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A NOTE ON COMPACTIFICATION THEOREM
 
FOR TRDIM
 

TAKASHI KIMURA 

ABSTRACT. P. Borst introduced a transfinite extension 
of covering dimension. In this paper we prove that ev
ery S-w.i.d. metacompact normal space X has a com
pactification aX such that trdim aX = trdim X and 
w(aX) = w(X). 

1. INTRODUCTION 

In this paper we assume that all spaces are normal unless 
otherwise stated. We refer the readers to [El] and [E2] for 
dimension theory. 

A space X is called weakly-infinite-dimensional in the sense 
of Smirnov, abbreviated S-w.i.d., when for every sequence 
{(Ai, Bi) : i < w} of pairs of disjoint closed subsets of X there 
exist a non-negative integer n < wand a partition Ti in X 
between Ai and Bi for each i ::; n, such that n{Ti : i ::; n} == 0. 

P. Borst [Bl] introduced a transfinite extension of covering 
dimension. In this paper we denote by trdim Borst's transfinite 
dimension. The values of Borst's transfinite dimension, trdim, 
are ordinals. Borst's transfinite dimension coincides with cov
ering dimension if covering dimension is finite. Borst proved 
that a space X is S-w.i.d. if and only if trdim X :::; a for some 
ordinal a. Hence Borst's transfinite dimension classifies the 
class of all S-w.i.d. spaces. 

In [Kl] the author proved that every space X has a compact
ification aX such that trdim aX :::; trdim X and w(aX) == 
w(X), where w(X) is the weight of X. Chatyrko [CI] and 
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Yokoi[Y] proved factorization theorem for trdim and obtained 
the above compactification theorem. However, Borst [B3] 
proved that the subspace theorem for trdim does not hold. 
Thus the equality trdim aX == trdim X need not hold even if 
trdim aX :s; trdim X. 

It is well-known that every space X has a compactification 
aX such that d(aX) == d(X) and w(aX) == w(X) in the case 
when d == dim, Ind or trInd (see [EI], [E2] , [P]). In the case 
when d = ind or trind not all spaces X have a compactification 
aX such that d(aX) ~ d(X) (see [L], [vMP], [K2]). In this 
paper we shall prove that every S-w.i.d. metacompact space 
X has a compactification aX such that trdim aX == trdim X 
and w(aX) = w(X). 

2. DEFINITIONS AND PRELIMINARIES 

We begin with basic symbols. 

For a set X, [X]<w denotes the collection of all finite subsets 
of X and IXI denotes the cardinality of X. For a collection 
A of subsets of a space we write nA for n{A : A E A}, uA 
for U{A : A E A}, /\ · A for inA' : A' E [A]<W} and V . A for 
{uA' : A' E [A]<W}. For a collection u = {(Ai, Bi) : i ~ n} of 
pairs of subsets of a space we write u# for {Ai: i ~ n} U {Bi : 
i ::; n}. For a pari a == (A,B) of subsets of a space we write 
a# for {A,B}. 

We need some preparation for the definition of Borst's trans
finite dimension. 

2.1. Definition. Let L be a set. We denote by Fin L the 
collection of all non-empty finite subsets of L (i.e. Fin L = 
[L]<w-{0}). For a subset M of Fin L and an element u E [L]<w 
we put 

M U = {'T E Fin L : u U 'T E M and u n 'T == 0}. 

We abbreviate M{a} to Ma for each a E L. 
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2.2. Definition. Let Land M be as in Definition 2.1. We 
define the ordinal number, Ord M, inductively, as follows. Ord 
M == 0 if M == 0. For an ordinal a, Ord M ~ a if Ord Ma < a 
for every a E L. We put Ord M = a if Ord M ~ a and Ord 
Mfa. If there is no ordinal a for which Ord M ~ a, then 
we put Ord M == 00. 

2.3. Definition. Let X be a space. We set 

L(X) == {(A, B) : A and B are disjoint closed in X} 

A collection a == {(Ai, Bi) : i ~ n} E [L(X)]<w is called 
inessential if there is a partition Ii in X between Ai and Bi for 
each i ~ n such that n{Ti : i ~ n} == 0. Otherwise a is called 
essential. Let us set 

M L = {a E Fin L : a is essential} 

for each L C L(X). 

We now come to the definition of Borst's transfinite dimen
slone 

2.4. Definition. For a space X we define 

trdim X == Ord ML(x). 

2.5. Remark. Borst [B1, 3.1.1] proved that the above di
mension function, trdim, coincides with covering dimension if 
covering dimension is finite. He [B1, 3.1.3] also proved that a 
space X is S-w.i.d. if and only if trdim X ~ a for some ordinal 
a. 

To prove the compactification theorem we need some infor
mation and facts about Wallman compactifications. 

