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ON FINITE PRODUCTS OF MENGER SPACES
 
AND 2-HOMOGENEITY
 

DENNIS J. GARITY 

ABSTRACT. G. S. Ungar has shown that homogeneous 
metric continua that are 2-homogeneous are locally con­
nected. K. Kuperberg, W. Kuperberg and W. R. R. 
Transue gave examples of homogeneous metric continua 
that were locally connected but were not 2-homogeneous. 
In this paper, examples are produced that show that 
adding the additional requirement of local n-connectivity 
is not enough to produce a converse to Ungar's theo­
rem. For every positive integer n, a homogeneous metric 
continua of dimension (n+1) that is locally (n-1) con­
nected is produced. These spaces are shown not to be 
2-homogenous. The examples are produced by taking 
products of the universal Menger n-dimensional space 
with 51. Other examples are produced by taking finite 
products of Menger spaces. An analysis of Cech homol­
ogy properties of Menger spaces is needed in the exam­
ples. 

1. INTRODUCTION 

G. S. Ungar has shown that homogeneous metric continua 
having the stronger homogeneity property of being 2-homogen­
eous are necessarily locally connected [Un]. This result leads to 
the question of whether imposing local connectivity or local n­
connectivity conditions on homogeneous continua would imply 
that they possessed stronger homogeneity properties such as 
2-homogeneity. In 1980, K. Kuperberg, W. Kuperberg and 
W. R. R. Transue showed that /-l1 X /-l1 and /-l1 x 51 were not 2­
homogeneous [KKT]. Here, /-l1 is the universal curve, defined 
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below. Their results gave examples of homogeneous spaces 
that were locally connected, but not 2-homogeneous. They 
also ask whether finite or countable products of fll with itself 
are 2-homogeneous. 

The results in this paper were first presented in a talk at the 
Workshop in Geometric Topology in Colorado Springs in June, 
1992. A summary of the results appeared in the Proceedings 
of that conference [Ga.]. Since that time, it has been pointed 
out that arguments of J. Kennedy Phelps [Kel] , [Ke2] that 
showed that fll x X, where X is an arbitrary continuum, is not 
2-homogeneous, can be generalized to obtain the same result 
for the other Menger spaces. K. Kuperberg, W. Kuperberg 
and W. R. R. Transue also have a more recent paper on 2­
homogeneity [KKT2]. 

The techniques used in this paper obtaining similar results 
are different enough to be of general interest. In this paper, 
we are able to show that imposing higher local connectivity 
conditions on metric homogeneous continua does not lead to 
a converse to Ungar's Theorem. For each positive integer n, 
we give examples of homogeneous (n + 2)-dimensional metric 
continua that are that are locally n-connected, but are not 
2-homogeneous. We also show that finite products with each 
factor a Menger space are not 2-homogeneous. It remains open 
whether there is a homogeneous metric continuum that is n­
connected for all n, and is not 2-homogeneous. 

The results in [KKT] depend on certain one-dimensional 
facts from Curtis and Fort [CF] that do not generalize di­
rectly to higher dimensions. In this paper, we replace the one­
dimensional arguments with higher dimensional Cech homol­
ogy arguments that allow us to generalize the results in [KKT]. 
As a special case, we are able to show that flm x fln is not 2­
homogeneous for all values of nand m where max{m,n} ~ 1. 

Section 2 contains the necessary definitions. Section 3 con­
tains results on the Cech homology of Menger spaces. The 
main results are in Section 4. 

The author would like to thank John J. Walsh and Krystyna 
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M. Kuperberg for numerous helpful conversations. 

