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A NOTE ON COMPACTIFICATION THEOREM
 
FOR TRDIM
 

TAKASHI KIMURA 

ABSTRACT. P. Borst introduced a transfinite extension 
of covering dimension. In this paper we prove that ev­
ery S-w.i.d. metacompact normal space X has a com­
pactification aX such that trdim aX = trdim X and 
w(aX) = w(X). 

1. INTRODUCTION 

In this paper we assume that all spaces are normal unless 
otherwise stated. We refer the readers to [El] and [E2] for 
dimension theory. 

A space X is called weakly-infinite-dimensional in the sense 
of Smirnov, abbreviated S-w.i.d., when for every sequence 
{(Ai, Bi) : i < w} of pairs of disjoint closed subsets of X there 
exist a non-negative integer n < wand a partition Ti in X 
between Ai and Bi for each i ::; n, such that n{Ti : i ::; n} == 0. 

P. Borst [Bl] introduced a transfinite extension of covering 
dimension. In this paper we denote by trdim Borst's transfinite 
dimension. The values of Borst's transfinite dimension, trdim, 
are ordinals. Borst's transfinite dimension coincides with cov­
ering dimension if covering dimension is finite. Borst proved 
that a space X is S-w.i.d. if and only if trdim X :::; a for some 
ordinal a. Hence Borst's transfinite dimension classifies the 
class of all S-w.i.d. spaces. 

In [Kl] the author proved that every space X has a compact­
ification aX such that trdim aX :::; trdim X and w(aX) == 
w(X), where w(X) is the weight of X. Chatyrko [CI] and 
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Yokoi[Y] proved factorization theorem for trdim and obtained 
the above compactification theorem. However, Borst [B3] 
proved that the subspace theorem for trdim does not hold. 
Thus the equality trdim aX == trdim X need not hold even if 
trdim aX :s; trdim X. 

It is well-known that every space X has a compactification 
aX such that d(aX) == d(X) and w(aX) == w(X) in the case 
when d == dim, Ind or trInd (see [EI], [E2] , [P]). In the case 
when d = ind or trind not all spaces X have a compactification 
aX such that d(aX) ~ d(X) (see [L], [vMP], [K2]). In this 
paper we shall prove that every S-w.i.d. metacompact space 
X has a compactification aX such that trdim aX == trdim X 
and w(aX) = w(X). 

2. DEFINITIONS AND PRELIMINARIES 

We begin with basic symbols. 

For a set X, [X]<w denotes the collection of all finite subsets 
of X and IXI denotes the cardinality of X. For a collection 
A of subsets of a space we write nA for n{A : A E A}, uA 
for U{A : A E A}, /\ · A for inA' : A' E [A]<W} and V . A for 
{uA' : A' E [A]<W}. For a collection u = {(Ai, Bi) : i ~ n} of 
pairs of subsets of a space we write u# for {Ai: i ~ n} U {Bi : 
i ::; n}. For a pari a == (A,B) of subsets of a space we write 
a# for {A,B}. 

We need some preparation for the definition of Borst's trans­
finite dimension. 

2.1. Definition. Let L be a set. We denote by Fin L the 
collection of all non-empty finite subsets of L (i.e. Fin L = 
[L]<w-{0}). For a subset M of Fin L and an element u E [L]<w 
we put 

M U = {'T E Fin L : u U 'T E M and u n 'T == 0}. 

We abbreviate M{a} to Ma for each a E L. 
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2.2. Definition. Let Land M be as in Definition 2.1. We 
define the ordinal number, Ord M, inductively, as follows. Ord 
M == 0 if M == 0. For an ordinal a, Ord M ~ a if Ord Ma < a 
for every a E L. We put Ord M = a if Ord M ~ a and Ord 
Mfa. If there is no ordinal a for which Ord M ~ a, then 
we put Ord M == 00. 

2.3. Definition. Let X be a space. We set 

L(X) == {(A, B) : A and B are disjoint closed in X} 

A collection a == {(Ai, Bi) : i ~ n} E [L(X)]<w is called 
inessential if there is a partition Ii in X between Ai and Bi for 
each i ~ n such that n{Ti : i ~ n} == 0. Otherwise a is called 
essential. Let us set 

M L = {a E Fin L : a is essential} 

for each L C L(X). 

We now come to the definition of Borst's transfinite dimen­
slone 

2.4. Definition. For a space X we define 

trdim X == Ord ML(x). 