2.6. Definition. Let F be a base for the closed sets of a 
space X. Then F is called a normal base for X provided that 
F satisfies the following conditions (1) and (3). 

(l)/\·V·F=F, 
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(2) for every closed subset E of X and for any point x E 

X - E there is F E F such that x E F and E n F == 0, 
(3) for F I , F2 E F with FI n F2 == 0 there exist E I , E 2 E F 

such that E I n F2 == 0 == E 2 n FI and E I U E 2 == X. 

For every normal base F for a space X we can construct the 
Wallman compactification w(X, F) of X with respect to F. 
The underlying set of w(X, F) is the set of all ultrafilters in F 
and the topology of w(X, F) is induced by F* == {F* : F E F} 
as a base for the closed sets of w(X, F), where F* == {A E 
w(X, F) : F E A} (see [F]). Then we have F* == Clw(x,F)F for 
every F E F. 

In this paper we use the following fact 

2.7. Fact. Let F be a normal base for a space X. Then we 
have 

(a) /\·V·F*==F*, 
(b) Clw(X,F)(FI nF2 ) == Clw(X,F)FIn Clx (X,F)F2 for FI,F2 E 

:F. 

A subset N of an ordinal a is cojinal in a if for every (3 < a 
there exists , E N such that (3 :::; ,. 

The following lemma is used in the proof of Lemma 3.3. 

2.8. Lemma. Let N be a cofinal subset of an ordinal a. If 
N n (3 is cojinal in (3 for every (3 E N, then the equality INI == 
lal holds. 

Proof: Suppose that this lemma has been proved for any or
dianl (3 with (3 < a, and we shall prove it for a. For every 
(3 E N we set N{3 == N n (3. Then N{3 is cofinal in (3. Since 
B{3 n, == N n, for every, E N{3, N{3 n, is cofinal in ,. By the 
induction hypothesis, we have IN{31 == 1(31. On the other hand, 
since N is cofinal in a, we have a == U{(3 : (3 EN}. Hence 
lal == 1U {(3 : (3 E N}I ~ 1EB {(3 : (3 E N}I == IEB {N n (3 : (3 E 
N}I == INI· This completes the proof of Lemma 2.8. 
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3. COMPACTIFICATION THEOREM 

The following lemma is essentially due to Borst [B1. 2.1.6], 
so we omit the proof. 

3.1. Lemma. Let Land L' be sets, M c [L]<w,M' C [L']<w 
and r.p : L --t L' be a one-to-one mapping satisfying the follow
ing condition (*),. (*) for every a E [L] <w with r.p(a) f/. M' we 
have a f/. M. Then we have Ord M ::; Ord M'. 

3.2. Lemma [Bl, 3.3.5]. Let X be a space and 1 c L(X). 
Furthermore assume that for every (E, F) E L(X) there exists 
(G, H) E L such that E C G and F C H, then we have 
OrdML == OrdML(x). 

3.3. Lemma. Let X be a compact S-w.i.d. space. Then we 
have trdim X < w(X)+, where w(X)+ is the smallest cardinal 
number larger than w(X). 

Proof: Suppose that a == trdim X. Take a base B for X such 
that IBI == w(X) and /\ · B == B. Let us set 

L == {( ClxB, CLxB'): B,B' E B with ClxBn ClxB' == 0}. 

Then, obviously, we have ILl::; IBI == w(X). Since X is com
pact and since V · B == B, by Lemma 3.2, we have Ord ML == 
Ord ML(x). Let r.p : ML --t a be the mapping defined by 
r.p(a) == Ord Mf for every a E ML. We shall show that r.p(ML) 
is cofinal in a. For every (3 < a we can take a E L such 
that Ord Ml ~ {3, because Ord M L == a. Put (J' == {a}. 
Then we have (3 ::; <p(a) E r.p(ML). Hence r.p(ML) is cofinal 
in a. Next, we shall show that <p(ML) n (3 is cofinal in (3 
for every (3 E <p(ML). Let (3 E <p(ML). Take a E ML with 
r.p( a) == (3. Then for every , < (3 we can take a E L such 
that Ord(Mf)a ~ " because Ord Mf == (3. Put r == a U {a}. 
Then we have, ::; r.p(r) E r.p(ML) n (3. Hence r.p(ML) n (3 is 
cofinal in (3. By Lemma 2.8, we have 1<p(ML)I == lal. On the 
other hand, since ILl::; w(X), we have IMLI ::; w(X). Thus we 
have lal == 1<p(ML)1 ::; IMLI ::; w(X). This implies that trdim 
X == a < w(X)+. 
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For a space X we set 

Gn(X) == U{U : U is open in X such that Ind ClxU :::; n} 

for every n < w, and 

S(X) == X - U{Gn(X) : n < w} 

3.4. Lemma [S] Let Gn,(X) and S(X) be as above. If a space 
X is S-w.i.d.} then 

(a)	 S(X) is compact} and 
(b)	 every closed subset F in X with F n S(X) == 0 is con

tained in Gn(X) for some n < w. 