2. DEFINITIONS 

All spaces under consideration are separable metric spaces. 
We begin with definitions of the Menger Spaces. These spaces 
were originally defined by Menger in 1932 [Mg]. An induc­
tive definition is as follows. Let M~ be 12n+1 C R2n+l, where 
I == [0, 1]. Inductively assume that M: is a union of (2n +1)­
dimensional cells with sides of length (I/3)k. Subdivide each 
cell in M~ into 32n+1 smaller cells by subdividing each side in 
thirds. Then M~+l is the union of all of those smaller cells that 
intersect the n-skeleton of M~. The Menger n-dimensional 

00 . 

space, fln' is then defined as n M~. The space flo is the stan­
i=O 

dard middle thirds Cantor set and the space fll is the universal 
curve characterized by R. D. Anderson [AnI], [An2]. 

In 1984, M. Bestvina characterized all the remaining Menger 
Spaces [Be]. The following theorem gives Bestvina's character­
ization. 

Theorem 2.1. [Be] The Menger universal n-dimensional space 
fln is the unique space satisfying the following conditions: 

(1) fln is a compact n-dimensional metric space. 
(2) fln is locally (n - I)-connected (Lcn-l). 
(3) fln is (n - I)-connected (cn-l). 
(4) /-In satisfies the Disjoint n-cells Property (D DnP). 

5
Definitioll 2.2. A space X is k-connected if every map of 

j ,0 :::; j :::; k into X extends to a map of Bj+l into X. A 
space X is locally k- connected if for each point p E X and 
for each neighborhood U of p, there exists a neighborhood V 
of p so that each map of 51, 0 :::; j :::; k into V extends to a 
map of Bj+l into U. A space X satisfies the Disjoint k- Cells 
Property if for each f > 0 and for each pair of maps II and 12 
from I k into X, there are maps 91 and 92 from I k into X with 
91(Ik 

) n 92(Ik 
) == 0 and d(9i' Ii) < f. 
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Note that the spaces M~ used in the construction of the n 
-dimensional Menger space J.ln are both C n- I and LCn- l . The 
conditions in Theorem 2.1 yield the result that J.ln is a universal 
n -dimensional separable metric space, i.e. J.ln is n-dimensional 
and contains a homeomorphic copy of every separable metric 
n-dimensional space. The details are given in [Be]. We are 
interested in the homogeneity properties of Menger Spaces and 
of products of Menger Spaces. The relevant definitions are 
provided next. 

Definition 2.3. A space X is homogeneous if and only if for 
each pair of points p and q in X, there is a homeomorphism 
h : X -+ X with the property that h(p) == q. A space X is 
n-homogeneous if for each pair of n-point subsets of X, A and 
B, there is a homeomorphism h : X -+ X with the property 
that h(A) == B. A space X is countable dense homogeneous if 
and only if for each pair of countable dense subsets A and B 
of X, there is a homeomorphism h : X -+ X with the property 
that h(A) == B. 

It is well known that the Cantor set (J.lo), the Hilbert Cube, 
and all manifolds satisfy these types of homogeneity. R. D. An­
derson established that J.lI also satisfies these types of homo­
geneity [AnI, An2]. M. Bestvi~a established the analogous 
results for the higher dimensional Menger spaces. 

Theorem 2.4. [Be, pg. 73]. Each Menger Space J.ln is k­
homogeneous for each k J and is countable dense homogeneous. 

3. tECH HOMOLOGY OF MENGER SPACES 

We need some preliminary results about embeddings and 
maps of sn into J.ln. For these computations, we use singular 
and Cech homology with coefficients in the rationals. See [ES] 
for the properties of Cech homology. A mapf from sn into 
a space X is said to be essential with respect to n-th Cech 
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homology if the induced homomorphism on n-th Cech homol­
ogy groups is nontrivial. The map is said to be essential with 
respect to homotopy if it is not homotopic to a constant map. 

Lemma 3.1. For each /In, the following results hold: 

(1)	 Any embedding of sn into /In is essential both with re­
spect to homotopy and with respect to n-th Cech homol­
ogy. 

(2)	 If 11 and 12 are any maps from sn into J-ln that are 
essential with respect to n-th tech homology, and if 11 
and 12 have disjoint images, then fl and f2 are not 
homotopic. 

