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ABSTRACT. The purpose of this article is to illustrate
the use of elementary submodels in the theory of cardinal
functions.

1. INTRODUCTION AND PRELIMINARIES

In this paper we prove many classical results on cardinal
functions in the language of Skolem functions or elementary
submodels. This language allows the main ideas to emerge
from what would otherwise be a mass of technical details.
The key for such applications is the following weak form of
the Lowenheim-Skolem theorem (see [W2] Proposition 1, [Ku]
Theorem 7.8 and [Je] Lemma 11.2).

Proposition 1. Let ¢(z,vq,...,v,) be a formula of set-theory
with free variables x and the vis. If A is any set, then there
is a set M D A such that (IM| < |A| + w and, whenever
there are mg,....,m, € M such that there is some x such
that ¢(z,mo,...,my), then there is some z € M such that
é(z, mo,...,m,) (we say that M reflects the formula Iz¢).

We can also find a single M which works for finitely many
formulas simultaneously.

(*) Supported by the Consiglio Nazionale delle Ricerche, Italy
(**) Supported by the Natural Sciences and Engineering Research
Council of Canada.
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Proof: Construct inductively a sequence of sets {M; : 1 € w}
so that Mo = A, (Vi € w) Mi41 D M;, |[M;| < |My| + w and so
that , whenever, there are my,...,m, € M; such that there is
some z such that ¢(z,my,...,m,) then there is some z € M;,,
such that ¢(z,my,...,m,). Now let M = |U{M; : i € w}, then
M| < |A| + w and M reflects the formula Jz¢.

An obvious modification of the above proof gives a set M
which works for finitely many formulas simultaneously.

Corollary 2. There are three formulas so that, if M satisfies
Proposition 1 for these formulas and a set A, then every finite
subset of M s an element of M.

Proof: Let us consider the following formulas :

é1(z,v0) says that z = {vo}; #2(z,v0,v1) says that z =
vo U v1, ¢3(z) says that Vw € z(w # w).

Now let M be a set such that A ¢ M, |IM| < |A| + w and
M reflects Az, Jzp,, Az 3.

We claim that every finite subset of M is an element of M.
By induction on n, we show that VF C M (|[F|=n — F €

If n =0 then F =0 and F € M (since M reflects Jz¢s ).
If we know it for n and ' C M has n+1 elements, let m € F,
then {m} € M (since M reflects 3z¢;) and F \ {m} € M.
Now let mg = {m}, m; = F'\ {m}, so there is some z such that
bo(z, Mo, m1), since M reflects Iz ¢, there exists some z € M
such that ¢y(z,mg,m;), 1. c=2={m}U(F\{m})=F €
M.

Proposition 3. Let k be an infinite cardinal number. If A is
a set such that |A| < 2" and ¢ is a formula of set-theory then
there is a set M such that A C M, |\M| = 2%, M reflects Iz ¢
and moreover M is closed under k-sequences (i.e. [M]SF C

M).

Proof: Let Mo = A and for every a € (0,x%) let M, be a set
such that Mz U [M3]SF C M, VB € a, IM,| < 25 and M,
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reflects Jzp. Let M = Uycur M, clearly A C M, (M| =2
and M reflects Iz¢ ( let my,...,m, € M such that there is
some z such that ¢(z,m,...,my,), then there is an a € (0, %)
such that my,...,m, € M,, M, reflects Jz¢ so there is some
r € M, C M such that ¢(z, mg,...,m,) .

It remains to show thaat M is closed under k-sequences.
Let S = {my : A € A} C M and |A| < k. Since there is a
B € &t such that m, € Mg for every A € A it follows that
S € [Mg]*" C Mg41. Hence S € M.

Another result which is used frequently in elementary sub-
models arguments is the following

Lemma 4. Let £ be an infinite cardinal number. There are
two formulas so that, if M satisfies Proposition 1 for these
formulas and a set A and if Kk C A, Kk € A, E € M and
|E| < &, then E C M.

