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ELEMENTARY SUBMODELS AND CARDINAL
 
FUNCTIONS
 

ALESSANDRO FEDELI (*) AND STEPHEN WATSON (**) 

ABSTRACT. The purpose of this article is to illustrate 
the use of elementary submodels in the theory of cardinal 
functions. 

1. INTRODUCTION AND PRELIMINARIES 

In this paper we prove many classical results on" cardinal 
functions in the language of Skolem functions or elementary 
submodels. This language allows the main ideas to emerge 
from what would otherwise be a mass of technical details. 
The key for such applications is the following weak form of 
the Lowenheim-Skolem theorem (see [W2] Proposition .1, [Ku] 
Theorem 7.8 and [Je] Lemma 11.2). 

Proposition 1. Let ¢(x, Va, ... , vn ) be a formula of set-theory 
with free variables x and the v:s. If A is any set, then there 
is a set M :J A such that 1M I :::; IAI + wand, whenever 
there are mo, , m n E M such that there is some x such 
that ¢(x, mo, , m n ), then there is some x E M such that 
¢(x, mo, ... , m n ) (we say that M reflects the formula 3x¢). 

We can also find a single M which works for finitely many 
formulas simultaneously. 

(*) Supported by the Consiglio Nazionale delle Ricerche, Italy 
(**) Supported by the Natural Sciences and Engineering Research 

Council of Canada. 
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Proof: Construct inductively a sequence of sets {Mi : i E w} 
so that Mo == A, (Vi E w) Mi+1 :J Mi, IMil ~ IMol + wand so 
that, whenever, there are rno, ... , rnn E Mi such that there is 
some x such that ¢(x, rna, ... , rnn ) then there is some x E M i+1 

such that <p(x, rno, ... , mn ). Now let M == U{Mi : i E w}, then 
1MI ::; IAI +wand M reflects the formula 3x<p. 

An obvious modification of the above proof gives a set M 
which works for finitely many formulas simultaneously. 

Corollary 2. There are three formulas so that, if M satisfies 
Proposition 1 for these formulas and a set A, then every finite 
subset of M is an element of M . 

Proof: Let us consider the following formulas : 
<PI(X,VO) says that x == {vol; <P2(X,VO,VI) says that x == 

Vo U VI, <P3(X) says that Vw E x(w =I w). 
Now let M be a set such that A c M, IMI ::; IAI +wand 

M reflects 3X<PI' 3X<P2' 3X<p3. 
We claim that every finite subset of M is an element of M. 

By induction on n, we show that VF c M (IFI == n ---+ F E 
M). 

If n == 0 then F == 0 and F E M (since M reflects :JX<P3 ). 
If we know it for nand F C M has n +1 elements, let rn E F, 
then {m} E M (since M reflects 3X<pl) and F \ {m} E M. 
Now let mo == {m}, ml == F\ {m}, so there is some x such that 
<P2(X, mo, ml), since M reflects 3X<P2 there exists some z E M 
such that <P2(z,mO,ml), i.e. x == z == {m} U (F \ {m}) == F E 
M. 

Proposition 3. Let K be an infinite cardinal number. If A is 
a set such that IAI ::; 2~ and <P is a formula of set-theory then 
there is a set M such that A C M, IMI == 2~, M reflects 3x<p 
and moreover M is closed under ",-sequences (i.e. [M]~~ C 
M). 

Proof: Let M o == A and for every a E (0, K+) let M Q be a set 
such that M{3 U [M{3]~~ c MQVf3 E a, IMQI ~ 2~ and MQ 
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reflects 3x<p. Let M = Uo<~+ M o ' clearly A C M, IMI = 2~ 
and M reflects 3x<p ( let mo, ... , mn E M such that there is 
some x such that <p(x, ma, ... , mn ), then there is an a E (0, K+) 
such that ma, ... , mn E M o , M o reflects 3x<p so there is some 
x E M o c M such that <p(x, ma, ... , mn ) · 

It remains to show thaat M is closed under K-sequences. 
Let S = {mA : A E A} c M and IAI ::; K. Since there is a 
(3 E K+ such that m A E Mr; for every A E A it follows that 
S E [Mr;]~~ c Mr;+l. Hence ScM. 

Another result which is used frequently in elementary sub­
models arguments is the following 

Lemma 4. Let K be an infinite cardinal number. There are 
two formulas so that, if M satisfies Proposition 1 for these 
formulas and a set A and if K C A, K E A, E E M and 
lEI::; K, then E C M. 