Proof: Consider the exact Cech homology sequence of the pair 
(J-ln, E) where E is either e(sn) or 11(sn) U fl(sn). Since J-ln is 
n-dimensional, it follows that Hn+1(/ln, E) is trivial and thus 
the inclusion induced homomorphism Hn(E) ~ Hn(/ln) is a 
monomorphism. It follows that if E is e(sn), Hn(E) is non­
trivial and thus the map e is essential with respect to n -thCech 
homology. It follows from this that the map is essential with 
respect to homotopy. 

If E is 11(sn) U 11(sn), then Hn(E) Hn(E1) EB Hn(E2)"J 

where E i == li(sn). The hypotheses imply that each Hn(Ei ) is 
nontrivial. If fl and 12 were homotopic, they would induce the 
same homomorphism on Cech homology, contradicting the fact 
that the -inclusion induced homomorphism Hn(E) ~ Hn(/ln) 
is a monomorphism. 

Lemma 3.2. For each E > 0 and for each point p E J-ln, there 
is an embedding I : sn ~ J-ln with image contained in the E 

neighborhood of p. 

Proof: This follows from the construction of J-ln since each point 
in J-ln has arbitrarily small neighborhoods that are homeomor­
phic to J-ln and since J-ln itself contains embedded copies of 
sn. 0 

Theorem 3.3. Let X be a compact subspace of some ANR Z. 
Fix n 2: 1. Let Y == J-ln x X. Let p and q be projections from 
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Y onto Iln and X respectively. If f : Sk ---+ Y, 1 :::; k :::; n 
is a map that is essential with respect to k-th Dech homology, 
then either P 0 f or q 0 f is essential with respect to k-th Dech 
homology. If k < n, then q 0 f is essential with respect to k-th 
Dech homology. 

Proof: We write the homology class of a cycle z as [z]. Express 
X as a nested intersection of compact neighborhoods Xi in Z. 
The space Iln is a nested intersection of the compact polyhedra 
M~ defined above. So the space Y is a nested intersection of 
the compact neighborhoods Yi == M~ X Xi in Z X R 2n+l. The 
Cech homology of Y may be thus computed as the inverse 
limit of the singular homology of the spaces Yi. Let Pi and qi 
be projections from Yi onto M~ and Xi respectively. 

The spaces M~ have trivial singular homology in dimensions 
1 through (k -1). So the Kiinneth and Eilenberg-Zilber theo­
rems for singular homology (see [Mu]) imply that if ai == [c] is 
a nontrivial element of the k-th singular homology of Yi, either 
Pi*(ai) or qi*(ai) is nontrivial. 

To see this, note that since we are using rational coefficients, 
the Kiinneth and Eilenberg Zilber Theorems provide isomor­
phisms 

u 
-----+ 

Here 

where Fj and B k- j are the front j-face and back k - j face 
operators. Also, (} ([a] ® [,8]) = [a ® ,8]. An inverse isomor­
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phism ,\ to () can be constructed that takes elements of the 
form raj ® ,Bn-j] to raj] ® [,Bn-j] in Hj(M~) ® Hn-j(Xi ) when 
aj and ,Bn-j are cycles, and takes raj ® ,Bn-j] to 0 otherwise. 
Since Hj(M~) is nonzero only for j = 0 or j = k, it follows 
that 

A0 u([c]) = [Pi# (c)] ® [qi# (cEo)] + [Pi# (cFo)] ® [qi# (c)] 

Since A and u are isomorphisms, if [Pi# (c)] and [qi# (c)] are 

both 0, then [c] = o. 
Let a = (aI, a2, . .. ,an, . .. )be a nontrivial element of the 

k-th Cech homology of Y that is given by the hypotheses. That 
is, each ai = li*C,) where, is a generator of Hk(Sk) and where 
Ii is the composition of f with inclusion from Y to Yi. Then 
there is a positive integer k such that for all i ~ k, ai =1= 0 in 
Hk(Yi). By the previous paragraph, either Pi*(ai) or qi*(ai) is 
nontrivial for all i ~ k. The result now follows by considering 
the definition of the induced homomorphism on Cech homology 
groups. 