Proof: The formula ¢o(z,vo,v1) says that z is an onto mapping
from wvg to vy and the formula ¢(z,vo, v1,v2,v3) says that vz
is an onto mapping from vy to v1, v2 € Vo and z = v3(v2).
Suppose M satisfies Proposition 1 for ¢o, ¢1, and A. If E € M
and |E| < k, since k € M we can apply Proposition 1 to
¢o to obtain 7 € M which is an onto mapping from « to
E (let mg = k and m; = E, so there is some z such that
do(z, Mo, m;), M reflects Iz, so there is some # € M such
that ¢o(,mo, m1)).

Now if e € E and n(a) = e, then we can apply Proposition
1 to ¢; to obtain £ € M such that z = 7(a) (let mo = &,
m; = E, my = a and m3 = =, so there is some z such that
é1(z, mo, m1, Mg, m3), since M reflects 3z ¢, there is some z €
M such that ¢,(z,mo, m1,my,m3)). Now e = n(a) = z € M.
Since e was an arbitrary element of E, we have shown that

EcM.

Now let us see how we can use Proposition 1 (we refer the
reader to the Introduction of [W2] for more extensive informa-
tions).
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Example 5. ([St]) Let X be countably compact and B any sub-
set of X of cardinality < 2%. Then there ezists a countably
compact subset G of X such that B C G and |G| < 2%,

Proof: (“formal”) Let ¢(z,vo,v1,v2) be the formula

T € yg AVw € vi[(z € w) — (JwNwy| = |vg])]

or, in plain language, “z is a complete accumulation point of
v, in the topological space (vg,v1)”.

Let A= BU{X,7} (where 7 is the topology on X), apply
Proposition 3 to obtain a set M such that A ¢ M, |M| = 2%,
M reflects the formula Jz¢ and is closed under w-sequences.
We claim that G = M N X has the required properties. Clearly
B C G and |G| < 2%, it remains to show that G is countably
compact. Let S € [G]¥, then S € M (since S € [M]* and
M is closed under w-sequences). Now let mg = X, m; =
T, my = S, by the countable compactness of X it follows
that there exists some z such that ¢(z,mg,m;,my). Since
mg, mi,my € M and M reflects dz¢ there is some z € M
such that ¢(z,mo,m1,my), i.e. there exists a complete accu-
mulation point of S in G, therefore G is countably compact.

Proof: (“in practice”) Take an elementary submodel M of car-
dinality 2% which contains X, each element of B and which
is closed under w-sequences. Let G = M N X. We show that
G is countably compact. Let S be a countably infinite subset
of G. Since M is closed under w-sequences we know S € M.
X is countably compact so there is a point z € X which is
a complete accumulation point of S in X. Hence, by elemen-
tarity, there is some z € X N M = G which is a complete
accumulation point of S in X (and hence in G).

Example 6. ([Po] ) Every first countable Hausdor[f space with
a dense subset of cardinality < 2% has cardinality < 2%,

Proof: (“formal”) Let ¢(z,vo,v;,v2) be the formula

T € vy AVw € vz € w — |v1 \ w| < Ryp)
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or, in plain language, “all but finitely many points of v; lie
inside any open set in (v, vg) which contains z”. Let D be a
dense subset of X such that |[D| < 2% andlet A = DU{X,7}.
Apply Proposition 3 to obtain a set M such that A C M,
|IM| = 2% M reflects Iz, and it is closed under w-sequences.
We claim that X N M is closed. If £ € X N M then there is
a sequence {Z, }neco in X N M such that z, — z. Since {z, :
n € w} € [M]5* and M is closed under w-sequences, it follows
that {z, : n € w} € M. Now let mo = 7, m; = {z, }new and
my = X. Since there is some z such that ¢(z, mo, m1,m2) (
le., £, — ), mo,mi,my € M, and M reflects Iz¢, there
is also some y € M such that ¢(y, mg,mq1,m2), i€, z, — y.
We know that X is T, and so y = z € X N M. Therefore
X=DcCcXNM=XNM and X C M, hence | X| < 2%,

Proof: (“in practice”) Let D be a dense subset of X such that
|D| < 2%. Take an elementary submodel M of cardinality 2%
which contains X, each element of D and which is closed under
w-sequences. We show that X N M is closed. If z € X N M,
then there is a sequence {z, }nec, C X N M such that z, — z.
Clearly {z,},c, = {Zn}tnew U {z}. Now {z,},, is definable
in M (see the remark below) so {z.},., € M. Therefore
m’néw C M (apply Lemma 4), so z € X N M. Hence X =
DcXNM=XnNM, therefore X C M and | X| < 2%,

