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ON w* AND ABSOLUTELY DIVERGENT SERIES

PETER VOJTAS

ABSTRACT. In this paper we summarize some of our
former results on series, ultrafilters and cardinal charac-
teristics in a new unified manner by Galois-Tukey con-
nections. Using some new observations about the connec-
tion between separative factorization of the comparison
ordering of divergent series and w* we get a new insight
into these older results. This gives a new type of char-
acterization of points of w* and a (possibly) new sort of
duality.

Using Galois-Tukey connections we rephrase some of our
former results from [V1], [V2] and [CV] in the language of
[V3]. We recall some basic facts and introduce notation (to be
selfcontained) concerning w*—the reminder of the Cech-Stone
compactification of natural numbers, series and cardinal char-
acteristics. Studying nowhere dense subsets of w* generated by
series we characterize the separative factorization of the com-
parison ordering of absolutely divergent series (downwards).
Moreover the same structure concerned upwards gives a new
type of characterization of points of w* (we show it on Q-points
and rapid ultrafilters).

This work was supported by the grant 2/1224/94 of the Slovak Grant
Agency for Science.
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THE REMAINDER OF THE CECH-STONE COMPACTIFICATION
OF NATURAL NUMBERS.

Let w denotes the set of natural numbers, [w]“ is the system
of all infinite subsets of w, [w]|<¥ is the system of all finite
subsets of w, P(w)/fin is the Boolean algebra of subsets of
w modulo ideal of finite sets (sometimes seen as [w]|“). The
Stone space of algebra P(w)/fin is denoted w* = St(P(w)/fin)
and equipped with the topology generated by base consisting of
sets of form: for A C wlet A* = {j : j is a uniform ultrafilter on
wand A € j}. We will often without noting switch from j € w*
to j C [w]* and back. For an ideal Z on w, I* = P(w)\ Z
and F7 denotes the dual filter (and vice versa for a filter F
on w, Iy is the dual ideal). Ideals and filters on w can be
viewed (represented) as subsets of w* in the following way:
o(Z) = U{A* : A € T} is the open set corresponding to Z
and 6(F) = N{A* : A € F} is the closed set corresponding
to F. For F,G C P(w) , (F UG) denotes the smallest filter
(if at all) generated by F U G. Note that o(Z) is open dense
iff 6(F7) is nowhere dense iff 7 is tall (i.e. (VX € [w]¥)(TY €
[X]“)(Y € I)). The mapping i : open(w*) — ideals on w
defined by i(G) = {X C w : X* C G} is order isomorphism
from (open(w*),C) into (not onto) (ideals on w,C) in some
sense inverse to o : ideals on w — open(w*) defined above.
(Similarly for filters, é and its inverse.) Standard reference
sources in topology are [E], [vD], [vM], [W].

SERIES, COMPARISON AND IDEALS.

In the whole paper we deal only with absolute convergence
and divergence, hence our basic object is “(0, +00), the space
of all sequences of nonnegative reals. Elements of “(0,+00)
are usually denoted a, b, ¢; the n-th entry is a(n) or sometimes
ay,.

0= {aE“’(O,—}-oo):Zan <+oo},

n=0
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° = {a € “(0,400) : lima, < -I—oo} )

ho = {a € “(0,400) : lim a, = 0},

co = {a € “(0,400) : lim a, = 0},

and for a,b € “(0,+00) we say that a is eventually dominated
by b, denoted a <* b, if there is a ngy such that for all n > n,
is a, <b,. For a € “(0,400) define

Ia:{ng: Zan<+oo},

neX
denote F, = Fz,. Observe that a € ¢y iff §(F,) is nowhere
dense iff 0(Z,) is open dense. Moreover
a €t iff §(F,) =0iff 0(Z,) = w*,
a € ho\ o iff Int(8(F,)) # 0 and 6(F,) # w*,
a € “(0,400) \ ho iff §(F,) = w* iff 0(Z,) = 0 (because I, =
[w]=).
Hence a € ¢o\ £ iff @ # 6(F,) is closed nowhere dense subset of
w*, and those we are interested in. Standard reference source
for real analysis is [F].

CARDINAL CHARACTERISTICS, GALOIS-TUKEY
CONNECTIONS.

