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A NOTE ON COMPACTIFICATION THEOREM
FOR TRDIM

TAKASHI KIMURA

ABSTRACT. P. Borst introduced a transfinite extension
of covering dimension. In this paper we prove that ev-
ery S-w.i.d. metacompact normal space X has a com-
pactification X such that trdim ¢X = trdim X and
w(aX) = w(X).

1. INTRODUCTION

In this paper we assume that all spaces are normal unless
otherwise stated. We refer the readers to [El] and [E2] for
dimension theory.

A space X is called weakly-infinite-dimensional in the sense
of Smirnov, abbreviated S-w.i.d., when for every sequence
{(A;, By) : 1t < w} of pairs of disjoint closed subsets of X there
exist a non-negative integer n < w and a partition 7T; in X
between A; and B; for each i < n, such that N{T; : ¢ < n} = 0.

P. Borst [B1] introduced a transfinite extension of covering
dimension. In this paper we denote by trdim Borst’s transfinite
dimension. The values of Borst’s transfinite dimension, trdim,
are ordinals. Borst’s transfinite dimension coincides with cov-
ering dimension if covering dimension is finite. Borst proved
that a space X is S-w.i.d. if and only if trdim X < « for some
ordinal . Hence Borst’s transfinite dimension classifies the
class of all S-w.i.d. spaces.

In [K1] the author proved that every space X has a compact-
ification aX such that trdim aX < trdim X and w(aX) =
w(X), where w(X) is the weight of X. Chatyrko [C1] and
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Yokoi[Y] proved factorization theorem for trdim and obtained
the above compactification theorem. However, Borst [B3]
proved that the subspace theorem for trdim does not hold.
Thus the equality trdim aX = trdim X need not hold even if
trdim aX < trdim X.

It is well-known that every space X has a compactification
aX such that d(aX) = d(X) and w(aX) = w(X) in the case
when d = dim, Ind or trind (see [E1], [E2], [P]). In the case
when d = ind or trind not all spaces X have a compactification
aX such that d(aX) < d(X) (see [L], [vMP], [K2]). In this
paper we shall prove that every S-w.i.d. metacompact space
X has a compactification aX such that trdim aX = trdim X
and w(aX) = w(X).

2. DEFINITIONS AND PRELIMINARIES
We begin with basic symbols.

For a set X, [X]<“ denotes the collection of all finite subsets
of X and |X| denotes the cardinality of X. For a collection
A of subsets of a space we write NA for N{A : A € A},UA
for U{A: A€ A},A- Afor {NA": A" € [A]<“} and V - A for
{UA': A" € [A]<“}. For a collection o = {(A;, B;) : i < n} of
pairs of subsets of a space we write o# for {A;:i <n}U{B;:
i < n}. For a pari a = (A, B) of subsets of a space we write

a* for {A, B}.
We need some preparation for the definition of Borst’s trans-

finite dimension.

2.1. Definition. Let L be a set. We denote by Fin L the
collection of all non-empty finite subsets of L (i.e. Fin L =
[L]<“—{0}). For a subset M of Fin L and an element o € [L]<¥
we put

M’ ={r€ FinL:oUT € M and o N7 =0}.
We abbreviate M{%} to M for each a € L.
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2.2. Definition. Let L and M be as in Definition 2.1. We
define the ordinal number, Ord M, inductively, as follows. Ord
M =0if M = (. For an ordinal a, Ord M < « if Ord M* < «
for every a € L. We put Ord M = «a if Ord M < o and Ord
M £ a. If there is no ordinal « for which Ord M < a, then
we put Ord M = oo.

2.3. Definition. Let X be a space. We set
L(X)={(A,B) : A and B are disjoint closed in X}

A collection ¢ = {(Ai;,B;) : 1 < n} € [L(X)]<¥ is called
inessential if there is a partition T} in X between A; and B; for
each i < n such that N{T; : : < n} = 0. Otherwise o is called
essential. Let us set

My, = {o € Fin L : o is essential }
for each L C L(X).

We now come to the definition of Borst’s transfinite dimen-
sion.

