parallelly we can by induction (under ~ = c) 
even build a MAD-families of such witnesses and every long 
chain in such a matrix (if there are) produces rapids, Q-points. 
Moreover, notice that if n(w*) > c then neither UaEco\ll 8(Fa ) 

nor UnEI. 8(Fn ) can cover the whole w* and hence there are 
rapids a,nd Q-points. (To compare this estimates with that of 
others see exhaustive references in [CV]). Moreover note that 
it is known to be consistent with set-theory that there are no 
P-points and that there are no rapids (see references in [CV]). 
We now give an existence theorem which is stronger (or at least 
not weaker) than those known from literature (see [CV]). 

Corollary. ([CV]). If n(w*) > D = D(Ww, <*) then there are 
Q-points. 

Proof: Using the F mapping of previous theorem we can con­
vert any dominating family D = {go : QED} of (Ww , <*) 
into a family of partitions {F(go) : QED} such that as for 
every R E 1R there is an QED with In ::;* go, and hence 
R ~ F(go) i.e. In 2 I F (9a) = I o (the dual filter denote Fo) 
i.e. 8(Fn.) ~ 8(Fo ). So 

U 8(Fn ) = U8(Fo ). 

REI. oEl) 

But as for any partition R, Fn is nowhere dense in w* and as 
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() < n(w*) these D-many filters canIlot cover the whole w* so 

w* \ U 8(Fn) == w* \ U 8(Fo ) f-: 0 
nE~ oED 

i.e. there are Q-points. 

Similarly we need to estimate the number of series necessary 
to define rapid filters (via induced filters, nowhere dense in w*). 
Though every Q-point is rapid and existence follows, we deal 
with this for other reasons, as mentioned above. 

Definition. 

(i) lFq == {8(Fn ) : R E lR}. 
(ii) lFr == {8(Fa ): a E Co \R1 

}. 

Note that we showed (lFq , ~) -4 (lR, ~) -4 (Ww, ~*) (the first 
connection being easy as In ~ Is implies 8(Fn ) ~ 8(Fs )). A 
similar result holds for IFr. 

Proof: The first connection is easy as a <* b implies I a ~ I b 

and this gives 8(Fa ) ~ 8(Fb). To establish the last, first -4: 

define E(a)(n) == min{i: (\lj > i) a(j) < n~l} and F(f)(i) == 
n~l if i E (f(n),f(n + 1)) fulfills, that E(a) <* f implies 
a <* F(f) conversely for ~ same mappings fulfill F(f) <* b 
implies f <* E(b). 

Corollary. If n(w*) > D then there are rapid ultrafilters. 

Proof: Using F-mapping of connection from previous Theorem 
we convert arbitrary dominating family of (Ww, <*) of minimal 
size into system of nowhere dense sets which covers the same 
portion of w* as all filters generated by series do. But as there 
are not enough of them to cover the whole w*, there are rapid 
ultrafilters. 
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So looking to (lFr,~) and (lFq,~) upwards, both have the 
()-numbers smaller than or equal to ()(Ww , <*) and hence both 
under n(w*) > () define a nonempty class of ultrafilters. 

There is yet another interesting feature of looking to these 
ordering downwards. For Co \ £1 (or even W (0, +00) \ £1) we can 
look to <* as an ordering from the comparison test for abso­
lute divergence. The smaller series the more information about 
divergence it carries (in the forcing sense). Note that for ab­
solute convergence the analogous problem dealt with upwards 
directed structure. Nevertheless here the problem is "Boolean 
like", as there are two divergent series (e.g. one with diver­
gency concentrated to odd numbers (i.e. 8(Fa ) ~ (2N + 1)*) 
and one with divergency concentraced to even number (i.e. 
8(Fa ) ~ (2N)*)) with no divergent series below both of them. 
So the problem of how efficient is the comparison ordering 
for the absolute divergence is no more a problem of charac­
terizing some cardinal invariants (as b(Co \ £1, ~*) == 2 and 
()(Co \ £1, ~*) == 2W

) but more a problem of characterizing the 
Boolean structure generated by this partial ordering. 

PARTIAL ORDERS AND COMPLETE BOOLEAN ALGEBRAS. 