There is a large variety of cardinal characteristics studied
in applications of set theory in real analysis, topology, alge-
bra etc. (see [vD], [vM], [V]). An attempt of a unifying ap-
proach was given in [V3] (we follow it here). For arbitrary
binary relation R we say that D C rng(R) is R-dominating
if (Vz € dom(R))(Jy € D)((z,y) € R) and B C dom(R) is
R-unbounded if (Vy € rng(R))(3z € B)((z,y) ¢ R). Define

b(R) = min{|B| : B C dom(R) and B is R-unbounded },
9(R) = min{|D| : D C rng(R) and D is R-dominating }.
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Lot of cardinal invariants studied in [vD], [vM], [V] are of this
form. To prove inequalities between cardinal characteristics we
introduced in [V3] the following machinery: A pair of functions
(E, F) is called a Galois-Tukey connection from R to S if E :
dom(R) — dom(S) and F : rng(S) — rng(R) and (E(z),v) €
S implies (z, F(v)) € R. Note that if there is a Galois-Tukey
connection from R to S then b(S) < b(R) and 9(S) > d(R).
The fact that there is a connection from R to S will be denoted
by R— S.

NOWHERE DENSE SETS OF w* GENERATED BY SERIES.
Observe that a <* b implies §(F,) C 6(F3).

Lemma. Fora,b € “(0,4+00) is 6(F,)N6(Fy) = 6(Frmin(ap)) =
S((Fa U Fp)).

Proof: (1** eq., C) Let j € 6(F,) N&(Fp) i.e. FoUF, C j.
We try to prove Frin(ap) € j. Suppose Y € Frjn(ap) i-e. for
X =w\Y we have }_,cx min(a, b)(n) < +oco0. Denote X; =
{n € X :a(n) <bn)}, X ={n € X :a(n) = bn)} and
X3 ={n € X :a(n) > b(n)}. Then X; € I, because on X is
a(n) = min(a(n), b(n)), similarly X, € 7, N T, and X, € T,.
SOW\XI € Fa gjaw\XZ € Fa gj’w\XSEFb gjhence
Y =w\X =N (w\X;) €j.

(1** eq., D) Easy.

(27 eq.) As w* is regular and all sets involved are closed, it
is enough to notice that 6(F,) N 6(F) and 6((F, U Fs)) have

same neighborhoods.
Corollary. §(F,) N 8(Fy) = 0 iff min(a,bd) € £*.
Lemma. §(F,) U §(Fp) = 6(Fmax(ab))-

Proof: (2) Take j € w* such that Frayap) € j we are going
to prove that either F, C j or F, C j. Suppose not, i.e. we
have X € F, \jand Y € F \j (i.e. Tnewx ¢(n) < oo and
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Yonew\y b(n) < o0). But then for Z = (w\ X)N(w\Y) =
(w\ (XUY)) we have

Y max(a,b)(n) < Y a(n)+ > bn) < +oo
n€z new\X new\Y
hence X UY € Frax@p) € J but X UY € j gives, as j is an
ultrafilter, either X € 7 or Y € j contradiction.
(C) is again easy.

Definition For a € ¢o \ ! and X € [w]* denote a | X series
defined by
(a ] X)(n)=a(n)ifn € X,
(a] X)(n)=0ifn ¢ X.

Lemma. (i) a | X € o\ if X*N§(F,)#0 iff X € Z}.
(i) 8(Farx) = 6(Fo) N X* = 6((Fo U {X})).

Proof: (1) is easy.

(ii, D) Let j € 6(F,) N X* ie. F, € j, X € j and take
Y € Fax. We show that Y € 7. Let us calculate how the sum
Ynew\y (@ [ X)(n) < oo is brought up. Forn € w\ (X UY) is
(a I X)(n) = 0 so remaining part 3,cx\y(a [ X)(n) < oo i.e.
X\Y €T, so

w\ (X \Y) e F, C s and this together with X € j gives
w\(X\Y)NX=XNY €jhenceY €.

(C)asa | X <aand X € Foix (if at all) and we are done.

Corollary. (Va € co \ £')(6(F,) is dense in itself ).

Proof: If not, then for some X C w is §(F,)NX* an ultrafilter,
but as we can easily see, for all a € ¢ \ £}, F, is not an
ultrafilter. Indeed, any Y € F, can be split to Y7,Y> in such
a way that Y, cy, a(n) = Y,ey, a(n) = +o0o, i.e. both Y;,Y; €
Tr.

Of course not all dense in itself nwd subsets of w* are of form
6(F.), but we do not deal with this characterization problem
here.
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We finished this introductory part and we recall now (a re-
formulated version of) results from [V1], [V2] and [CV]. We
show how they are interrelated and what does this say about
the structure of nowhere dense subsets of w* generated by se-
ries.

RAPID ULTERAFILTERS AND THEIR NONCENTERED
VERSION.