2.4. Definition. For a space X we define
trdim X = Ord ML(X)-

2.5. Remark. Borst [B1, 3.1.1] proved that the above di-
mension function, trdim, coincides with covering dimension if
covering dimension is finite. He [B1, 3.1.3] also proved that a
space X is S-w.i.d. if and only if trdim X < « for some ordinal
a.

To prove the compactification theorem we need some infor-
mation and facts about Wallman compactifications.

2.6. Definition. Let F be a base for the closed sets of a

space X. Then F is called a normal base for X provided that

F satisfies the following conditions (1) and (3).
(H)AN-V-F=F,
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(2) for every closed subset E of X and for any point z €
X — E thereis F € F such that z € Fand ENF =0,

(3) for Fy, Fy € F with F; N Fy =  there exist E;, E, € F
such that BN F, =0=FE,NF; and F; U E, = X.

For every normal base F for a space X we can construct the
Wallman compactification w(X,F) of X with respect to F.
The underlying set of w(X,F) is the set of all ultrafilters in F
and the topology of w(X, F) is induced by F7* = {F* : F € F}
as a base for the closed sets of w(X,F), where F* = {A €
w(X,F) : F € A} (see [F]). Then we have F* = Cl,x, 7 F for
every F' € F.

In this paper we use the following fact

2.7. Fact. Let F be a normal base for a space X. Then we
have
(a) A- V- F*=F~,
(b) Clw(xj)(F]ﬂFz) = Clw(x,]:)Flﬂ CII(X,]:)Fg for Fy, F, €
F.

A subset N of an ordinal « is cofinal in « if for every 8 < «
there exists v € N such that g <.

The following lemma is used in the proof of Lemma 3.3.

2.8. Lemma. Let N be a cofinal subset of an ordinal a. If
NN B is cofinal in B for every f € N, then the equality |[N| =
|| holds.

Proof: Suppose that this lemma has been proved for any or-
dianl 8 with 8 < «, and we shall prove it for a. For every
B € N we set N5 = NN 3. Then Nj is cofinal in 8. Since
BsN+y = NN~ for every v € N3, N3N~ is cofinal in 7. By the
induction hypothesis, we have |Ng| = |3|. On the other hand,
since N is cofinal in o, we have « = U{# : # € N}. Hence
la| =|U{B:BeN} <|®{B:BeN}=|0{NNB:BE€
N}| = |N|. This completes the proof of Lemma 2.8.
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3. COMPACTIFICATION THEOREM

The following lemma is essentially due to Borst [B1. 2.1.6],
so we omit the proof.

3.1. Lemma. Let L and L' be sets, M C [L]<¥,M' C [L']<¥
and ¢ : L — L' be a one-to-one mapping satisfying the follow-
ing condition (*); (*) for every o € [L|<¥ with p(0) € M' we
have o ¢ M. Then we have Ord M < Ord M’.

3.2. Lemma [B1, 3.3.5]. Let X be a space and | C L(X).
Furthermore assume that for every (E, F) € L(X) there ezists
(G,H) € L such that E C G and F C H, then we have
OrdML = OI‘dML(X).

3.3. Lemma. Let X be a compact S-w.i.d. space. Then we
have trdim X < w(X)*, where w(X)* is the smallest cardinal
number larger than w(X).

Proof: Suppose that o = trdim X. Take a base B for X such
that |B| = w(X) and A - B = B. Let us set

L= {( Clx B, CLxBI) : B, B' € B with ClxBn ClxB = w}

Then, obviously, we have |L| < |B| = w(X). Since X is com-
pact and since V - B = B, by Lemma 3.2, we have Ord M =
Ord Mpxy. Let ¢ : M — o be the mapping defined by
¢(o) = Ord M7 for every o € My. We shall show that (M)
is cofinal in a. For every f < a we can take a € L such
that Ord M} > B, because Ord M = a. Put ¢ = {a}.
Then we have 8 < ¢(0) € ¢(ML). Hence p(My) is cofinal
in a. Next, we shall show that ¢(Mp) N B is cofinal in 3
for every B € o(My). Let g € p(ML). Take o € My with
¢(0) = B. Then for every v < B we can take a € L such
that Ord(M7)* > v, because Ord M7 = . Put 7 = o U {a}.
Then we have v < ¢(7) € (M) N B. Hence (ML) N B is
cofinal in 8. By Lemma 2.8, we have |p(ML)| = |a|. On the
other hand, since |L| < w(X), we have |M| < w(X). Thus we
have |a| = |o(ML)| < |Mp| < w(X). This implies that trdim
X =a<wX)".
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For a space X we set
Gn(X) =U{U : U is open in X such that Ind ClxU < n}
for every n < w, and
S(X)=X-U{Gp(X) :n <w}