Proof: The formula <Pa(x, Vo, Vl) says that x is an onto mapping 
from Va to VI and the formula <PI (x, Va, VI, V2, V3) says that V3 
is an onto mapping from Va to VI, V2 E Va and x = V3 (V2). 
Suppose M satisfies Proposition 1 for <Pa, <PI, and A. If E E M 
and lEI ::; K, since K E M we can apply Proposition 1 to 
<Po to obtain 1r E M which is an onto mapping from K to 
E (let mo = K and mI = E, so there is some x such that 
<Pa(x, ma, ml), M reflects 3x<pa so there is some 1r E M such 
that <po(1r,mO,mI)). 

Now if e E E and 7r(a) = e, then we can apply Proposition 
1 to <PI to obtain x E M such that x = 1r(a) (let ma = K, 
mI = E, m2 = a and m3 = 1r, so there is some x such that 
<PI(x,ma,mI,m2,m3), since M reflects 3X<PI there is some x E 
M such that <PI(x,ma,mI,m2,m3)). Now e = 1r(a) = x E M. 
Since e was an arbitrary element of E, we have shown that 
EcM. 

Now let us see how we can use Proposition 1 (we refer the 
reader to the Introduction of [W2] for more extensive informa­
tions). 
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Example 5. ([St]) Let X be countably compact and B any sub­
2No •set of X of cardinality ~ Then there exists a countably 

2No •compact subset Gof X such that BeG and IGI ~ 

Proof: ("formal") Let ¢>(x,Va,Vt,v2) be the formula 

x E Va /\ 'Vw E Vt[(x E w) ~ (Iw n v21 == IV 21)] 
or, in plain language, "x is a complete accumulation point of 
V2 in the topological space (va,Vt)'~. 

Let A == B U {X, T} (where T is the topology on X), apply 
Proposition 3 to obtain a set M such that A eM, 1M I == 2No , 

M reflects the formula :=Ix¢> and is closed under w-sequences. 
We claim that G == M nx has the required properties. Clearly 

2NoBeG and IGI ~ , it remains to show that Gis countably 
compact. Let S E [G]W, then S E M (since S E [M]W and 
M is closed under w-sequences). Now let ma == X, mt == 
T, m2 == S, by the countable compactness of X it follows 
that there exists some x such that ¢(x, ma, mt, m2). Since 
ma, mt, m2 E M and M reflects :=Ix¢> there is some x E M 
such that ¢(x,mO,mt,m2)' i.e. there exists a complete accu­
mulation point of S in G, therefore G is countably compact. 

Proof: ("in practice") Take an elementary submodel M of car­
dinality 2No which contains X, each element of B and which 
is closed under w-sequences. Let G == M n x. We show that 
G is countably compact. Let S be a countably infinite subset 
of G. Since M is closed under w-sequences we know S EM. 
X is countably compact so there is a point x E X which is 
a complete accumulation point of S in X. Hence, by elemen­
tarity, there is some x E X n M == G which is a complete 
accumulation point of S in X (and hence in G). 

Example 6. ({Po]) Every first countable Hausdorff space with 
2No 2No •a dense subset of cardinality ~ has cardinality ~ 

Proof: ("formal") Let ¢(x,va,Vt,V2) be the formula 
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or, in plain language, "all but finitely many points of VI lie 
inside any open set in (V2' va) which contains x". Let D be a 

2Nodense subset of X such that IDI ~ , and let A == Du {X, T}. 
Apply Proposition 3 to obtain a set M such that A eM, 

2No1M I == , M reflects ~x¢>, and it is closed under w-sequences. 
We claim that X n M is closed. If x E X n M then there is 
a sequence {Xn}nEw in X n M such that Xn ---+ x. Since {xn : 
nEw} E [M]~W and M is closed under w-sequences, it follows 
that {xn : nEw} EM. Now let rna = T, rnl = {Xn}nEw and 
m2 == X. Since there is some x such that ¢>(x, rna, rnl, rn2) ( 
i.e., Xn ---+ x), rna, ml, m2 E M, and M reflects ~x¢>, there 
is also some y E M such that ¢>(y, ma, ml, m2), i.e., Xn ---+ y. 
We know that X is T2 and so y == x E X n M. Therefore 

2No •X = D eX n M = X n M and X C M, hence IXI ~ 

Proof: ("in practice") Let D be a dense subset of X such that 
IDI ~ 2No • Take an elementary submodel M of cardinality 2No 

which contains X, each element of D and which is closed under 
w-sequences. We show that X n M is closed. If x E X n M, 
then there is a sequence {Xn}nEw C X nM such that Xn ---+ x. 
Clearly· {xn}nEw = {Xn}nEw U {x}. Now {xn}nEw is definable 
in M (see the remark below) so {xn}nEw E M. Therefore 
{xn}nEw C M (apply Lemma 4), so x E X n M. Hence X = 
D C X n M = X n M, therefore X C M and IXI :::; 2No • 