2.5. Remark. Borst [B1, 3.1.1] proved that the above di­
mension function, trdim, coincides with covering dimension if 
covering dimension is finite. He [B1, 3.1.3] also proved that a 
space X is S-w.i.d. if and only if trdim X ~ a for some ordinal 
a. 

To prove the compactification theorem we need some infor­
mation and facts about Wallman compactifications. 

2.6. Definition. Let F be a base for the closed sets of a 
space X. Then F is called a normal base for X provided that 
F satisfies the following conditions (1) and (3). 

(l)/\·V·F=F, 
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(2) for every closed subset E of X and for any point x E 

X - E there is F E F such that x E F and E n F == 0, 
(3) for F I , F2 E F with FI n F2 == 0 there exist E I , E 2 E F 

such that E I n F2 == 0 == E 2 n FI and E I U E 2 == X. 

For every normal base F for a space X we can construct the 
Wallman compactification w(X, F) of X with respect to F. 
The underlying set of w(X, F) is the set of all ultrafilters in F 
and the topology of w(X, F) is induced by F* == {F* : F E F} 
as a base for the closed sets of w(X, F), where F* == {A E 
w(X, F) : F E A} (see [F]). Then we have F* == Clw(x,F)F for 
every F E F. 

In this paper we use the following fact 

2.7. Fact. Let F be a normal base for a space X. Then we 
have 

(a) /\·V·F*==F*, 
(b) Clw(X,F)(FI nF2 ) == Clw(X,F)FIn Clx (X,F)F2 for FI,F2 E 

:F. 

A subset N of an ordinal a is cojinal in a if for every (3 < a 
there exists , E N such that (3 :::; ,. 

The following lemma is used in the proof of Lemma 3.3. 

2.8. Lemma. Let N be a cofinal subset of an ordinal a. If 
N n (3 is cojinal in (3 for every (3 E N, then the equality INI == 
lal holds. 

Proof: Suppose that this lemma has been proved for any or­
dianl (3 with (3 < a, and we shall prove it for a. For every 
(3 E N we set N{3 == N n (3. Then N{3 is cofinal in (3. Since 
B{3 n, == N n, for every, E N{3, N{3 n, is cofinal in ,. By the 
induction hypothesis, we have IN{31 == 1(31. On the other hand, 
since N is cofinal in a, we have a == U{(3 : (3 EN}. Hence 
lal == 1U {(3 : (3 E N}I ~ 1EB {(3 : (3 E N}I == IEB {N n (3 : (3 E 
N}I == INI· This completes the proof of Lemma 2.8. 
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3. COMPACTIFICATION THEOREM 

The following lemma is essentially due to Borst [B1. 2.1.6], 
so we omit the proof. 

3.1. Lemma. Let Land L' be sets, M c [L]<w,M' C [L']<w 
and r.p : L --t L' be a one-to-one mapping satisfying the follow­
ing condition (*),. (*) for every a E [L] <w with r.p(a) f/. M' we 
have a f/. M. Then we have Ord M ::; Ord M'. 

3.2. Lemma [Bl, 3.3.5]. Let X be a space and 1 c L(X). 
Furthermore assume that for every (E, F) E L(X) there exists 
(G, H) E L such that E C G and F C H, then we have 
OrdML == OrdML(x). 

3.3. Lemma. Let X be a compact S-w.i.d. space. Then we 
have trdim X < w(X)+, where w(X)+ is the smallest cardinal 
number larger than w(X). 

Proof: Suppose that a == trdim X. Take a base B for X such 
that IBI == w(X) and /\ · B == B. Let us set 

L == {( ClxB, CLxB'): B,B' E B with ClxBn ClxB' == 0}. 

Then, obviously, we have ILl::; IBI == w(X). Since X is com­
pact and since V · B == B, by Lemma 3.2, we have Ord ML == 
Ord ML(x). Let r.p : ML --t a be the mapping defined by 
r.p(a) == Ord Mf for every a E ML. We shall show that r.p(ML) 
is cofinal in a. For every (3 < a we can take a E L such 
that Ord Ml ~ {3, because Ord M L == a. Put (J' == {a}. 
Then we have (3 ::; <p(a) E r.p(ML). Hence r.p(ML) is cofinal 
in a. Next, we shall show that <p(ML) n (3 is cofinal in (3 
for every (3 E <p(ML). Let (3 E <p(ML). Take a E ML with 
r.p( a) == (3. Then for every , < (3 we can take a E L such 
that Ord(Mf)a ~ " because Ord Mf == (3. Put r == a U {a}. 
Then we have, ::; r.p(r) E r.p(ML) n (3. Hence r.p(ML) n (3 is 
cofinal in (3. By Lemma 2.8, we have 1<p(ML)I == lal. On the 
other hand, since ILl::; w(X), we have IMLI ::; w(X). Thus we 
have lal == 1<p(ML)1 ::; IMLI ::; w(X). This implies that trdim 
X == a < w(X)+. 
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For a space X we set 