3.4. Lemma [S] Let G,,(X) and S(X) be as above. If a space
X is S-w.i.d., then
(a) S(X) is compact, and
(b) every closed subset F' in X with FNS(X) =0 is con-
tained in G,(X) for some n < w.

We now generalize Lemma 3.3.

3.5. Theorem. Let X be a S-w.i.d. metacompact space. Then
we have tridem X < w(X)*.

Proof: Since X is metacompact, by Lemma 3.4(b) and the
point-finite sum theorem (see [El, 3.1.14]), for every closed
subset F' in X with FNS(X) = 0 we have dim F' < n for some
n < w. Thus, by Hattori’s result [Ha|, we have trdim X <
w+ trdim S(X). By Lemmas 3.3 and 3.4(a), trdim S(X) <
w(S(X))* < w(X)*. This implies that trdim X < w(X)*. O

We now come to the main result in this paper.

3.6. Theorem. Let X be a S-w.i.d. space with trdim X <
w(X)*. Then X has a compactification aX such that trdim
aX=trdim X and w(aX) = w(X).

Proof: We may assume that trdim X = a > w. Put M, = {0}.
By induction on 7,0 < 7 < w, we shall construct a subset M;
of Mr(X). Suppose that M; has been constructed. For every
o € M; we shall construct a subset N(o) of My(x). Let 0 € M;.
We distinguish three cases.

Case 1. Ord(Mpx))” = B+ 1.
Take a € L(X) such that Ord((Mrx))?)* = . Put N(o) =
{cU{a}}.



NOTE ON COMPACTIFICATION THEOREM FOR TRDIM 151

Case 2. Ord(Mp(x))° =7 # 0, where « is limit.
For every 3 < v take a(B) € L(X) such that Ord((Mpg(x))”)*®) >
B. Put N(o) = {oc U {a(B)} : B <7}

Case 3. OI‘d(ML(X))U =0.

Put N(o) = 0.

Let us set

M1 = U{N(o) : 0 € M;}.

By the construction of M; we have |M;| < | trdimX|. Since
trdim X < w(X)*, we have |M;| < w(X). Take a base B for
the open sets of X such that |B| = w(X). Weset B’ = BU{X—
Cl B : B € B}. By induction on m < w we shall construct a
collection F,, of closed subsets of X. Let us set

Fo=A.V.({ClB:BeB}UU{c*:0€ M, and i < w}).

Then we have |Fo| = w(X). Suppose that F,, has been con-
structed. We shall construct F,,,;;. Let us set

Gmn ={(A,B): A,B€ F, and AN B =0}

If 0 = {(A:;,Bi) : i < n} € [Gn]<“ is inessential, then there
exists a collection ¢’ = {(E;, F;) : i < n} of pairs of closed
subsets of X such that

E;NB; =0 = F;N A, for every : < n,

E; UF; = X for every : < n, and

N{E;NF;:i<n}=0.
For every a = (A, B) € G, there exists a pair o' = (E,F)
of closed subsets of X such that ENB = 0 = FN A and
EUF = X. Let us set

Frg1 = ANV - (FnUU{c# : 0 € [Gn]<“ such that o is
inessential } UU{a'# : a € G,}), and F = U{F,, : m < w}.
Then it is easy to see that F is a normal base for X and |F| =
w(X). Let X be the Wallman compactification w(X,F) of
X with respect to F. Because F* is a base for the closed sets
of aX, we have w(aX) = w(X).

Claim 1. trdim aX < trdim X.
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Let us set
L={(A*",B"): A,B€ F and AN B = 0}.