Remark 7. In the above proof we said that {xn}nEw E M 
because it is "definable in M". This means, in our case, that 
M was implicitly chosen to reflect also the formula 3x'ljJ where 
'ljJ(x, Va, VI, V2) is 

x c V2/\ Vw[(w E x) ~ (Vu(u E VI /\ W E u) ---+ (u n Va # 0))] 

or, in plain language, "x is the closure of VQ in the topological 
space (V2,VI)". Now let rna = {xn}n, rnl == T, and rn2 = x. 
The sentence 3x 'ljJ(x, rna, rnl, rn2) says that there is a subset 
x of X which is the closure of {xn}n. Since rna,rnl,rn2 E M 
(rna E M because M is closed under w-sequences ) and M 
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reflects 3x'lj;, there is some z E M such that 'lj;(z, ma, ml, m2). 
Sox=z={xn}n EM . 

Henceforth, in all the proofs, we shall assume the basic as­
sumption that any set which is definable in M and which we 
will need in the proof is in fact already in M. Moreover, most 
of our results will use elementary submodels of size 2No , it is 
worth noting that many of these results (and proofs) generalize 
to higher cardinals. 

For notation and terminology we refer the reader to [Ho] and 
[E]. For other applications of elementary submodels the reader 
is referred to [Dol], [D02] , [WI], [W2], and [FW]. 

2. THE RESULTS 

First we state some results which will allow us to simplify a 
certain number of proofs. 

Lemma 8. Let X be a T1-space and let M be an elemen­
tary submodel which reflects sufficiently many formulas and 

2Nosuch that X E M J IMI = and which is closed underJ 

2Now-sequences. If 'lj;(X) ::; and X n M is Lindeloj, then 
IXI::; 2No 

• 

Proof: For each x E X let Bx be a pseudobase for x such that 
IBx I :::; 2No • By elementarity it follows that Bx E M for every 
x E X n M, therefore Bx c X n M for every x E X n M 
(apply Lemma 4). We claim that X C M. Suppose not, 
choose a point x E X \ M. For every y E X n M there is a 
By E By such that x fj. By. X n M is Lindelof so there is a 
G C X n M such that IGI ::; ~a and {BY}YEC covers X n M. 
Since {By : y E C} E M (observe that M is closed under w­
sequences) it must cover X (suppose not, then there is apE X 
such that p f/. UyEcBy, so by elementarity there is a point in 
X n M which is not covered by {By }YEC), a contradiction. 

Observe that every hereditarily Lindelof T2-space has count­
able pseudocharacter so an immediate consequence of the above 
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lemma is the de Groot inequality: "Every hereditarily Lindelof 
T2-space has cardinality not greater than 2No ". 

Lemma 9. Let X be a topological space and let M be an el­
ementary submodel which reflects sufficiently many formulas 

2Noand such that X EM, IM I == , and which is closed under 
w-sequences. If t(X) == ~o and IAI :::; 2No for every countable 
subset A of X, then X nM is closed in X. Moreover if X is a 
space such that IAI :::; 2No for every A c X such that IAI :::; 2No , 

K is an infinite regular cardinal such that K :::; 2No , and for ev­
ery A c X and x E A there is aBc A such that B < K 

and x E B, then there is an elementary submodel M such that 
2NoX EM, 1M I == , which is closed under w-sequences and 

such that X n M is closed in X . 

Proof: Let x E X n M. By hypothesis there is an A c X n M 
2No •such that IAI :::; ~o, x E A and IAI :::; Since A E M 

it follows that A E M, so A C M (apply Lemma 4) and 
therefore x E X n M. For the second part of the lemma 
consider a chain of elementary submodels {M Q : Q < K} such 

2Nothat X E M o, M Q E M Q +1 , IMQI == and M Q is closed 
under w-sequences for every Q < K. Let M == U{M Q : Q < K}; 
M is the required elementary submodel. Let us show that 
X n M is closed. If x E X n M then there is aBC X n M 
such that IBI < K, x E B, and IBI :::; 2No • Since IBI < K there 
is an Q < K such that B C M Q , so 11 C M Q n X E M Q +1 . 

Since IM Q n XI ::; 2No it follows that M Q n X c M Q +1 , hence 
x E M nX. 