Definition We define binary relation CONV C ¢y x [w]“ as
follows

(a,X) € CONViff } a(n) < co.

neX

Theorem 1. (see [V1]). Relation CONV and (<*N(“w)?) are
Galois-Tukey equivalent (i.e. there are Galois-Tukey connec-
tions in both directions).

Proof: (i) Galois-Tukey connection from (“w, <*) (exactly speak-
ing we consider only increasing functions) to CONV. For

f € “w define E(f)(i) = 8 if i € (f(n — 1), f(n)) for
n > 0, else arbitrary and for X € [w]“ put F(X) = ex where
ex is the unique increasing enumeration of X. We have to

prove that (E(f),X) € CONV implies f <* ex. Indeed, if
there are infinitely many n’s with ex(n) < f(n) then

> alm) = 3 alex(n) > Jim(n+ DB — oo

Let us note, that the proof of this part of the theorem owes
much to a result of E. Coplakova, which was a part of prelim-
inary version of [CV] but did not appear in the final one.

(ii) conversely for a € ¢p put H(a)(k) = min{: : (Vj >
)(a(j) < %)} and K(g) = rng(g). Again easily H(a) <* g
implies (a,rng(g)) € CONV.



ON w* AND ABSOLUTELY DIVERGENT SERIES 341

Definition (G. Choquet) An ultrafilter j € w* is said to
be rapid if the family of functions enumerating elements of j,
{ex : X € j} is a dominating family in (“w, <*).

Corollary. TFAE.

(1) j is rapid.

(i) (Va € ¢)(IX € j)(Trexa(n) < +o0) te. (Va €

co)(3X € j)(X € Lo).

(111) ] € naEco J(Ia)'

(iv) j € w* \ Uaee, 6(Fa)-
Proof (i) — (ii) If {ex : X € j} is dominating then {K(ex) :
X € j} = j is CONV-dominating. K being that of Theorem
1 (ii). Conversely (ii) — (i) is emphasized by the mapping F
of Theorem 1 (i). (ii) « (iii) <> (iv) is easy.

Let us notify (though we will emphasize it later) that this
gives a new type of characterization of a class of ultrafilters.

(Q-POINTS.

Similar idea (though not precisely formulated there) is be-
hind the main result of [CV]. Recall that j € w* is a Q-point
if for every disjoint partition of w into finite pieces R C [w]<*
there is an X € j such that for all R € R is | X N R| < 1.
In order to fit in the previous pattern we have to change it
(equivalently).
Definition. Denote R the system of all R C [w]<“ disjoint
partitions of w, put Zr = {X C w: (3k)(VR € R)|RNX| < k}.
The dual filter we denote Fr. For R,S € R define R < § iff
Ir 2 Is.
Observation. TFAF.

(i) 7 s a Q-point.
(i) (VR e R)(IX € j)(Fk e w)(VR € R)(|[RN X| < k) i.e.
X € Ix.
(iii) j € Nrer o(Zr)-
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(iv) 7 € w* \ Urer 6(Fr).

Proof: Easy, just observe that if X € j is such that for all
R € Ris [X N R| < k we can split X into k disjoint pieces,
each hitting R at most once and as j is ultrafilter, one of these
k-many pieces is in j.

Theorem 2. (see [CV]). There is a Galois-Tukey connection
from (R, X) to (“w, <*).

Proof: First for given partition R we construct a mapping fr
(the E-mapping of the very connection). We follow the proof of
[CV]. By glueing together elements of R and "rounding” it we
can obtain an interval partition R’ = R, defined by function
fr. By induction, enumerate R = {R,, : n € w},

fr(0) = max{max(R) : R € R&RN (0, max(Ry,)) # 0},
fr(n + 1) = max{max(R) : R € R&R N (0, max(R,4;)+
fr(n) +1) # 0},

put R' = {(fr(n), fr(n + 1)) : n € w} U {(0, fr(0))}. For
X € Ir: take k such that (VR € R')(]X N R| < k) then (VR €
R)(IX N R| < 2k + 1). For a monotone function g € “w we
would like to define F(g) a partition such that the apropriate
implication involved in this connection is valid. F'(g) will be an
interval partition generated by function g defined by induction
7(0) = ¢(0)+1,g(n+1) = g(g(n) + g(n) + 1) + 1. Note that if
for some monotone f € “w dominated by ¢g and ¢ € w we have
7€) < g(n) < f(€ +1) then g(n +1) > g(g(n) + g(n) + 1) >
F(@(n) + 9(m) +1) = F(F() +1) > F(€ +1). Now assume
E(R) = fr <* g and F(g) is the partition given by g. If
X C w and k € w are such that (VR € F(g))(|X N R| < k)
then (VR € R')(JX N R| < 2k + ¢) (the constant ¢ depending
on where from g dominates fz) and (VR € R)(|X N R| <
2(2k +¢) + 1) i.e. E(R) <* g implies R < F(g).
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EXISTENCE THEOREMS.