Gn(X) == U{U : U is open in X such that Ind ClxU :::; n} 

for every n < w, and 

S(X) == X - U{Gn(X) : n < w} 

3.4. Lemma [S] Let Gn,(X) and S(X) be as above. If a space 
X is S-w.i.d.} then 

(a)	 S(X) is compact} and 
(b)	 every closed subset F in X with F n S(X) == 0 is con­

tained in Gn(X) for some n < w. 

We now generalize Lemma 3.3. 

3.5. Theorem. Let X be a S-w.i.d. metacompact space. Then 
we have tridem X < w(X)+. 

Proof: Since X is metacompact, by Lemma 3.4(b) and the 
point-finite sum theorem (see [EI, 3.1.14]), for every closed 
subset F in X with FnS(X) == 0we have dim F :::; n for some 
n < w. Thus, by Hattori's result [Ha] , we have trdim X :::; 
w+ trdim S(X). By Lemmas 3.3 and 3.4(a), trdim S(X) < 
w(S(X))+:::; w(X)+. ThisimpliesthattrdimX < w(X)+. D 

We now come to the main result in this paper. 

3.6. Theorem. Let X be a S-w.i.d. space with trdim X < 
w(X)+. Then X has a compactijication aX such that trdim 
aX == trdim X and w(aX) == w(X). 

Proof: We may assume that trdim X == a 2:: w. Put M o == {0}. 
By induction on i,O < i < w, we shall construct a subset M i 

of ML(X). Suppose that M i has been constructed. For every 
a E Mi we shall construct a subset N(a) of ML(x). Let a EMi . 

We distinguish three cases. 

Case 1. Ord(ML(x»)U == (3 + 1. 
Take a E L(X) such that Ord((ML(x»)U)a == (3. Put N(a) == 

{aU {a}}. 
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Case 2. Ord(ML(x))U == , f:. 0, where, is limit. 
For every f3 < ,take a(f3) E L(X) such that Ord((ML(x))U)a(,6) > 

f3. Put N(a) == {a U {a(f3)} : f3 < ,}. 

Case 3. Ord(ML(x))U == o. 
Put N(a) == 0. 
Let us set 
Mi+1 == U{N(a) : a E Mi }. 

By the construction of M i we have IMil ::; I trdimXI. Since 
trdim X < w(X)+, we have IMil :::; w(X). Take a base B for 
the open sets of X such that IBI == w(X). We set B' == BU{X­
Cl B : B E B}. By induction on m < w we shall construct a 
collection Fm of closed subsets of X. Let us set 

Fo == /\ • V • ({ Cl B : B E B'} U U{a# : a E M i and i < w}). 

Then we have IFol == w(X). Suppose that Fm has been con­
structed. We shall construct F m+l. Let us set 

Qm == {(A,B): A,B E Fm and AnB == 0} 

If a == {(Ai, Bi) : i ::; n} E [Qm]<w is inessential, then there 
exists a collection a' == {(Ei , Fi ) : i ::; n} of pairs of closed 
subsets of X such that 

Ei n Bi == 0 == Fi n Ai for every i ::; n, 
E i U Fi == X for every i ::; n, and 
n{Ei n Fi : i ::; n} == 0. 

For every a == (A, B) E gm there exists a pair a' == (E, F) 
of closed subsets of X such that E n B == 0 == F n A and 
E U F == X. Let us set 

Fm+1 == /\ · V . (Fm U U{0"# : a E .[gm]<w such that a is 
inessential} U U{a'# : a E Qm}), and F == U{Fm : m < w}. 
Then it is easy to see that F is a normal base for X and IFI == 
w(X). Let aX be the Wallman compactification w(X, F) of 
X with respect to F. Because F* is a base for the closed sets 
of aX, we have w(aX) == w(X). 

Claim 1. trdim aX :::; trdim X. 
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Let us set 

L == {(A*, B*) : A, B E F and A n B == 0}. 