Theorem 10. Let X be a space and let M be an elementary 
2Nosubmodel such that X EM, 1M I == , M is closed under w­

sequences and X n M is closed in X. Then for every A C X 
such that IAI ::; 2No , it follows that IAI ::; 2No • 

Proof: Suppose not, then there is a subset A of X such that 
IAI ::; 2No and IAI > 2No • By elementarity there is a subset A of 
X such that A E M, IAI :::; 2No and IAI > 2No • Since A C M 
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2Noit follows that Ac X n M == X n M c M. Hence IAI ~ , 

a contradiction. 

Problem. Give necessary and sufficient conditions on a space 
X for the existence of an elementary submodel M such that 
X n M is closed in X. 

Corollary 11. If X is a LindelofTt-space, t(X) == No, 'l/;(X) ~ 

2No 2No , and IAI ~ for every countable subset A of X then 
2NoIXI	 ~ • 

Recall that if X is a Hausdorff space then 'l/;c(X) == No means 
that for every x E X there is a family {Gn}nEw of open sets 
such that {x} == nnEwGn == nnEwGn. Note that if X is a 
Lindelof T2-space such that 'l/;(X) == No then 'l/;c(X) == No. 

Proposition 12. Let X be a Hausdorff space. 

2No(i)	 If'l/;c(X)d(X) == No then IXI ~ •
 

2No
(ii)	 If'l/;c(X) == No then IAI ~ for every countable subset 
A ofX. 

Proof: (i) Let D C X such that D == X and IDI ~ No. Take 
2Noan elementary submodel M such that 1M I == , X EM, 

D c M and which is closed under w-sequences. We show that 
X C M. Let x E X and take a family {Gn}nEw of open sets 
such that {x} == nnewGn == nnewGn. It is enough to observe 
that {x} == nnewGn n D E M (notice that we have shown that 
the points of X are definable in M). 
(ii) Let	 A be a countable subset of X. Since 'l/;c(A)d(A) == No 

2No •it follows that IAI ~ 

Remark 13. Observe that the well-known Arhangel'skil re­
sult: "if X is a Lindelof T2-space such that t(X)'l/;(X) == No, 

2No "then IXI ~ is an easy consequence of the above results. 
2NoIn fact by Proposition 12 (ii), it follows that IAI ~ for ev­

ery countable subset A of X, so applying corollary 11 we have 
2NoIXI	 ~ • 

Recall that a cover A of a set E is separating if for every 
pEE, n{A : A E A,p E A} == {pl. The point-separating 
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weight of a T1-space X, denoted psw(X), is the smallest infinite 
cardinal K such that X has a separating open cover V with 
ord(p, V) ~ K for every p E X. 

The next proposition collects two results having a common 
feature: the elementary submodel M can be taken in such a 
way that X n M is dense in X. 

Proposition 14. (i) ([Sa2]) If X is a regular space with the 
2Nocountable chain condition and the 1r-character of X is ~ 

2No •then d(X) ~ 

2No(ii) [Ch} If X is a Lindelof T1-space and psw(X) ~ , then 
2No •d(X) ~ 

Proof: (i) Take an elementary submodel M of cardinality 2No 

which contains X and which is closed under w-sequences. We 
claim that X n M is dense in X. Suppose not, choose a non­
empty open set R such that R n (X n M) == 0. For each 
y E X n M, let By be a 10cal1r-base at y such that By C M. 
Let 9 == {V : V E By, y E X n M, V n R == 0}, clearly 
geM. X is c.c.c. so there is aWe 9 such that ug c UW 
and IWI :::; ~o ([Ho], 3.4). M is closed under w-sequences so 
W E M, therefore W == UW E M and hence W E M. Now 
X n M c W so W == X, a contradiction since W n R == 0. 
(ii) Let B be a separating open cover of X such that ord(x, B) ~ 

2No for every x E X. Let Bx == {B E B : x E B} and let 
f : X ~ P(E) be the map defined by f(x) = Ex for every 
x E X. Take an elementary submodel M of cardinality 2No 

which contains X, B, f and which is closed under w-sequences. 
Observe that Bx C M for every x E XnM (since Bx E M and 
IBxl :::; 2No ). Now X n M is dense in X.Suppose not, choose 
x E X \ X n M, for every y E X n M there is a By E By such 
that x (j. By. Since By n (X n M) =I- 0 there is apE X n M 
such that By E Bp eM, so ByE M . Now X n M is Lindelof 
so there is aGe X n M such that IGI ~ ~o and {BY}YEc 
covers X n M, since {BY}YEC EMit must cover X, which is 
a contradiction. 
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Corollary 15. [Ar] If X is a compact sequential c.c.c. T2­

2No •space then IXI ~ 

Proof: X has countable tightness so 7rx(X) = ~o (see e.g., The­
orem 7.13 in [Ho]). By Proposition 14 (i) it follows that there 

= 2Nois an elementary submodel M such that X EM, 1M I , 

which is closed under w-sequences, and X n M = X. Since 
X is Hausdorff and sequential we can apply Lemma 9 and so 

2No •X n M is closed in X. Therefore X C M and IXI ~ 

Problem. Characterize those X for which there is an elemen­
tary submodel M for which X n M is dense in X. 