Remark 7. In the above proof we said that {z,},¢, € M
because it is “definable in M”. This means, in our case, that
M was implicitly chosen to reflect also the formula 3zt where

Y(z, v, v1,v7) is
z C vy AVw[(w € z) & (Vu(u € vy Aw € u) = (uNwy # 0))]

or, in plain language, “z is the closure of vy in the topological
space (vg,v1)”. Now let mo = {zn}n, m1 = 7, and mp = X.
The sentence Iz (x, mg, m1,m3) says that there is a subset
z of X which is the closure of {z,},. Since mg,m;,m; € M
(mo € M because M is closed under w-sequences ) and M
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reflects Jz1), there is some z € M such that (2, mo, my, m3).

Soz=2z2={z,}, € M.

Henceforth, in all the proofs, we shall assume the basic as-
sumption that any set which is definable in M and which we
will need in the proof is in fact already in M. Moreover, most
of our results will use elementary submodels of size 2%, it is
worth noting that many of these results (and proofs) generalize
to higher cardinals.

For notation and terminology we refer the reader to [Ho] and

[E]. For other applications of elementary submodels the reader
is referred to [Dol], [Do2], [W1], [W2], and [FW].

2. THE RESULTS

First we state some results which will allow us to simplify a
certain number of proofs.

Lemma 8. Let X be a Ti-space and let M be an elemen-
tary submodel which reflects sufficiently many formulas and
such that X € M, |[M| = 2%, and which is closed under
w-sequences. If Pp(X) < 2% and X N M is Lindelof, then
| X| < 2%,

Proof: For each z € X let B, be a pseudobase for = such that
|B;| < 2%. By elementarity it follows that B, € M for every
z € X N M, therefore B, C X N M for every z € X N M
(apply Lemma 4). We claim that X C M. Suppose not,
choose a point z € X \ M. For every y € X N M there is a
B, € B, such that z ¢ B,. X N M is Lindeldf so there is a
C C X N M such that |C| < R and {B,}yec covers X N M.
Since {B, : y € C} € M (observe that M is closed under w-
sequences) it must cover X (suppose not, then thereisap € X
such that p & UyecBy, so by elementarity there is a point in
X N M which is not covered by {By},ec), a contradiction.

Observe that every hereditarily Lindelof T,-space has count-
able pseudocharacter so an immediate consequence of the above
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lemma. is the de Groot inequality : “Every hereditarily Lindelof
T,-space has cardinality not greater than R

Lemma 9. Let X be a topological space and let M be an el-
ementary submodel which reflects sufficiently many formulas
and such that X € M, |M| = 2% and which is closed under
w-sequences. If t(X) = Ry and |A| < 2% for every countable
subset A of X, then X N M 1s closed in X. Moreover if X is a
space such that |A] < 2% for every A C X such that |A| < 2o,
Kk is an infinite reqular cardinal such that k < 2%, and for ev-
ery AC X and ¢ € A there is a B C A such that B < &
and x € B, then there is an elementary submodel M such that
X € M, |M| = 2%, which is closed under w-sequences and
such that X N M is closed in X.

Proof: Let z € X N M. By hypothesis thereisan A C X "M
such that |A] < Ry, z € A and |A] < 2%. Since A € M
it follows that A € M, so A C M (apply Lemma 4) and
therefore x € X N M. For the second part of the lemma
consider a chain of elementary submodels {M, : a < £} such
that X € Mo, My € Moy, (M| = 2% and M, is closed
under w-sequences for every a < k. Let M = U{M,, : a < k};
M is the required elementary submodel. Let us show that
X NMis closed. If £ € X N M then thereisa BC X N M
such that |B| < k, z € B, and |B| < 2%. Since |B| < & there
is an o < k such that B C M,,s0 B C M,NX € My41.
Since |M, N X| < 2% it follows that M, N X C Mg,y1, hence
re MnNX.

Theorem 10. Let X be a space and let M be an elementary
submodel such that X € M, |[M| = 2% M is closed under w-
sequences and X N M is closed in X. Then for every A C X
such that |A| < 2%, it follows that |A| < 2%,

Proof: Suppose not, then there is a subset A of X such that
|A] < 2% and [A]| > 2%. By elementarity there is a subset A of
X such that A € M, |A] < 2% and |A] > 2%. Since A C M
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it follows that AC XN M = X N M C M. Hence |[A] < 2%,

a contradiction.