We now generalize Lemma 3.3. 

3.5. Theorem. Let X be a S-w.i.d. metacompact space. Then 
we have tridem X < w(X)+. 

Proof: Since X is metacompact, by Lemma 3.4(b) and the 
point-finite sum theorem (see [EI, 3.1.14]), for every closed 
subset F in X with FnS(X) == 0we have dim F :::; n for some 
n < w. Thus, by Hattori's result [Ha] , we have trdim X :::; 
w+ trdim S(X). By Lemmas 3.3 and 3.4(a), trdim S(X) < 
w(S(X))+:::; w(X)+. ThisimpliesthattrdimX < w(X)+. D 

We now come to the main result in this paper. 

3.6. Theorem. Let X be a S-w.i.d. space with trdim X < 
w(X)+. Then X has a compactijication aX such that trdim 
aX == trdim X and w(aX) == w(X). 

Proof: We may assume that trdim X == a 2:: w. Put M o == {0}. 
By induction on i,O < i < w, we shall construct a subset M i 

of ML(X). Suppose that M i has been constructed. For every 
a E Mi we shall construct a subset N(a) of ML(x). Let a EMi . 

We distinguish three cases. 

Case 1. Ord(ML(x»)U == (3 + 1. 
Take a E L(X) such that Ord((ML(x»)U)a == (3. Put N(a) == 

{aU {a}}. 
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Case 2. Ord(ML(x))U == , f:. 0, where, is limit. 
For every f3 < ,take a(f3) E L(X) such that Ord((ML(x))U)a(,6) > 

f3. Put N(a) == {a U {a(f3)} : f3 < ,}. 

Case 3. Ord(ML(x))U == o. 
Put N(a) == 0. 
Let us set 
Mi+1 == U{N(a) : a E Mi }. 

By the construction of M i we have IMil ::; I trdimXI. Since 
trdim X < w(X)+, we have IMil :::; w(X). Take a base B for 
the open sets of X such that IBI == w(X). We set B' == BU{X
Cl B : B E B}. By induction on m < w we shall construct a 
collection Fm of closed subsets of X. Let us set 

Fo == /\ • V • ({ Cl B : B E B'} U U{a# : a E M i and i < w}). 

Then we have IFol == w(X). Suppose that Fm has been con
structed. We shall construct F m+l. Let us set 

Qm == {(A,B): A,B E Fm and AnB == 0} 

If a == {(Ai, Bi) : i ::; n} E [Qm]<w is inessential, then there 
exists a collection a' == {(Ei , Fi ) : i ::; n} of pairs of closed 
subsets of X such that 

Ei n Bi == 0 == Fi n Ai for every i ::; n, 
E i U Fi == X for every i ::; n, and 
n{Ei n Fi : i ::; n} == 0. 

For every a == (A, B) E gm there exists a pair a' == (E, F) 
of closed subsets of X such that E n B == 0 == F n A and 
E U F == X. Let us set 

Fm+1 == /\ · V . (Fm U U{0"# : a E .[gm]<w such that a is 
inessential} U U{a'# : a E Qm}), and F == U{Fm : m < w}. 
Then it is easy to see that F is a normal base for X and IFI == 
w(X). Let aX be the Wallman compactification w(X, F) of 
X with respect to F. Because F* is a base for the closed sets 
of aX, we have w(aX) == w(X). 

Claim 1. trdim aX :::; trdim X. 
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Let us set 

L == {(A*, B*) : A, B E F and A n B == 0}. 

Since F* is a base for the closed sets of aX and since aX is 
compact, by Fact 2.7(a), for every (E, F) E L(aX) there is 
(A*,B*) E L such that E cA* and F c B*. By Lemma 
3.2, we have Ord ML(aX) == Ord M L, therefore trdim aX == 
Ord ML . Let (() : L ---+ L(X) be the mapping defined by 
(()((A*,B*)) == (A,B) for every (A*,B*) E L.Then for ev
erya == {(Ai, Bi) : i ::; n} E [L]<w with (()(a) f/.: ML(x) there 
is m < w such that Ai, B i E Fm for each i ::; n. Since (()(a) is 
inessential, by the construction of Fm+l, there exists Ei , Fi E 

Fm +1 for each i ::; n such that EinBi == 0 == FinAi , EiUFi == X 
and n{Ei n Fi : i ::; n} == 0. Put Ti == Clax(Ei n Fi ) for each 
i ::; n. Then 1i is a partiotion in aX between Ai and Bi for 
each i ::; n, and, by Fact 2.7(b), n{Ti : i ::; n} == 0. Thus a 
is inessential. This implies that a f/.: ML . By Lemma 3.1, we 
have Ord M L ::; Ord ML(x). Hence we have trdim aX ::; trdim 
X. 