The next four results show a different aspect of the use of 
elementary submodels (see also Example 5). 

Theorem 16. Let X be a normal space of countable tightness 
and let M be an elementary submodel which reflects sufficiently 

2Nomany formulas and such that X E M, IMI = , and which 
is closed under w-sequences. Then X n M is C* -embedded in 
X. 

Proof: Let C, F be two subsets of X nM which are completely 
separated in X n M. We claim that C and F are completely 
separated in X (and hence X n M is C*-embedded in X). 
Clearly ClxnM(C) n ClxnM(F) = 0. 

Let us show that clx(C) n clx(F) = 0. Suppose there is a 
point x E clx(C)nclx(F). As X has countable tightness there 
are sets A E [C]~W and B E [F]~W such that x E clx(A) n 
clx(B). Since A,B E M, by elementarity there is a x E 

clx(A) n clx(B) n M, so x E ClxnM(C) n ClxnM(F), which is 
a contradiction. So clx(C) nclx(F) = 0 and by the normality 
of X it follows that C and F are completely separated in X. 

Corollary 17. [Gr2] Let X be a compact T2-space of countable 
2No •tightness such that d(X) ~ Then there is a countably 

2Nocompact normal subset Y of X such that IYI ~ and ,B(Y) = 
X. 
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2No •Proof: Let D be a dense subset of X such that IDI ~ 
Take an elementary submodel M as in Theorem 16 such that 

2NoD C M and let Y = X n M. Clearly IYI ~ and Y is 
countably compact (see Example 5). Moreover Y is dense and 
C* -embedded in X so it is normal and ,8(Y) = X. 

Problem. Give necessary and sufficient conditions on a space 
X for the existence of an elementary submodel M such that 
X n M is C*-embedded in X. 

Theorem 18. [Sal] If X has countable spread and for every 
x E X J Ux is an open neighbourhood of x J then there is a 
countable subset A of X such that X = A U U{Ux : x E A}. 

U

Proof: Let {M a : a E WI} be an increasing chain of countable 
elementary submodels such that X, {UX}XEX E M o and M a E 
M a +I for every a E WI. If for each a E WI, X n M a does not 
have the required property then take a point X a E M a +I such 
that X a (j. X n M a U U{Ux : x E X n M a } for every a E WI. 

We claim that {X a : a E WI} is a discrete subset of X. In fact 
X a (j. {x~ : ,8 < a} because {x~ : ,8 < a} C X n M a ; moreover 

Xa is an open neighbourhood of X a such that UXa n {x~ : ,8 > 
a} = 0, so X a (j. {x~ : ,8 > a} Therefore {x a : a E WI} is an 
uncountable discrete subset of X, a contradiction. 

Theorem 19. [Sal] If X is a Hausdorff space with countable 
spread then there is a subset S of X such that lSI ~ 2No and 
X = U{A : A C S, IAI :::; ~o}. 

Proof: Take an elementary submodel M of cardinality 2No such 
that X E M and which is closed under w-sequences. X n M 
is the subset with the required properties. Let x EX, we may 

2Noassume x (j. X n M. Since 'l/;(X) ~ ([Ho], 4.11), it follows 
that for every y E X n M there is an open neighbourhood Uy 

of y such that Uy E M and x t/. Uy • {Uy }YExnM covers X n M 
and XnM has countable spread, so there is a countable subset 
A of XnM such that U = {A}U{UY}YEA covers XnM. Since 
U EMit follows that U must cover X, so x E A. 
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Now we give a series of results showing a way to obtain a 
bound of the cardinality of some object: the idea is to produce 
a "s'uitable" elementary submodel M having that object as a 
subset (note that this idea has already been applied in Lemma 
8). 

Theorem 20. ([Ho]) If X is c.c.c. and the 1r-weight of X is 
::; 2No then IRO(X)I::; 2No • 

Proof: Let B be a 1r-base for X such that IBI ::; 2No • Take an 
elementary submodel M of cardinality 2No which contains X 
and each member of B, and which is closed under w-sequences. 
We show that RO(X) c M. Let R E RO(X) and let QR ~ 
{B EB : B C R}. Now X is c.c.c. so there exists tiR C QR 
such that UQR C UtiR and ItiRI ::; ~o. Since tiR C M and M 
is closed under w-sequences then rtR E M, so H = UrtR E M. 
Since R is open and B is a 1r-base we have R C UQR, therefore 
R = H, so R = Int(H) E M. 