Problem. Give necessary and sufficient conditions on a space

X for the existence of an elementary submodel M such that
X N M is closed in X.

Corollary 11. If X is a Lindelof Ty -space, t(X) = Ro, (X) <
2% and |A] < 2% for every countable subset A of X then
| X| < 2R,

Recall that if X is a Hausdorff space then ¢.(X) = Ro means
that for every ¢ € X there is a family {G,}ne. of open sets
such that {z} = NuewGrn = NnewGr- Note that if X is a
Lindelof T3-space such that 1(X) = Ry then 3.(X) = No.

Proposition 12. Let X be a Hausdorff space.
(i) If o(X)d(X) = Ro then |X| < 2%,
(i) If $.(X) = R then |A| < 2% for every countable subset
A of X.

Proof: (i) Let D C X such that D = X and |D| < R,. Take
an elementary submodel M such that |[M| = 2%, X € M,
D C M and which is closed under w-sequences. We show that
X C M. Let z € X and take a family {G,}nen of open sets
such that {z} = NpewGn = NnewGr. It is enough to observe
that {z} = Npe,Grn N D € M (notice that we have shown that
the points of X are definable in M).

(ii) Let A be a countable subset of X. Since ¢.(A)d(A4) = Ry

it follows that [A| < 2%,

Remark 13. Observe that the well-known Arhangel’skii re-
sult: “if X is a Lindelof Ty-space such that ¢(X)(X) = R,,
then |X| < 2%” is an easy consequence of the above results.
In fact by Proposition 12 (ii), it follows that |A| < 2% for ev-
ery countable subset A of X, so applying corollary 11 we have
| X| < 2%,

Recall that a cover A of a set E is separating if for every
p€ E,N{A: A€ Ap e A} = {p}. The point-separating
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weight of a T}-space X, denoted psw(X), is the smallest infinite
cardinal k such that X has a separating open cover V with
ord(p,V) < & for every p € X.

The next proposition collects two results having a common
feature: the elementary submodel M can be taken in such a
way that X N M is dense in X.

Proposition 14. (i) ([Sa2]) If X is a reqular space with the
countable chain condition and the m-character of X is < 2%
then d(X) < 2%,

(ii) [Ch] If X is a Lindelof Ty-space and psw(X) < 2% then
d(X) < 2%,

Proof: (i) Take an elementary submodel M of cardinality 2%
which contains X and which is closed under w-sequences. We
claim that X N M is dense in X. Suppose not, choose a non-
empty open set R such that RN (X N M) = 0. For each
y € X N M, let B, be a local m-base at y such that B, C M.
Let g ={V:VeB, ye XNM, VNR = 0}, clearly
G C M. X is c.c.c. so thereis a W C G such that UG C UW
and [W| < Ry ([Ho|, 3.4). M is closed under w-sequences so
W € M, therefore W = UW € M and hence W € M. Now
XNMcWsoW = X, a contradiction since W N R = 0.
(ii) Let B be a separating open cover of X such that ord(z, B) <
2% for every x € X. Let B, = {B € B : z € B} and let
f : X — P(B) be the map defined by f(z) = B, for every
r € X. Take an elementary submodel M of cardinality 2%
which contains X, B, f and which is closed under w-sequences.
Observe that B, C M for every £ € XNM (since B, € M and
|B.| < 2%). Now X N M is dense in X. Suppose not, choose
z € X\ X NM,for every y € X N M there is a B, € B, such
that z ¢ B,. Since B,N (X N M) # 0 thereisape X NM
such that B, € B, C M, so B, € M. Now X N M is Lindelof
so there is a C C X N M such that |C| < Ro and {B,}yec
covers X N M, since { B, }yec € M it must cover X, which is
a contradiction.
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Corollary 15. [Ar] If X is a compact sequential c.c.c. Ty-
space then | X| < 2o,

Proof: X has countable tightness so m, (X) = R, (see e.g., The-
orem 7.13 in [Ho]). By Proposition 14 (i) it follows that there
is an elementary submodel M such that X € M, |[M| = 2%,
which is closed under w-sequences, and X N M = X. Since

X is Hausdorff and sequential we can apply Lemma 9 and so
X N M is closed in X. Therefore X C M and | X| < 2%,

Problem. Characterize those X for which there is an elemen-
tary submodel M for which X N M is dense in X.