Definition Let n(w*) be minimal size of a family of nowhere
dense subsets of w* covering the whole w*.

Note first that each Q-point is rapid, but because of the
later problem of considering properties of induced ordering of
nwd subsets of w* also downwards we deal with both types of
existence theorems. As the size of ¢ \ #! and of R is ¢ and
ideals 7, and Tx are tall it can be proved that t = ¢ implies
there are Q-points (and rapids) just by induction building a
tower of witnesses for each a € ¢, \ £! (or R € R). Using
tallness of ideals parallelly we can by induction (under h = ¢)
even build a MAD-families of such witnesses and every long
chain in such a matrix (if there are) produces rapids, Q-points.
Moreover, notice that if n(w*) > ¢ then neither U,¢.o\n 6(Fa)
nor Urer 6(Fr) can cover the whole w* and hence there are
rapids and Q-points. (To compare this estimates with that of
others see exhaustive references in [CV]). Moreover note that
it is known to be consistent with set-theory that there are no
P-points and that there are no rapids (see references in [CV]).
We now give an existence theorem which is stronger (or at least
not weaker) than those known from literature (see [CV]).

Corollary. ([CV]). If n(w*) > 0 = ?(“w, <*) then there are
Q-points.

Proof: Using the F' mapping of previous theorem we can con-
vert any dominating family D = {go : @ € 0} of (“w, <)
into a family of partitions {F(g,) : @ € 0} such that as for
every R € R there is an a € 9 with fr <* g,, and hence
R < F(go) i.e. Ir 2 Ip(y,) = Lo (the dual filter denote F,)
ie. 6(Fr) C 6(F4)- So

U 6(F=) = U 8(Fa).

REeR a€D

But as for any partition R, Fg is nowhere dense in w* and as
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0 < n(w*) these 9-many filters cannot cover the whole w* so

W\ U 8§(Fr) =w \ U 6(Fa) #0

ReER a€d

i.e. there are Q-points.

Similarly we need to estimate the number of series necessary
to define rapid filters (via induced filters, nowhere dense in w*).
Though every Q-point is rapid and existence follows, we deal
with this for other reasons, as mentioned above.

Definition.
(i) F, = {6(Fr): R € R}.
(ii) F, = {6(F.) :a € co \ £'}.

Note that we showed (F,,C) — (R, %) — (“w, <*) (the first
connection being easy as Ir 2 Zs implies §(Fr) C 6(Fs)). A
similar result holds for F,.

Theorem 3. (F,,C) — (¢ \ £}, <*) & (Yw, <*).

Proof: The first connection is easy as a <* b implies Z, D T,
and this gives 6(F,) C §(F;). To establish the last, first —:
define E(a)(n) = min{i : (Vj > i) a(j) < 5} and F(f)(i) =
n—1+—1 if ¢ € (f(n), f(n + 1)) fulfills, that F(a) <* f implies
a <* F(f) conversely for « same mappings fulfill F(f) <* b

implies f <* E(b).

Corollary. If n(w*) > 0 then there are rapid ultrafilters.

Proof: Using F-mapping of connection from previous Theorem
we convert arbitrary dominating family of (“w, <*) of minimal
size into system of nowhere dense sets which covers the same
portion of w* as all filters generated by series do. But as there
are not enough of them to cover the whole w*, there are rapid
ultrafilters.
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So looking to (F,,C) and (F,,C) upwards, both have the
9-numbers smaller than or equal to 9(“w, <*) and hence both
under n(w*) > 0 define a nonempty class of ultrafilters.

There is yet another interesting feature of looking to these
ordering downwards. For ¢\ £! (or even “(0, +00) \ £!) we can
look to <* as an ordering from the comparison test for abso-
lute divergence. The smaller series the more information about
divergence it carries (in the forcing sense). Note that for ab-
solute convergence the analogous problem dealt with upwards
directed structure. Nevertheless here the problem is “Boolean
like”, as there are two divergent series (e.g. one with diver-
gency concentrated to odd numbers (i.e. §(F,) C (2N + 1)*)
and one with divergency concentraced to even number (i.e.
8(F,) C (2N)*)) with no divergent series below both of them.
So the problem of how efficient is the comparison ordering
for the absolute divergence is no more a problem of charac-
terizing some cardinal invariants (as b(co \ ¢!,>*) = 2 and
0(co \ £}, >*) = 2*) but more a problem of characterizing the
Boolean structure generated by this partial ordering.