Theorem 21. ([HJ]) If X is a Tt-space with countable spread 
and countable pseudocharacter then IXI ::; 2No • 

Proof: Take an elementary submodel M of cardinality 2No 

which contains X and which is closed under w-sequences. We 
claim that X C M. Suppose not, choose a point x E X -M, so 
there is a family of closed sets {Ci }iEw such that X - {x} = UCi. 
For every i E wand for every y E X n M n Ci take an open 
neighbourhood Uy of y such that Uy E M and x tt Uy. Then 
Ui = {UY}YExnMnGi covers X n M n Ci and X n M n Ci has 
countable spread, so by Theorem 31 there is a countable sub­
set Ai of X n M n Ci such that Vi = {Ai} U {UY}YEAi covers 
XnM nci . Now let V = U{Vi : i E w}; V covers XnM and 
V E M so it must cover X, a contradiction. 

Theorem 22. ([HJ]) Any first countable Hausdorff space with 
the countable chain condition must have cardinality at most 
2No • 
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Proof: Take an elementary submodel M of cardinality 2No 

which contains X and which is closed under w-sequences. We 
show that X C M. Suppose not, choose a point x E X - M 
and let {Un}nEw be a countable local base at x. For every 
y E X n M let By be a countable local base at y such that 
By E M (so By eM). For each nEw let Qn = {U : U E By 
for some y E X n M, U n Un = 0}, let :Fn be a family such 
that Fn C Qn, IFni :S wand UQn C UFn. M is closed 
under w-sequences so Fn EM, hence UFn E M for each 
nEw. Let F = {UFn : nEw}, again F E M. Now 
X n M C UnEw(UQn) CUnEw(U:Fn) = U:F, so F must cover 
X, a contradiction. 

Theorem 23. ([BGW]) If X is first countable, weakly Lin­
delof and T4 then IXI :S 2No • 

Proof: Take an elementary submodel M of cardinality 2No 

which contains X and which is closed under w-sequences. Now 
X n M is closed (by Lemma 9). We claim that X C M, 
suppose not, choose x E X - M. Since X is regular there is 
an open set R such that X n MeR and x f/. R. For ev­
ery y E X n M take an open neighbourhood Uy of y such that 
Uy E M and Uy C R. Let G = UyEXnMUy, clearly XnM c G 
and x f/. G. Since X is normal there is an open set L such that 
XnM c L C LeG. Thus Q = {UY}YExnMU{X -L} covers 
X, and X is weakly Lindelof so there is aCe X n M such 
that lei :::; ~o and X = UyECUy U (X - L). Since (X n M) n 
(X - L) = 0 we have X n M C UyECUy. Let V = {UY}YEC. 
Thus V C M and IVI :S'~o so V E M, and therefore uV E M. 
"Hence X = UV, which is a contradiction. 

Lemma 24. Let X be a T1 -space such that there is a dense 
subset D of X which does not contain uncountable closed dis­
crete subsets of X and there is a separating open cover B of X 
which is point-countable on D. If there is an elementary sub­
model M which reflects sufficiently many formulas and such 

2Nothat IMI = , X,B,D E M, M is closed underw-sequences 
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and D n M is dense in X n M, then X n M is dense in X. 
Moreover, both D,B c M, so sw(X)::; 2No and IDI::; 2No • 

Proof: Observe that {B E B : y E B} c M for every y E 
D nM. Let us show that D C X n M. If not, there is a point 
xED \ X n M. For every y E X n M there is a By E B such 
that y E By and x f/. By. Since By nX nM =I- 0 and D nM is 
dense in X n M it follows that By n D n M =I- 0, so By E M. 
Now 9 == {BY}YExnM covers X n M and there is a 1i E [g]~W 

such that X n M n D c U1i (otherwise it is easy to see that 
D would contain an uncountable closed discrete subset of X, 
see [Ho], 9.2). Since 1i EMit must cover D, a contradiction. 
So D C X n M and X n M == X. Now B n (X n M) =I- 0 for 
every B E B so B c M and sw(X) ::; 2No • Moreover, for every 
xED it follows that {x} == n{B E B : x E B} E M, hence 
D C M and IDI ::; 2No • 

A space X is called wI-compact if it has countable extent. 

Corollary 25. ([Ho]) If X is an wI-compact TI-space and 
2No •psw(X) == ~o then X ~ 

Problem. Give necessary and sufficient conditions on a space 
X for the existence of an elementary submodel M such that if 
D is a dense subset of X and D E M then D n M is dense in 
XnM. 