The next four results show a different aspect of the use of
elementary submodels (see also Example 5).

Theorem 16. Let X be a normal space of countable tightness
and let M be an elementary submodel which reflects sufficiently
many formulas and such that X € M, |M| = 2% and which
is closed under w-sequences. Then X N M is C*-embedded in
X.

Proof: Let C, F be two subsets of X N M which are completely
separated in X N M. We claim that C and F are completely
separated in X (and hence X N M is C*-embedded in X).
Clearly clxam(C) N clxam(F) = 0.

Let us show that clx(C) Nclx(F) = 0. Suppose there is a
point z € clx(C)Neclx(F). As X has countable tightness there
are sets A € [C]S* and B € [F|<* such that z € clx(A4) N
clx(B). Since A,B € M, by elementarity there is a = €
cx(A)Nelx(B)N M, so z € clxam(C) N elxam(F), which is
a contradiction. So clx(C)Neclx(F) = 0 and by the normality
of X it follows that C' and F' are completely separated in X.

Corollary 17. [Gr2] Let X be a compact Ty-space of countable
tightness such that d(X) < 2%. Then there is a countably
compact normal subset Y of X such that |Y| < 2% and B(Y) =
X.
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Proof: Let D be a dense subset of X such that [D| < 2%.
Take an elementary submodel M as in Theorem 16 such that
DCMandlet Y = XN M. Clearly |Y| < 2% and Y is
countably compact (see Example 5). Moreover Y is dense and

C*-embedded in X so it is normal and A(Y) = X.

Problem. Give necessary and sufficient conditions on a space

X for the existence of an elementary submodel M such that
X N M is C*-embedded in X.

Theorem 18. [Sal] If X has countable spread and for every
z € X, Uy is an open neighbourhood of x, then there is a
countable subset A of X such that X = AUU{U, : z € A}.

Proof: Let {M, : a € w;} be an increasing chain of countable
elementary submodels such that X, {U,;},ex € Mo and M, €
My for every a € w;. If for each a € w;, X N M, does not
have the required property then take a point z, € My, such
that z, € XN MU U{U, : z € X N M,} for every a € w;.
We claim that {z, : o € w;} is a discrete subset of X. In fact
to & {z5: B < a} because {z5: f < a} C X N M,; moreover
Us, is an open neighbourhood of z, such that U,, N {zz: 8 >
a} =0, so z4 & {z5: 8> a} Therefore {z, : @ € wy} is an
uncountable discrete subset of X, a contradiction.

Theorem 19. [Sal] If X is a Hausdorff space with countable
spread then there is a subset S of X such that |S| < 2% and
X =U{A: ACS,|A] < Re}.

Proof: Take an elementary submodel M of cardinality 2% such
that X € M and which is closed under w-sequences. X N M
is the subset with the required properties. Let z € X, we may
assume z € X N M. Since ¥(X) < 2% ([Ho], 4.11), it follows
that for every y € X N M there is an open neighbourhood U,
of y such that U, € M and z ¢ U,. {U,}yexnm covers X N M
and X N M has countable spread, so there is a countable subset
A of XN M such that Y = {A}U{U, }yea covers XN M. Since
U € M it follows that & must cover X, so z € A.
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Now we give a series of results showing a way to obtain a
bound of the cardinality of some object: the idea is to produce
a “suitable” elementary submodel M having that object as a
subset (note that this idea has already been applied in Lemma

8).

Theorem 20. ([Ho]) If X is c.c.c. and the m-weight of X is
< 2% then |[RO(X)| < 2%.

Proof: Let B be a m-base for X such that |B| < 2%. Take an
elementary submodel M of cardinality 2% which contains X
and each member of B, and which is closed under w-sequences.
We show that RO(X) C M. Let R € RO(X) and let Gg =
{B € B: BC R}. Now X is c.c.c. so there exists Hr C Gr
such that UGr C UHR and |Hg| < Ro. Since Hr C M and M
is closed under w-sequences then Hr € M, so H = UHR € M.
Since R is open and B is a m-base we have R C UGR, therefore

R=H,so R=Int(H) € M.