Since F* is a base for the closed sets of aX and since aX is 
compact, by Fact 2.7(a), for every (E, F) E L(aX) there is 
(A*,B*) E L such that E cA* and F c B*. By Lemma 
3.2, we have Ord ML(aX) == Ord M L, therefore trdim aX == 
Ord ML . Let (() : L ---+ L(X) be the mapping defined by 
(()((A*,B*)) == (A,B) for every (A*,B*) E L.Then for ev­
erya == {(Ai, Bi) : i ::; n} E [L]<w with (()(a) f/.: ML(x) there 
is m < w such that Ai, B i E Fm for each i ::; n. Since (()(a) is 
inessential, by the construction of Fm+l, there exists Ei , Fi E 

Fm +1 for each i ::; n such that EinBi == 0 == FinAi , EiUFi == X 
and n{Ei n Fi : i ::; n} == 0. Put Ti == Clax(Ei n Fi ) for each 
i ::; n. Then 1i is a partiotion in aX between Ai and Bi for 
each i ::; n, and, by Fact 2.7(b), n{Ti : i ::; n} == 0. Thus a 
is inessential. This implies that a f/.: ML . By Lemma 3.1, we 
have Ord M L ::; Ord ML(x). Hence we have trdim aX ::; trdim 
X. 

For every a == {(E i , Fi ) : i ::; n} E U{Mj : j < w} let us set 
0'* == {(Ei, Ft) : i ::; n}. Since a* C Fo C F and since a is 
essential in X, by Fact 2. 7(b), 0'* is essential in aX. 

Claim 2. trdim aX ~ trdim X. 
Assume that trdim aX < trdim X. We shall construct 

n < wand ai E M i for every i ::; n satisfying the following 
conditions; 

(i) ai+l E N(ai) for every i ::; n - 1, 
(ii) Ord(ML(ox»)O"i < Ord(ML(x))O"i for every i ::; n, 

(iii) Ord (ML(x)))O"i ~ 1 for every i ::; n, and 
(iv) Ord(ML(x))O"n == 1. 

Put 0'0 == 0. Since we assume that trdim aX < trdim X 2: 
w, 0'0 satisfies the conditions (ii) and (iii). Suppose that ai E 
M i has been constructed. If Ord(ML(x))O"i == 1, then we set 
n == i. Suppose that Ord(ML(x))O"i > 1. 

Case 1. Ord(ML(x))O"i == {3 + 1. 
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Take a E N(ai) and put ai+1 == a. Then we have 
Ord(ML(ax))Ui+l * < Ord(ML(ax))ui <Ord(ML(x))Ui == f3 + 1. 
By the construction of N(ai), we have Ord(ML(x))Ui+l == (3. 
This implies that Ord(ML(ax))ui+l < Ord(ML(x))Ui+l, there­
fore ai + 1 is as required. 

Case 2. Ord(ML(x))Ui == " where I is limit. 
We shall show that there exists A < I such that 

Ord(ML(ax))(Ui U {a(,8))* < A for every f3 < I' Assume the 
contrary. Then we have Ord(ML(ax))ui ~ I' This contra­
dicts that Ord (ML(aX))ui < Ord(ML(x))Ui == I. Take f3 with 
A < f3 < I and put ai+1 == ai U {a(f3)}. Then Ord(ML(x) )Ui+l == 
Ord(ML (x))/T i )a(,(3) > f3 > A Ord(ML(O'x))/Ti+1o Obviously, 
Ord(ML(x))Ui+l > (3 2: 1. Thus ai+1 is as required. 

Since ai is a proper subset of ai+1 for every i ~ n-l, we have 
Ord(ML(x))Ui+l < Ord(ML(x))Ui. Thus Ord(ML(x))Un == 1 for 
some n < w. This completes the construction of nand ai E Mi. 

Take a E N(an ). Since Ord(ML(X))Un == 1 we have 
Ord(ML(x))U == o. This implies that a is essential in X. On 
the other hand, since Ord(ML(X))U~ < Ord(ML(x))Un == 1, we 
have Ord(ML(X))U~ == O. This implies that a* is inessential 
in aX. This is a contradiction. Hence we have trdim aX 2: 
trdim X. This completes the proof of Theorem 3.6. D 

We now present the following consequence of Theorems 3.5 
and 3.6. 

3.7. Corollary. Every S-w. i. d. metacompact space X has a 
compactijication aX such that trdim aX == trdimX and 
w(aX) == w(X). 

3.8. Corollary.- Every S-w. i. d. separable metrizable space X 
has a metrizable compactijication aX such that trdim aX == 
trdim X. 