Remark 26. Let X be a space such that 7rx(X) :::; 2No and let 
D be a dense subset of X. If M is an elementary submodel 

2Nosuch that IM I == , X, D E M and M is closed under; w­
sequences then DnM is dense in XnM. For every y E XnM 
let By be a local 7r-base at y such that By EM. If D n M is 
not dense in X n M then there is ayE X n M and an open 
set U such that y E U and U n M n D == 0. Take aB E By 
such that B C U, then B n M n D == 0. Since B,D EMit 
follows that B n D == 0, a contradiction. 

Theorem 27. ([Gr]) If X is a compact TI-space with countable 
2No •pseudocharacter then IXI ~ 
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Proof: Take an elementary submodel M of cardinality 2No such 
that X E M and which is closed under w-sequences. Y == X n 
M is countably compact (see Example 5). We claim that Y is 
compact. Take a maximal family :F of closed sets of Y with the 
f.i.p. As X is compact there is a point x E n{c1x(F) : F E F}, 
we claim that x E Y (so Y is compact). Suppose that x f/. Y 
and consider a family of open sets {Gn}nEw of X such that 
nnEwGn == {x}. For every nEw, Y \ Gn is a closed set of Y 
such that Y \ Gn f/. F. By the maximality of F, it follows that 
there is a Fn E F such that (Y \ Gn) n Fn == 0, i.e., Fn C Gn. 
Y is countably compact so 0 =f. nnEwFn C nnEwGn n Y == 0, 
a contradiction and therefore x E Y. By Lemma 8 it follows 
that X C M, i.e., IXI :::; 2No • 

For any space X, J«X) denotes the collection of all compact 
subsets of X. In the next four results we will be showing that 
the compact subsets are elements of M. 

Theorem 28. ([J]) If X is TI and sw(X) == No then I]«X)I ~ 

2No . 

Proof: Clearly IXI :::; 2No (if B is a countable separating open 
cover of X then IXI :::; I[B]~WI == IP(B)I ~ 2No ). Now let V 
be a countable separating open cover of X closed under finite 
aunions. Take an elementary submodel M of cardinality 2No 

which contains X, each member of V and which is closed under 
w-sequences. 

We show that ]«X) c M. Let]{ E ]{(X). For every 
p E X - ]{ there is aBE V such that ]{ C B C X - {p}. 
Let BK == {B E V : ]{ C B}, B/{ c M and IBKI :::; No, hence 
BK E M. So J< == nBK E M. 

Theorem 29. ([BH]) If X is a wI-compact TI-space and 
psw(X) == No, then I]{(X)I :::; 2No • 

Proof: First observe that IXI :::; 2No (by Corollary 25). Now let 
V be a point-countable separating open cover of X. Take an 
elementary submodel M of cardinality 2No which contains each 
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element of X, each member of V, and which is closed under 
w-sequences. We show K(X) C M: let !< E K(X) and'let 
{An: nEw} be the set of all finite minimal covers of !< by 
elements of V (by Miscenko's lemma [M], the number of such 
covers is at most No). For every nEw let Wn == uAn . Now 
Wn E M and !< == nnWn EM. 

Theorem 30. ([BH]) If X is T2 and hereditarily LindeloJ, then 
2NoIK(X)I ~ • 

2NoProof: IXI ~ (see the comment after Lemma 8). For every 
x E X let Bx be a family of open neighbourhoods of x such 
that IBxl ~ No and n{B : B E Bx } == {x}. Take an elementary 
submodel M of cardinality 2No such that X C M, Bx c M 
for every x EX, and which is closed under w-sequences. We 
claim that !«X) C M. Take!( E !«(X), for every p E X -!< 
there is an open neighbourhood Gp of p such that Gp E M 
and Gp C X - !(. So X - !< == UpEX-KGp. Now X - !( is 
Lindelof so there is a countable subset A of X - !< such that 
X -!( == UpEAGp. Since {Gp}PEA E M we have X -!( E M 
and so!< E M. 

Theorem 31. ([BH]) If X is a Hausdorff space with count­
able spread and every compact subset of X is a G8-set, then 
II{(X)I :s 2No 

• 

2NoProof: IXI ~ (by Theorem 21). For every p E X take a 
family Vp of open neighbourhoods of p such that IVpl ~ 2No 

and n{V : V E Vp } == {pl. Take an elementary submodel 
M of cardinality 2No such that X C M, Vp c M for every 
p E X and which is closed under w-sequences. We claim that 
]{(X) C M. Let !{ E !«X); by hypothesis there is a family 
{Fn}nEw of closed sets such that X - ]{ == UnFn. For every n 
and for every p E Fn there is an open set Gp E M such that 
p E Gp C X - K. Now Fn has countable spread so there are 
An C Fn and 9n C {GP}PEFn such that IAnl ~ No, 19n1 ~ No 
and {An} U {G : G E 9n} covers Fn. For every n we have 
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Bn == An U UQn E M and An n !( == 0 so X - !( == UnBn E M 
and!( E M. 