Theorem 21. ([HJ]) If X is a Ty-space with countable spread
and countable pseudocharacter then | X| < 2%,

Proof: Take an elementary submodel M of cardinality 2%
which contains X and which is closed under w-sequences. We
claim that X C M. Suppose not, choose a point x € X—M, so
there is a family of closed sets {C;}ic. such that X —{z} = UC;.
For every ¢+ € w and for every y € X N M N C; take an open
neighbourhood Uy of y such that U, € M and ¢ U,. Then
U; = {Uy }yexnmne; covers X N M N C; and X N M N C; has
countable spread, so by Theorem 31 there is a countable sub-
set A; of X N M N C; such that V; = {A;} U {U,},eca, covers
XNMNC;. Nowlet V =U{V; :i € w}; V covers X N M and
VY € M so it must cover X, a contradiction.

Theorem 22. ([HJ]) Any first countable Hausdorff space with
the countable chain condition must have cardinality at most

280,
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Proof: Take an elementary submodel M of cardinality 2%
which contains X and which is closed under w-sequences. We
show that X C M. Suppose not, choose a point z € X — M
and let {U,}new be a countable local base at z. For every
y € X N M let B, be a countable local base at y such that
B, e M (so B,C M). Foreachnewlet G, ={U:U € B,
for some y € X N M, UNU, = 0}, let F, be a family such
that F, C Gn, |Fx] < w and UG, C UF,. M is closed
under w-sequences so F, € M, hence UF, € M for each
n € w. Letf'-{ﬁ:néw},agamfeM Now
X NM C Unew(UG,) C Upeo(UF,) = UF, so F must cover
X, a contradiction.

Theorem 23. ([BGW]) If X is first countable, weakly Lin-
delof and Ty then |X| < 2%,

Proof: Take an elementary submodel M of cardinality 2%
which contains X and which is closed under w-sequences. Now
X N M is closed (by Lemma 9). We claim that X C M,
suppose not, choose x € X — M. Since X is regular there is
an open set R such that X N M C R and z ¢ R. For ev-
ery y € X N M take an open neighbourhood U, of y such that
U, € Mand U, C R. Let G = UyexnmU,, clearly XNM C G
and z € G. Since X is normal there is an open set L such that
XNMcCLcCLcCG. ThusG = {U,}yexnmU{X — L} covers
X, and X is weakly Lindelof so there is a C C X N M such
that |C| < Rg and X = UyecU, U (X — L). Since (X N M) N
(X —L) = 0 we have X N M C UyecU,. Let V = {U,}yec-
Thus V C M and |V| <-R¢ so V € M, and therefore UV € M.
‘Hence X = UV, which is a contradiction.

Lemma 24. Let X be a Ti-space such that there is a dense
subset D of X which does not contain uncountable closed dis-
crete subsets of X and there is a separating open cover B of X
which is point-countable on D. If there is an elementary sub-

model M which reflects sufficiently many formulas and such
that |[M| =28, X B, D € M, M is closed under w-sequences
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and DN M is dense in X N M, then X N M is dense in X.
Moreover, both D,B C M, so sw(X) < 2% and |D| < 2%.

Proof: Observe that {B € B : y € B} C M for every y €
DN M. Let us show that D C X N M. If not, there is a point
r € D\ X N M. For every y € X N M there is a B, € B such
that y € B, and z ¢ B,. Since B,NXNM # § and DN M is
dense in X N M it follows that B,N DN M # 0, so B, € M.
Now G = {By},exam covers X N M and there is a H € [G]<*
such that X "M N D C UK (otherwise it is easy to see that
D would contain an uncountable closed discrete subset of X,
see [Hol, 9.2). Since H € M it must cover D, a contradiction.
SoDcXNMand XNM=X. Now BN (X NM) #0 for
every B € Bso B C M and sw(X) < 2%. Moreover, for every
z € D it follows that {z} = N{B € B: z € B} € M, hence
D C M and |D| < 2%,

A space X is called w;-compact if it has countable extent.