Since F* is a base for the closed sets of X and since aX is
compact, by Fact 2.7(a), for every (E,F) € L(aX) there is
(A*,B*) € L such that E C A* and F C B*. By Lemma
3.2, we have Ord Mp(.x) = Ord My, therefore trdim aX =
Ord Mp. Let ¢ : L — L(X) be the mapping defined by
o((A*, B*)) = (A,B) for every (A*,B*) € L. Then for ev-
ery o = {(A},B}) : 1+ < n} € [L]<¥ with (o) € Mp(x) there
is m < w such that A;, B; € F,, for each ¢ < n. Since ¢(0) is
inessential, by the construction of F,, 41, there exists E;, F; €
Fps1 foreach i < msuchthat E;NB; = 0 = F,NA;, E;UF; = X
and N{E;NF;:1 <n} =0. Put T; = Cl,x(E; N F;) for each
t < n. Then T; is a partiotion in aX between A and B} for
each i < n, and, by Fact 2.7(b), N{T; : i < n} = 0. Thus o
is inessential. This implies that o € M. By Lemma 3.1, we
have Ord My, < Ord My (x). Hence we have trdim X < trdim
X.

For every o = {(E;, F;) : i < n} € U{M, : j < w} let us set
o* = {(Ef,F*) : i <n}. Since 0* C Fo C F and since o is

1) 1

essential in X, by Fact 2.7(b), o™ is essential in aX.

Claim 2. trdim o X > trdim X.

Assume that trdim aX < trdim X. We shall construct
n < w and o; € M; for every ¢ < n satisfying the following
conditions;

(1) 041 € N(o;) for every 1 <n —1,

(ii) Ord(Mp(x))” < Ord(Mp(x))° for every i < m,

(iii) Ord (Mpxy))?* > 1 for every 1 < n, and

(iV) Ord(ML(X))”" =1.

Put o9 = (. Since we assume that trdim oX < trdim X >
w, oo satisfies the conditions (ii) and (iii). Suppose that o; €
M; has been constructed. If Ord(Mp(x))°" = 1, then we set
n = ¢. Suppose that Ord(Mpx))?" > 1.

Case 1. Ord(Mpx))” =B+ 1.
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Take 0 € N(o;) and put 0,4y = o. Then we have
OId(ML(ax))ai+1* < Ord(ML(aX))"i' <OI‘d(ML(X))6" = ﬂ + 1.
By the construction of N(o;), we have Ord(Mp(x))”+ = B.
This implies that Ord(ML(m;())”a1 < Ord(Mygx))?i+*, there-
fore o; + 1 is as required.

Case 2. Ord(Mpx))°* =, where « is limit.

We shall show that there exists A < v such that
Ord(Mp . X))("'U{“(ﬁ))* < A for every f < 7. Assume the
contrary. Then we have Ord(ML(ax)) { > 4. This contra-
dicts that Ord (Mp(ax))” < Ord(Mp(x))* = 7. Take 8 with
A < B <~ and put 0,4y = 0;U{a(B)}. Then Ord(Mx))”+ =
Ord(ML(X))"‘)a(ﬁ) > B > X Ord(Mpx))®+. Obviously,
Ord(Mpx))?** > B > 1. Thus 0,4, is as required.

Since o; is a proper subset of 0,4, for every : < n—1, we have
Ord(ML(X))”"“ < Ord(ML(X))"". Thus Ord(ML(X))"" =1 for
some n < w. This completes the construction of n and o; € M;.

Take ¢ € N(o,). Since Ord(Mp(X))’> = 1 we have
Ord(My(x))° = 0. This implies that o 1s essential in X. On
the other hand, s1nce Ord(Mpx))’" < Ord(ML X))”" =1, we
have Ord(ML(X)) n = (. This implies that o* is 1nessent1al
in aX. This is a contradlctlon Hence we have trdim aX >
trdim X. This completes the proof of Theorem 3.6. [

We now present the following consequence of Theorems 3.5

and 3.6.

3.7. Corollary. Every S-w.i.d. metacompact space X has a
compactification aX such that trdim aX = trdimX and
w(aX) = w(X).

3.8. Corollary. Every S-w.i.d. separable metrizable space X

has a metrizable compactification aX such that trdim aX =
trdim X.