In the proofs of Lemma 9 and Theorem 18 we saw that we 
can use Proposition 1 to build chains of elementary submodels. 
We conclude this paper with two other applications of this kind 
(see also [Dol]). 

Theorem 32. Let X be an in'itially wI-compact T3 -space of 
countable tightness. If Y is a hereditarily Lindelof subspace of 
X then d(Y) ~ ~I. 

M 

Proof: Let {M a : Q E WI} be an increasing chain of countable 
elementary submodels such that X, Y E M o and M a E M a +I 

for every Q E WI. Let M W1 == U{M a : Q E WI}. We claim that 
Y C Y n M W1 ( so d(Y) ~ ~I). X has countable tightness 
so M W1 n Y == U{Y n M a : Q E WI}. Now for every Q E 
WI there is an open collection Va in X such that IVai :::; ~o, 

M a nYc nVa and Y n (Y n M a) == nVa n Y ([Ho], 7.16). 
By elementarity we can take each Va in M W1 ' so Va C M W1 for 
every Q E WI. Suppose there is ayE Y \ Y n M W1 • Then for 
every Q E WI there is a Va(y) E Va such that y t/:. Va(y). {Va(y) : 
Q E WI} covers Y n M W1 so there is a sllbfamily {Vai(y) : i == 
1, ... , n} which covers Y n M W1 • Since {Vai(y) : i == 1, ... , n} E 

W1 it must cover Y, which is a contradiction. 

Corollary 33. Let X be an initially wI-compact T3 -space with 
countable spread. Then hd(X) ~ ~1. 

Proof: Observe that X has countable tightness (if t(X) > ~o, 

then X has an uncountable free sequence and this contradicts 
s(X) == ~o). Let, Z c X. As X has countable spread there is 
a hereditarily Lindelof dense subspace Y of Z. Hence d(Z) ~ 

d( Z)t(Z) == d( Z) ~ d(Y) and d(Y) :::; ~I by the above theorem. 

Corollary 34. [Sa2] If X is a compact Hausdorff space with 
countable spread then hd(X) :::; ~1. 
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Theorem 35. Let X be a c.c.c. non-separable space of count­
able tightness with a dense set P of points of character ::; ~I. 

Then X contains a closed c.c.c. subspace of density ~I. 

M 

Proof: Let {M a : a ::; WI} be a continuous increasing chain 
of elementary submodels such that X, WI E M o and such that 
for each a E WI, M a is countable and M a E M a+l . Let 
F == M W1 n X. First we show d( F) == ~I. Suppose there is 
a D C F such that IDI ::; ~o and D == F. For every d E D 
there exists an Ad C X nM W1 such that IAdl ::; ~o and d E Ad. 
Let a E WI such that UdEDAd C M a. Thus M a+1 n X c 

W1 n X == F C M a n X. We reach a contradiction if we 
show that M a n X == X. Suppose not, choose a point x E 
X\M a n X, by elementarity there is a x E X n M a +1 such 
that x tj. M a n X. Now we show that c(F) == No. Suppose 
that {Ua : a E WI} is a family of non-empty open sets in X 
such that Ua n Ua' n F == 0 whenever a, a' E WI, a =I a', and 
Ua n F =1= 0 for every a E WI· 

Let x E M W1 n X. Now P is dense in X and X has count­
able tightness so there exists an Ax C P such that IAx I ::; No 
and x E Ax, by elementarity we can take such Ax in M W1 • 

Therefore we have Ax C P n M W1 ' hence x E Ax c P n M W1 

and M W1 n X c P n M W1 ' so P n M W1 is dense in F. Now 
for every pEP n M W1 let Bp be a local base at p such that 
IBpl ::; NI and Bp E M W1 ( so Bp C M W1 ). For every a E WI 

takepa E UanPnM wl and Va E BpOt such that Va C Ua. Now 
{Va: a E WI} is a family of non-empty open subsets of X such 
that Va n ~ n M W1 C Ua n U{3 n F == 0 whenever a =I (3. Since 
Va E M W1 for every a E WI then {Va: a E WI} is a cellular 
family of X, which is a contradiction. 

The authors wish to thank the referee for many helpful sug­
gestions which improved the exposition of the paper. 
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