PARTIAL ORDERS AND COMPLETE BOOLEAN ALGEBRAS.

Assume (P, <) is a partial ordering without the smallest el-
ement. We say that z,y € P are compatible (z | y) if there is
a z € P with both z < z and z < y. Elements z,y € P are
incompatible (z L y) if they are not compatible. For a partial
ordering (P, <) we can find a complete Boolean algebra B such
that (P, <) is order preserving mapped onto a dense subset of
B in the following way (see [J]). On P define a topology gen-
erated by basic open sets of the form {z : ¢ < p} for p € P
(called the cut-topology). The system of regular open sets in
this topology forms a complete Boolean algebra and for every
p there can be assigned the set Int(cl({z : z < p})). This is
an order preserving mapping from (P, <) into (RO(P, <), C).
This mapping is one-to-one if P is separative (i.e. if for any
rz £ y there is a z < z with z L y).
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Theorem 4. ([V2]). If p = cf(2¥) then RO({> \ £}, <*) =
RO(P(w)/fin).

This theorem states that looking to (£ \ £},<*) as a par-
tial ordering downwards, it generates (uniquely) a complete
Boolean algebra (which at least consistently is isomorphic to
the complete Boolean algebra of regular open subsets of w*).

SEPARATIVE FACTORIZATION OF THE COMPARISON
ORDERING OF DIVERGENT SERIES AND w*.

Note that the ordering (£°°\ £}, <*) is not separative because
eg. {112, £ {55152, but for every a € £\ £* | a <*
{1}22,, we have also min(a(n), 5~) > ; min(a(n), L) ¢ £*. (For
terminology needed see [J].) In [J] there is described a way, how
a partial ordering which is not separative can be converted to
a separative one: factorizing by a suitable equivalence, which
topologically says, the generated cuts have the same interior
of closure.

Lemma. TFAE.
(i) a | b.
(ii) min(a,b) & £*.
(i) 86(F.) N &(Fp) # 0.

Proof: (i) <> (ii) by the definition of being compatible. (ii) <
(iii) follows from Lemma stating 6(F,) N 6(F;) = 6(Frmin(ap))-

Theorem. In the partial ordering (£ \ £}, <*) with the cut-
topology

Int(cl({c: c <* a})) = Int(cl({c: ¢ <* b})) iff 6(F.) = 8(Fs).

Proof: By [J] we see, that it is enough to show that (Vc)(c|a <
c | b)iff 6(F,) = 6(F).

Sufficiency. Assume §(F,) = 6(F;) and we have a c withc | a
by previous Lemma c | a iff §(F.)NE(F,) # 0 iff 6(F.)N6(Fs) #
0iff c| b



ON w* AND ABSOLUTELY DIVERGENT SERIES 347

Necessity. Assume by contradiction that (Ve)(c | a < ¢ | b)
but, say, there is a j € 6(F,) \ 6(F). As w* is a regular
topological space there is an X € 5 with X* N §(F;) = 0. As
J € 6(F,) N X* the series ¢ = a [ X ¢ £, clearly c | a and
¢ L b, contradiction.

Corollary. The ordering (F,,C) is the canonical separative
factorization of the ordering (co \ £',<*).

We finish our paper by the following motivation of a prob-
lem. We showed that rapid ultrafilters and Q-points in w* are
defined (besides topological and combinatorial definitions) as
those points in w* which are not covered by a certain family of
nowhere dense sets. (It is not our aim to show here that this is
also true for other classes of ultrafilters in w*.) Up to this the
role of a family F of nowhere dense subsets of w* is described
by the number 9(F, C) as the number of nwd sets necessary to
cover everything what is possible to cover by whole F, which
leads to theorems of type n(w*) > d(F,C) then there are “F-
points”. Moreover we showed, that (at least for F,) this fam-
ily (F,C) considered downwards as a partial ordering can be
Boolean-isomorphic to some other Boolean algebra (we showed
at least under p = cf(2*) that RO(F,, C) = RO(w*)). This can
be also shown for other types of ultrafilters (see e.g. [KV]). But
these are not problems we would like to point out.

We would like to emphasize the problem which we find topo-
logically interesting: Characterize those families F of nowhere
dense subsets of w* which are (at least consistently) Boolean
isomorphic to RO(w*) (i.e. RO(F,C) = RO(w*)). Moreover
we have a feeling that there is a new form of duality hidden
behind this phenomenon, though we are not able to formulate
it precisely.
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