3.9. Corollary. Let X be a S-w.i.d. space with trdim X < WI. 

Then X has a compactijication aX such that trdim aX == 
trdim X and w(aX) == w(X). 
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Proof: Since w(X) ~ w, we have trdim X < WI ::; w(X)+. 
Apply Theorem 3.6. 

4. EMBEDDINGS INTO THE HILBERT CUBE 

In this section we assume that all spaces are separable all:d 
metrizable. Luxemburg [L] proved that if a space X has trInd, 
then the following sets are residual in C(X, JW), where C(X, JW) 
is the space of all continuous mappings from X into the Hilbert 
cube JW with the topology of uniform convergence. 

(1)	 {h E C(X, JW) : h is an embedding such that
 
trind Cl f(X) == trind X}.
 

(2)	 {h E C(X, JW) : h is an embedding such that
 
trInd Cl f(X) == trInd X}.
 

In this section we prove the following theorem that is similar 
to Luxemburg's results above. 

4.1. Theorem. For a space X the set of all embeddings f : 
X ---+ JW such that 

trdim Cl f(X) == trdim X 
is residual in C(X, JW). 

4.2. Lemma. For a space X the set of all continuous map­
pings f : X ---+ !W such that 

trdim Cl f(X) ::; trdim X 
is residual in C(X,JW). 

Proof: Let r be a finite collection of pairs of disjoint closed 
subsets of X and let f : X ---+ JW be continuous. Let us set 

f(r) == {(Cl f(A),Cl f(B): (A,B) E r} and 

U(r) == Int{g E C(X, JW) : g(r) is inessential in Cl g(X)} 

By [K3], if r is inessential in X, then U (r) is open and dense 
in C(X, JW). Take a countable base B for JW with V · B == B 
and let 9 == {Cl B : B E B}. Since the set :F == {r : r is a 
finite collection of pairs of disjoint sets from g} is countable., 
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enumerate :F as :F == {Ti : i < w}. For every f E C(X, JW) and 
for any n < w we set 

f-l( Ti) is inessential in X}, 

where f-l(Ti) == {(f- 1 (A),f- 1(B)) : (A,B) E Ti}. Then 
U(f, n) is open and dense in C(X, JW). By induction on n, 
we shall construdct a pairwise disjoint collection gn of open 
subsets of C(X, JW) and a continuous mapping fu E U for 
every U E gn satisfying the following conditions: 

(a) UYn is dense in C(X, jW), 
(b) mesh Yn ~ lin, 
(c) Yn+l refines Yn and 
(d) U{V E Yn+l : V C U} c U(fu, n) for every U E Yn. 

Let go == {C(X, JW) land fC(X,IW) == f for some f E C(X, JW). 
Suppose that gn has been constructed. For every U E Qn let 
fu == f for some fEU. Since U(fu, n) is open and dense 
in C(X, jW), we can take a pairwise disjoint collection y(U) of 
open subsets of U n U(fu, n) such that mesh Q(U) ~ n~l and 
Uy(U) is dense in U. Let us set 

Qn+l == U{Q(U) : U E Qn}. 
Then, obviously, all the conditions are satisfied. Let us set 

Gn == UQn and G == n{Gn : n <ow}. 
Then G is residual in C(X, JW). Thus it suffices to show that 

trdim Cl f(X) ~ trdim X 
for every f E G. Let f E G. Take Un E gn with f E Un. We 
set fn == fUn for every n < w. For A, BEg with A n B == 
otake A*, B* E 'Q such that A C lnt A*, B C lnt B* and 
A* n B* == 0. Since {fn : n < w} converges to !, there exists 
N == N(A, B) > 0 such that 

f;l(A*) =:) f-l(A) for every n ~ N, 
f~l(B*) =:) f-l(B) for every n ~ Nand 
]{(A) n ]{(B) == 0, 

where ]((A) == Cl{f~l(A*) : n 2:: N} and I{(B) == Cl{f~l(B*) : 
n ~ N}. For every n < w let us set 
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Tt == {(A*,B*): (A,B) E Ti}, 
!«Ti) == {(!«A),!«B)): (A,B) E Ti} and 
Ti# == {(Cl((lntA) n f(X), Cl((lntB) n f(X))) : (A,B) E 

Ti}.
 