Corollary 25. ([Ho]) If X is an w;-compact Ti-space and
psw(X) = Ry then X < 2%,

Problem. Give necessary and sufficient conditions on a space
X for the existence of an elementary submodel M such that if
D is a dense subset of X and D € M then DN M is dense in
XNM.

Remark 26. Let X be a space such that m, (X) < 2% and let
D be a dense subset of X. If M is an elementary submodel
such that |M| = 2% X D € M and M is closed under w-
sequences then DN M is dense in XNM. For every y € XNM
let B, be a local 7-base at y such that B, € M. f DN M is
not dense in X N M then there is a y € X N M and an open
set U such that y € U and UN M N D = 0. Take a B € B,
such that B C U, then BN M ND = 0. Since B,D € M it
follows that BN D = (), a contradiction.

Theorem 27. ([Gr]) If X is a compact T}-space with countable
pseudocharacter then | X| < 2%,
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Proof: Take an elementary submodel M of cardinality 2% such
that X € M and which is closed under w-sequences. ¥ = X N
M is countably compact (see Example 5). We claim that Y is
compact. Take a maximal family F of closed sets of Y with the
fi.p. As X is compact there is a point z € N{clx(F) : F' € F},
we claim that z € Y (so Y is compact). Suppose that z € Y
and consider a family of open sets {G,}.c of X such that
NnewGrn = {z}. For every n € w, Y \ G, is a closed set of Y
such that Y\ G, € F. By the maximality of F, it follows that
there is a F,, € F such that (Y \ G,)NF, =0, ie, F, C G,.
Y is countably compact so 0 # NpewFrn C NpeGn NY = 0,
a contradiction and therefore z € Y. By Lemma 8 it follows
that X C M, i.e., |X| < 2%,

For any space X, K(X) denotes the collection of all compact
subsets of X. In the next four results we will be showing that
the compact subsets are elements of M.

Theorem 28. ([J]) If X is T} and sw(X) = Vg then |K(X)| <
%o

Proof: Clearly | X| < 2% (if B is a countable separating open
cover of X then |X| < |[B]s¥| = |P(B)| < 2™). Now let V
be a countable separating open cover of X closed under finite
aunions. Take an elementary submodel M of cardinality 2%
which contains X, each member of V and which is closed under
w-sequences.

We show that K(X) C M. Let K € K(X). For every
p € X — K thereis a B € V such that K C B C X — {p}.
Let Bk = {B€V: K C B}, By C M and |Bg| < Ny, hence
Bk € M. So K =NBg € M.

Theorem 29. ([BH]) If X is a wi-compact Ti-space and
psw(X) = R, then |K(X)| < 2%,

Proof: First observe that | X| < 2% (by Corollary 25). Now let
V be a point-countable separating open cover of X. Take an
elementary submodel M of cardinality 2% which contains each
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element of X, each member of V, and which is closed under
w-sequences. We show K(X) C M: let K € K(X) and let
{A, : n € w} be the set of all finite minimal covers of K by
elements of V (by Miscenko’s lemma [M], the number of such

covers is at most Ry). For every n € w let W,, = UA,. Now
W, €M and K =N, W, € M.

Theorem 30. ([BH]) If X is T, and hereditarily Lindelof, then
|K(X)| < 2%.

Proof: | X| < 2% (see the comment after Lemma 8). For every
z € X let B, be a family of open neighbourhoods of z such
that |B,| < Rp and N{B : B € B,} = {z}. Take an elementary
submodel M of cardinality 2% such that X ¢ M,B, C M
for every ¢ € X, and which is closed under w-sequences. We
claim that K(X) C M. Take K € K(X), foreverype X — K
there is an open neighbourhood G, of p such that G, € M
and G, C X — K. So X — K = Upex-kGp. Now X — K is
Lindelof so there is a countable subset A of X — K such that
X — K = UpeaGp. Since {Gp}pea € M we have X — K € M
and so K € M.

Theorem 31. ([BH]) If X is a Hausdorff space with count-
able spread and every compact subset of X is a Gs-set, then
|K(X)| < 2%.