If in fact k < n, then each Pi*(ai) is trivial, so that p*(a) 
is trivial, and thus q 0 I is essential with respect to k-th Cech 
homology. D 

4. THE MAIN RESULTS 

Definition 4.1. A space X is locally homologically Cech n­
connected if for each point p E X and for each neighborhood 
U of P, there is a neighborhood V of P such that the inclusion 
induced homomorphism from the n-th Cech homology of V to 
the n-th Cech homology of U is trivial. 

Theorem 4.2. Let X = /In x TI7=1 Yi where n ~ 1, and where 
each Yi is homeomorphic to /lj for some j ~ n. Then X is not 
2-homogeneous. 

Proof: Fix distinct points x and y in /In. Choose points rand 
s in TI7=1 Yi so that for each i, 1 ~ i ~ k, qi =1= rio We will 
show that there is no homeomorphism h : X --+ X such that 
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h( {(x, r), (x, s)} == {(x, r), (y, s)}. Assume to the contrary that 
there is such a homeomorphism h. 

Let p be projection of X onto /-In, let q be projection of X 
onto TI7=1 Ii and let qi be projection of X onto Ii. Choose a 
neighborhood U of x in /-In such that p (h(U x {r})) n 
p (h(U x {s})) == 0, and such that for each i, qi (h(U x {r})) n 
qi (h(U x is})) == 0. Choose an embedding e : sn ~ U. This 
is possible by Lemma 3.2. Let 11 : sn ~ X be the map given 
by 11 (a) == (e( a), {r }) and let 12 : sn ~ X be the map given 
by 12 (a) == (e(a), {s} ). Since TI7=1 Xi is path connected, the 
maps 11 and 12 are homotopic. By Lemma 3.1, the map e is 
essential with respect to n-th Cech homology. It follows that 
the maps 11 and 12 are also essential with respect to n-th Cech 
homology, and so the maps h 0 11 and h 0 12 are essential with 
respect to n-th Cech homology. 

Lemma 3.3 implies that for each i, either po h 0 Ii or q 0 h 0 Ii 
is essential with respect to n-th Cech homology. Since 11 and 
12 are homotopic, this implies that either both p 0 h 0 11 and 
p 0 h 0 12 are essential with respect to n-th Cech homology, or 
both q 0 h 0 11 and q 0 h 0 12 are essential with respect to n-th 
Cech homology. Since p 0 h 0 11 and p 0 h 0 12 are homotopic 
and have disjoint images, Lemma 3.2 implies that these maps 
are not essential with respect to n-th Cech homology. 

So both q 0 h 0 II and q 0 h 0 12 are essential with respect 
to n-th Cech homology. Repeated application of Lemma 3.2 
shows that for each i, both qi 0 h 0 11 and qi 0 h 0 12 are not 
essential with respect to n-th Cech homology. This leads to a 
contradiction. So there is no homeomorphism h as assumed, 
and it follows that X is not 2-homogeneous. D 

Corollary 4.3. Any finite product of two or more Menger 
spaces, where at least one of the Menger spaces is not /-lo, is not 
2-homogeneous. In particular, /-lm x /-In, where maxim, n} 2: 1 
is not 2-homogeneous. 