Assume (P, <) is a partial ordering without the smallest el­
ement. We say that x, yEP are compatible (x I y) if there is 
a z E P with both z :::; x and z :::; y. Elements x,y E Pare 
incompatible (x -l y) if they are not compatible. For a partial 
ordering (P, <) we can find a complete Boolean algebra B such 
that (P, <) is order preserving mapped onto a dense subset of 
B in the following way (see [J]). On P define a topology gen­
erated by basic open sets of the form {x : x :::; p} for pEP 
(called the cut-topology). The system of regular open sets in 
this topology forms a complete Boolean algebra and for every 
p there can be assigned the set Int (cl( {x : x :::; p})). This is 
an order preserving mapping from (P, <) into (RO(P, <), ~). 

This mapping is one-to-one if P is separative (i.e. if for any 
x i y there is a z :::; x with z 1- y). 
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Theorem 4. ([V2]). If lJ == cf(2W 
) then RO(£oo \ £1, ~*) ~ 

RO(P(w)/fin). 

This theorem states that looking to (£00 \ £1, :::;*) as a par­
tial ordering downwards, it generates (uniquely) a complete 
Boolean algebra (which at least consistently is isomorphic to 
the complete Boolean algebra of regular open subsets of w*). 

SEPARATIVE FACTORIZATION OF THE COMPARISON
 

ORDERING OF DIVERGENT SERIES AND w*.
 

Note that the ordering (£00 \ £1 , ~*) is not separative because 
e.g. {~}~=o i* {2~ }~=o but for every a E £00 \ £1 , a ~* 
{~}~=o,wehavealsomin(a(n)';n) ~ ~min(a(n),~) tf-:£1. (For 
terminology needed see [J].) In [J] there is described a way, how 
a partial ordering which is not separative can be converted to 
a separative one: factorizing by a suitable equivalence, which 
topologically says, the generated cuts have the same interior 
of closure. 

Lemma. TFAE. 

(i) a I b. 
(ii) min(a, b) tf-: £1. 

(iii) fJ (Fa) n fJ (Fb) =1= 0. 

Proof: (i) f-4 (ii) by the definition of being compatible. (ii) f-4 

(iii) follows from Lemma stating fJ(Fa) n fJ(:Fb) == fJ(Fmin(a,b)). 

Theorem. In the partial ordering (£00 \ £1, ~*) with the cut­

topology
 
Int( cl( {c : c ~* a})) == Int( cl({c : c ~* b})) iff fJ(:Fa) == fJ(:Fb).
 

Proof: By [J] we see, that it is enough to show that (Vc)(c Ia f-4 

c I b) iff fJ(Fa) == fJ(:Fb). 
Sufficiency. Assume fJ(:Fa) == fJ(:Fb) and we have a c with c I a 

by previous Lemma c Ia iff fJ(Fc)nfJ(Fa) =1= 0iff fJ(:Fc)nfJ(:Fb) =I 
oiff c I b. 
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Necessity. Assume by contradiction that (Vc)(c I a ~ c I b) 
but, say, there is a j E 8(Fa ) \ 8(Fb). As w* is a regular 
topological space there is an X E j with X* n 8(Fb) == 0. As 
j E 8(Fa ) n X* the series c == a r X rt £1, clearly c I a and 
c ..1 b, contradiction. 

Corollary. The ordering (IFr,~) is the canonical separative 
factorization of the ordering (co \ £1, :::;*). 

We finish our paper by the following motivation of a prob­
lem. We showed that rapid ultrafilters and Q-points in w* are 
defined (besides topological and combinatorial definitions) as 
those points in w* which are not covered by a certain family of 
nowhere dense sets. (It is not our aim to show here that this is 
also true for other classes of ultrafilters in w*.) Up to this the 
rt)le of a family IF of nowhere dense subsets of w* is described 
by the number i1(IF, ~) as the number of nwd sets necessary to 
cover everything what is possible to cover by whole IF, which 
leads to theorems of type n(w*) > i1(IF,~) then there are ''IF­
points". Moreover we showed, that (at least for IFr) this fam­
ily (IF,~) considered downwards as a partial ordering can be 
Boolean-isomorphic to some other Boolean algebra (we showed 
at least under p == cf(2W 

) that RO(IFr,~) ~ RO(w*)). This can 
be also shown for other types of ultrafilters (see e.g. [KV]). But 
these are not problems we would like to point out. 

We would like to emphasize the problem which we find topo­
logically interesting: Characterize those families IF of nowhere 
dense subsets of w* which are (at least consistently) Boolean 
isomorphic to RO(w*) (i.e. RO(IF,~) ~ RO(w*)). Moreover 
we have a feeling that there is a new form of duality hidden 
behind this phenomenon, though we are not able to formulate 
it precisely. 
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