3.9. Corollary. Let X be a S-w.i.d. space with trdim X < w;.
Then X has a compactification aX such that trdim aX =
trdim X and w(aX) = w(X).



154 TAKASHI KIMURA

Proof: Since w(X) > w, we have trdim X < w; < w(X)*t.
Apply Theorem 3.6.

4. EMBEDDINGS INTO THE HILBERT CUBE

In this section we assume that all spaces are separable and
metrizable. Luxemburg [L] proved that if a space X has trInd,
then the following sets are residual in C'(X, I¥), where C(X, I*)
is the space of all continuous mappings from X into the Hilbert
cube I¥ with the topology of uniform convergence.

(1) {h € C(X,I): h is an embedding such that
trind Cl f(X) = trind X}.

(2) {h € C(X,I¥): his an embedding such that
trlnd Cl f(X) = trInd X}.

In this section we prove the following theorem that is similar
to Luxemburg’s results above.

4.1. Theorem. For a space X the set of all embeddings f :
X — I¥ such that

trdim Cl f(X) = trdim X
is residual in C(X,I¥).

4.2. Lemma. For a space X the set of all continuous map-
pings f : X — I“ such that

trdim Cl f(X) < trdim X
is residual in C(X,I¥).

Proof: Let T be a finite collection of pairs of disjoint closed
subsets of X and let f : X — I“ be continuous. Let us set

f(r) ={(Cl f(A),Cl f(B): (A,B) € 7} and

U(r) = Int{g € C(X,I*) : g(7) is inessential in Cl g(X)}

By [K3], if 7 is inessential in X, then U(7) is open and dense
in C(X,I*). Take a countable base B for I with V- B = B
and let G = {Cl B : B € B}. Since the set F = {7 : 7 is a
finite collection of pairs of disjoint sets from G} is countable,
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enumerate F as F = {7; : t < w}. For every f € C(X,I¥) and
for any n < w we set

U(f,n)=n{U(f*(n):1<nand

f71(7;) is inessential in X},

where f-1(r) = {(/"(4),/"'(B)) : (4,B) € 7}. Then
U(f,n) is open and dense in C(X,I¥). By induction on n,
we shall construdct a pairwise disjoint collection G, of open
subsets of C(X,[*) and a continuous mapping fy € U for
every U € G, satisfying the following conditions:

(a) UG, is dense in C(X, I*),

(b) mesh G, < 1/n,

(c) Gny refines G, and

(d) UW{V € Goya : V C U} C U(fu,n) for every U € G,.

Let Go = {C(X,I*)}and fo(x,1«) = f for some f € C(X,I¥).
Suppose that G, has been constructed. For every U € G, let
fu = f for some f € U. Since U(fy,n) is open and dense
in C(X,I¥), we can take a pairwise disjoint collection G(U) of
open subsets of U N U(fy,n) such that mesh G(U) < 5 and
UG(U) is dense in U. Let us set
Gnt1 =U{G(U) : U € G,}.
Then, obviously, all the conditions are satisfied. Let us set
G. = UG, and G = N{G,, : n < w}.
Then G is residual in C(X,I*). Thus it suffices to show that
trdim Cl f(X) < trdim X
for every f € G. Let f € G. Take U, € G, with f € U,. We
set f, = fu, for every n < w. For A,B € G with ANB =
0 take A*, B* € G such that A C Int A*, B C Int B* and
A*N B* = (. Since {f, : n < w} converges to f, there exists
N = N(A, B) > 0 such that
71 A*) D f7Y(A) for every n > N,

f;il(B*) D f~Y(B) for every n > N and
K(A)NK(B) =9,
where K(A) = CI{f;*(A*) : n > N} and K(B) = Cl{f;}(B*) :

n > N}. For every n < w let us set
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77 ={(A*,B*): (A, B) € .},

K(r)={(K(A),K(B)):(A,B) € 7;} and

r# = {(CI((IntA) 0 F(X), C(ntB) 1 F(X))) £ (4,B) €
7','}.
By Lemmas 3.1 and 3.2, to prove trdim Cl f(X) < trdim X,
if suffices to show that if 7 is essential in Clf(X) then so
is K(r;) in X. Suppose that 7* is essential in Cl f(X) and
TZ-# = Tp,. Take n < w such that n > m and n > N(A, B) for
every (A, B) € ;. For every (A*, B*) € 7,,, we have