Proof: The case where each factor is not /-lo follows directly 
from the previous theorem. Since finite products of Cantor sets 
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yield another Cantor set, the only remaining case to consider 
is X == flo x Il7=1 Xi where each Xi is homeomorphic to fln for 
some n 2:: 1. The path components of X are of the form {p} X 

Il7=1 Xi where p E flo. Since self homeomorphisms of X can not 
take two points in a single path component to points in distinct 
path components, it follows that X is not 2-homogeneous. D 

The preceding corollary provides a partial negative answer 
to the question in [KKT] as to whether any finite or countable 
product of III with it.self is 2-homogeneous. Also, Iln x Iln 

provides an example of a homogeneous space that is (2n)­
dimensional, that is LCn - 1

, and that is not 2-homogeneous. 
We now proceed to produce an example of a homogenous LCn

-
1 

space of dimension (n +2) that is not 2 -homogeneous. 

Theorem 4.4. Let X == Iln x Y where n ~ 1, Y is compact, 
path connected, homogenous and locally homologically Cech n­

connected. Then X is not 2-homogeneous. 

Proof: We proceed as in the proof of Theorem 4.1. Fix distinct 
points x and y in fln. Choose distinct points rand s in Y . 
We will show that there is no homeomorphism h : X ---+ X 
such that h({(x,r),(x,s)}) == {(x,r),(y,s)}. Assume to the 
contrary that there is such a homeomorphism h. 

Let p be projection of X onto Iln,and let q be projection 
of X onto Y. Choose a neighborhood U of x in Iln such that 
p(h(U x {r}))np(h(U x {s})) == 0, such that q(h(U x {r}))n 
q(h(U x {s})) == 0, and such that the inclusion induced ho­
momorphisms from the n-:-th Cech homology of q (h(U x {r})) 
and from the n-th Cech homology of q (h(U x {s})) to the n-th 
Cech homology of Yare trivial. 

As in Theorem 4.1, choose an embedding e : sn ---+ U and 
let fl: sn ---+ X be the map given by f1(a) == (e(a),{r}) and 
let 12 : sn ---+ X be the map given by f2(a) == (e(a),{s}). 
Since Y is path connected, the maps II and 12 are homotopic. 
As before, the map e is essential with respect to n-th Cech 
homology. It follows that the maps II and 12 are also essential 
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with respect to n-th Cech homology, and so the maps h 0 II 
and h 0 12 are essential with respect to n-th Cech homology. 

Since p 0 h 0 II and p 0 h 0 12 are homotopic and have dis­
joint images, Lemma 3.2 again implies that these maps are not 
essential with respect to n-th tech homology. 

So both q 0 h 0 II and q 0 h 0 12 are essential with respect to 
n-th Cech homology. But this contradicts the fact that the ho­
momorphisms from the n-th Cech homology of q (h(U x {r})) 
and from the n-th Oech homology of q (h(U x {s})) to the n-th 
Cech homology of Yare trivial. So there is no homeomorphism 
h as assumed, and it follows that X is not 2-homogeneous. 

Corollary 4.5. The product of Iln' n ~ 1 with any ANR or 
with any manifold is not 2-homogeneous. 

Corollary 4.6. For each positive integer n J there is an (n+ 1)­
dimensional homogeneous compact metric space that is (n -1)­
connected and is not 2-homogeneous. 

Proof: That the space Iln x 51 satisfies the conditions in the 
corollary follows directly from the previous theorem. D 

Note that the techniques used in proving Theorems 4.2 and 
4.4 can be used to prove that any finite product of Menger 
spaces and manifolds, or any finite product of Menger spaces 
and spaces that are locally homologically Cech n-connected for 
sufficiently many values of n, are not 2-homogeneous. These 
techniques can also be used to prove that such products are not 
n -homogeneous for values of n greater than 2. One can also 
use the techniques in the above theorems to analyze the type 
of self homeomorphisms of finite products of Menger spaces as 
was done in [KKT] for the product III x III . 

5. QUESTIONS
 

The following questions remain open.
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Question 1. Is there a compact metric space of dimension 
less than (n + 2) that is homogeneous, locally n-connected, 
and not 2-homogeneous? 

Question 2. If a homogeneous compact metric space is lo­
cally n-connected for all n, is the space necessarily 2-homogeneous? 
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