Proof: |X| < 2% (by Theorem 21). For every p € X take a
family V, of open neighbourhoods of p such that |V,| < 2%
and N{V : V € V,} = {p}. Take an elementary submodel
M of cardinality 2% such that X C¢ M,V, C M for every
p € X and which is closed under w-sequences. We claim that
K(X) c M. Let K € K(X); by hypothesis there is a family
{Fy}new of closed sets such that X — K = U, F,. For every n
and for every p € F, there is an open set G, € M such that
p € G, C X — K. Now F, has countable spread so there are
A, C F, and G, C {G,},er, such that |A,| < Ro, |Gn| < Ro
and {4,} U{G : G € G,} covers F,. For every n we have
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B,=A,UUG, e Mand A,NK =0so X — K =U,B, € M
and K € M.

In the proofs of Lemma 9 and Theorem 18 we saw that we
can use Proposition 1 to build chains of elementary submodels.
We conclude this paper with two other applications of this kind
(see also [Dol]).

Theorem 32. Let X be an initially wy-compact Ts-space of
countable tightness. If Y is a hereditarily Lindelof subspace of
X then d(Y) < Ry.

Proof: Let {M, : @ € w1} be an increasing chain of countable
elementary submodels such that X,Y € Mg and M, € M,y
for every a € wy. Let My, = U{M, : a € w}. We claim that
YcYnNM, (sodY) < ®). X has countable tightness
so M,,NY = {YNM, : @ € w}. Now for every a €
w; there is an open collection V, in X such that |V,| < R,
M, NnY cnNV,and Y N(YNM,) =NV.NY ([Hol, 7.16).
By elementarity we can take each V, in M, ,so V, C M,, for
every a € wy. Suppose thereisay € Y\ Y NM,,. Then for
every o € wy there is a V,(y) € V, such that y & V). {Vag) :
a € w;} covers Y N M, so there is a subfamily {V,,y) : ¢ =
1,...,n} which covers Y N M,,. Since {Vyy) 12 =1,...,n} €
M., it must cover Y, which is a contradiction.

Corollary 33. Let X be an initially wy-compact Ts-space with
countable spread. Then hd(X) < N;.

Proof: Observe that X has countable tightness (if ¢(X) > Ro,
then X has an uncountable free sequence and this contradicts
s(X) = Ro). Let- Z C X. As X has countable spread there is
a hereditarily Lindeléf dense subspace Y of Z. Hence d(Z) <
d(Z2)t(Z) = d(Z) < d(Y) and d(Y') < X, by the above theorem.

Corollary 34. [Sa2] If X is a compact Hausdorff space with
countable spread then hd(X) < N;.
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Theorem 35. Let X be a c.c.c. non-separable space of count-
able tightness with a dense set P of points of character < Rj.
Then X contains a closed c.c.c. subspace of density X;.

Proof: Let {M, : @ < w;} be a continuous increasing chain
of elementary submodels such that X,w, € Mj and such that
for each a € w;, M, is countable and M, € M,y;. Let
F =M, NX. First we show d(F) = ®;. Suppose there is
a D C F such that |D| < 8o and D = F. For every d € D
there exists an Ay C X N M,, such that |44] < N and d € A,.
Let a € w; such that UgepAy C M,. Thus M1 N X C
M, NX =F C MyNX. We reach a contradiction if we
show that M, N X = X. Suppose not, choose a point z €
X\M, N X, by elementarity there is a z € X N M,y such
that z ¢ M,N X. Now we show that ¢(F) = Rg. Suppose
that {U, : @ € w;} is a family of non-empty open sets in X
such that U, N Uy N F = § whenever a,a’ € wy,a # o, and
Uy N F # 0 for every a € wy.

Let z € M,, N X. Now P is dense in X and X has count-
able tightness so there exists an A, C P such that |A4,| < Ny
and z € A,, by elementarity we can take such A, in M,,.
Therefore we have A, C PN M,,, hence z € A, C PN M,
and M,, N X C PN M,,, so PNM,, is dense in F'. Now
for every p € PN M,, let B, be a local base at p such that
|B,| < Ry and B, € M., (so B, C M,,). For every o € wy
take p, € UsNPNM,, and V, € B,, such that V,, C U,. Now
{V4 : @ € w1} is a family of non-empty open subsets of X such
that V,NV,NM,, CU,NUgN F = § whenever a # (. Since
V, € M,, for every a € w; then {V, : a € w;} is a cellular
family of X, which is a contradiction.

The authors wish to thank the referee for many helpful sug-
gestions which improved the exposition of the paper.
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