By Lemmas 3.1 and 3.2, to prove trdim Cl f(X) :::; trdim X,
 
if suffices to show that if Ti# is essential in Clf(X) then so
 
is !{(Ti) in X. Suppose that Ti# is essential in Cl f(X) and
 
Ti# == Tm · Take n < w such that n ~ m and n ~ N(A, B) for
 
every	 (A,B) E Ti. For every (A*,B*) E Tm , we have 

Cl ff;l(A*) :J Cl ((lntA) n f(X)) and 
Cl ff;l(B*) :JCl ((lntB) n f(X)). 

Since Ti# is essential in Cl f (X), either f f; 1
( Tm) is essential in 

Cl f(X) or Cl f f;l(A*)n Cl f f;l(B*) i= 0for some (A*, B*) E 
Tm . Hence ff;l(Tm ) is not inessential. Assume that f;l(Tm ) 

is inessential in X. Since 
f E Un+1 C U(fn,n) c U(f;l(Tm )), 

ff;l(Tm ) is inessential. This is a contradiction. Thus f;l(Tm ) 

is essential in X. Since f;l(A*) c !«A) and f;l(B*) C 
!{(B), !{(Ti) is essential in X. This completes the proof of 
Lemma 4.2. D 

4.3. Lemma. For a space X the set of all continuous map­
pings f	 : X ---+ jW such that 

trdim Cl f(X) ~ trdim X is residual in C(X, JW). 

Proof: We distinguish two cases. 
Case 1. trdim X == Q for some ordinal Q. Let M i be as 

in the proof of Theorem 3.6 and let M == U{Mi : i :::; w}. 
Since UM == U{ a : a E M} is countable, we enumerate UM as 
UM == {(Ai, B i ) : i < w}. Then the set 

G == {f E C(X, JW) : Clf(Ai)n Cl f(Bi) == 0 for every 
i < w} 
is residual in C(X, JW). Similarly in the rproof of Theorem 3.6, 
we can prove that trdim Cl f(X) ~ trdim X for every f E G. 

Case 2. trdim X == 00. 

In this case X is not S-w.i.d. Thus there exists a collection 
{(Ai,Bi) : i < w} of pairs of disjoint closed subsets of X such 
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that n{Ti : i ::; n} =I- 0 for every partition Ti in X between Ai 
and Bi and for every n < w. Then the set 

G == {f E C(X, JW) : Clf(Ai)n Cl f(B i ) == 0 for every 
i < w} 
is residual in C(X, JW). It is easy to see that Clf(X) is not 
S-w.i.d. for every f E G. Hence we have trdim Cl f(X) == 00. 

This completes the proof of Lemma 4.3. D 
Since the set of all embeddings from X into the Hilbert cube 

is residual in C(X, JW), Theorem 4.1 follows from Lemmas 4.2 
and 4.3. Applying Luxemburg's theorem, we obtain the fol­
lowing corollary. 

4.4. Corollary. If a space X has trInd, then X has a metriz­
able compactification aX such that 

trind aX == trind X, trInd aX == trInd X and trdim 
aX == trdim X. 

5. COMMENTS AND QUESTIONS 

In [C2] Chatyrko proved that if trdim X == a < WI and 
if X admits an essential mapping f : X ~ Ja!, then X has 
a compactification aX such that trdim aX == trdim X and 
w(aX) == w(X), where Ja! is Henderson's transfinite cube [He]. 
However, not all spaces X admit an essential mapping f : 
X ~ Ja!, where a == trdim X, even if a < WI (see [B2]). 
Thus Chatyrko's result above does not imply that Corollary 
3.8 remains true. 

In Theorem 3.5 we prove that trdim X < w(X)+ for every S­
w.i.d. metacompact space X. However, it is unknown whether 
there exists a S-w.i.d. space X such that trdim X ~ w(X)+. 

5.1. Question. Does there exist a S-w.i.d. space X such that 
trdim X ~ w(X)+? 

The negative answer to Question 5.1 implies that the condi­
tion of metacompactness can be dropped in Corollary 3.7. 

Assume that there exists a S-w.i.d. space X such that trdim 
X ~ w(X)+. By Lemma 3.3, for any compactification aX 
of X with w(aX) == w(X), we have trdim aX < w(aX)+ == 
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w(X)+ ~ trdim X. Thus there exists no compactification aX 
such that trdim aX == trdim X and w(aX) == w(X). Hence 
the following statements are equivalent: 

(1) every S-w.i.d. space X has a compactification aX such 
that trdim aX == trdim X and w(aX) == w(X), 

(2) for every S-w.i.d. space X the inequality trdim X < 
w(X)+ holds. 
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