Cl ff1(A*) D Cl ((IntA) N f(X)) and

Cl ff71(B*) OCl ((IntB) N f(X)).
Since 7 is essential in Cl f(X), either ff7(7,,) is essential in
Cl f(X)or Cl ff71(A*)NCl f f-1(B*) # 0 for some (A*, B*) €
Tm- Hence ff-1(7,) is not inessential. Assume that f !(7,)
is inessential in X. Since

fE€Unn C U(fmn) C U(fn_l(Tm)),
ff7Y(m) is inessential. This is a contradiction. Thus f;(7.)
is essential in X. Since f;!(A*) C K(A) and f;'(B*) C
K(B), K(7;) is essential in X. This completes the proof of
Lemma 4.2. 0O

4.3. Lemma. For a space X the set of all continuous map-
pings f : X — I¥ such that
trdim Cl f(X) > trdim X is residual in C(X, ).

Proof: We distinguish two cases.

Case 1. trdim X = « for some ordinal a. Let M; be as
in the proof of Theorem 3.6 and let M = U{M; : : < w}.
Since UM = U{o : 0 € M} is countable, we enumerate UM as
UM = {(A;, B;) : i <w}. Then the set

G = {f € C(X,I*) : CIf(A)N Cl f(B;) = 0 for every
i <w}
is residual in C(X, I*). Similarly in the rproof of Theorem 3.6,
we can prove that trdim Cl f(X) > trdim X for every f € G.

Case 2. trdim X = oo.

In this case X is not S-w.i.d. Thus there exists a collection
{(A;, B;) : t < w} of pairs of disjoint closed subsets of X such
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that N{T; : 1 < n} # 0 for every partition 7; in X between A;
and B; and for every n < w. Then the set
G = {f € C(X,I¥) : CIf(A;)N Cl f(B;) = 0 for every

1 < w}
is residual in C(X,I¥). It is easy to see that Clf(X) is not
S-w.i.d. for every f € G. Hence we have trdim Cl f(X) = oo.
This completes the proof of Lemma 4.3. O

Since the set of all embeddings from X into the Hilbert cube
is residual in C(X,I*), Theorem 4.1 follows from Lemmas 4.2
and 4.3. Applying Luxemburg’s theorem, we obtain the fol-
lowing corollary.

4.4. Corollary. If a space X has trind , then X has a metriz-
able compactification aX such that

trind aX = trind X, trlnd aX = trind X and trdim
aX = trdim X.

5. COMMENTS AND QUESTIONS

In [C2] Chatyrko proved that if trdim X = o < w; and
if X admits an essential mapping f : X — J°, then X has
a compactification aX such that trdim aX = trdim X and
w(aX) = w(X), where J* is Henderson’s transfinite cube [He].
However, not all spaces X admit an essential mapping f :
X — J%, where a = trdim X, even if @ < w; (see [B2]).
Thus Chatyrko’s result above does not imply that Corollary
3.8 remains true.

In Theorem 3.5 we prove that trdim X < w(X)* for every S-
w.i.d. metacompact space X. However, it is unknown whether
there exists a S-w.i.d. space X such that trdim X > w(X)*.

5.1. Question. Does there exist a S-w.i.d. space X such that
trdim X > w(X)*?

The negative answer to Question 5.1 implies that the condi-
tion of metacompactness can be dropped in Corollary 3.7.

Assume that there exists a S-w.i.d. space X such that trdim
X > w(X)*. By Lemma 3.3, for any compactification aX
of X with w(aX) = w(X), we have trdim aX < w(aX)* =
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w(X)* < trdim X. Thus there exists no compactification aX
such that trdim aX = trdim X and w(aX) = w(X). Hence
the following statements are equivalent:

(1) every S-w.i.d. space X has a compactification aX such
that trdim o X = trdim X and w(aX) = w(X),

(2) for every S-w.i.d. space X the inequality trdim X <
w(X)* holds.
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