For every a == {(E i , Fi ) : i ::; n} E U{Mj : j < w} let us set 
0'* == {(Ei, Ft) : i ::; n}. Since a* C Fo C F and since a is 
essential in X, by Fact 2. 7(b), 0'* is essential in aX. 

Claim 2. trdim aX ~ trdim X. 
Assume that trdim aX < trdim X. We shall construct 

n < wand ai E M i for every i ::; n satisfying the following 
conditions; 

(i) ai+l E N(ai) for every i ::; n - 1, 
(ii) Ord(ML(ox»)O"i < Ord(ML(x))O"i for every i ::; n, 

(iii) Ord (ML(x)))O"i ~ 1 for every i ::; n, and 
(iv) Ord(ML(x))O"n == 1. 

Put 0'0 == 0. Since we assume that trdim aX < trdim X 2: 
w, 0'0 satisfies the conditions (ii) and (iii). Suppose that ai E 
M i has been constructed. If Ord(ML(x))O"i == 1, then we set 
n == i. Suppose that Ord(ML(x))O"i > 1. 

Case 1. Ord(ML(x))O"i == {3 + 1. 
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Take a E N(ai) and put ai+1 == a. Then we have 
Ord(ML(ax))Ui+l * < Ord(ML(ax))ui <Ord(ML(x))Ui == f3 + 1. 
By the construction of N(ai), we have Ord(ML(x))Ui+l == (3. 
This implies that Ord(ML(ax))ui+l < Ord(ML(x))Ui+l, there
fore ai + 1 is as required. 

Case 2. Ord(ML(x))Ui == " where I is limit. 
We shall show that there exists A < I such that 

Ord(ML(ax))(Ui U {a(,8))* < A for every f3 < I' Assume the 
contrary. Then we have Ord(ML(ax))ui ~ I' This contra
dicts that Ord (ML(aX))ui < Ord(ML(x))Ui == I. Take f3 with 
A < f3 < I and put ai+1 == ai U {a(f3)}. Then Ord(ML(x) )Ui+l == 
Ord(ML (x))/T i )a(,(3) > f3 > A Ord(ML(O'x))/Ti+1o Obviously, 
Ord(ML(x))Ui+l > (3 2: 1. Thus ai+1 is as required. 

Since ai is a proper subset of ai+1 for every i ~ n-l, we have 
Ord(ML(x))Ui+l < Ord(ML(x))Ui. Thus Ord(ML(x))Un == 1 for 
some n < w. This completes the construction of nand ai E Mi. 

Take a E N(an ). Since Ord(ML(X))Un == 1 we have 
Ord(ML(x))U == o. This implies that a is essential in X. On 
the other hand, since Ord(ML(X))U~ < Ord(ML(x))Un == 1, we 
have Ord(ML(X))U~ == O. This implies that a* is inessential 
in aX. This is a contradiction. Hence we have trdim aX 2: 
trdim X. This completes the proof of Theorem 3.6. D 

We now present the following consequence of Theorems 3.5 
and 3.6. 

3.7. Corollary. Every S-w. i. d. metacompact space X has a 
compactijication aX such that trdim aX == trdimX and 
w(aX) == w(X). 

3.8. Corollary.- Every S-w. i. d. separable metrizable space X 
has a metrizable compactijication aX such that trdim aX == 
trdim X. 

3.9. Corollary. Let X be a S-w.i.d. space with trdim X < WI. 

Then X has a compactijication aX such that trdim aX == 
trdim X and w(aX) == w(X). 
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Proof: Since w(X) ~ w, we have trdim X < WI ::; w(X)+. 
Apply Theorem 3.6. 

4. EMBEDDINGS INTO THE HILBERT CUBE 

In this section we assume that all spaces are separable all:d 
metrizable. Luxemburg [L] proved that if a space X has trInd, 
then the following sets are residual in C(X, JW), where C(X, JW) 
is the space of all continuous mappings from X into the Hilbert 
cube JW with the topology of uniform convergence. 

(1)	 {h E C(X, JW) : h is an embedding such that
 
trind Cl f(X) == trind X}.
 

(2)	 {h E C(X, JW) : h is an embedding such that
 
trInd Cl f(X) == trInd X}.
 

In this section we prove the following theorem that is similar 
to Luxemburg's results above. 

4.1. Theorem. For a space X the set of all embeddings f : 
X ---+ JW such that 

trdim Cl f(X) == trdim X 
is residual in C(X, JW). 

4.2. Lemma. For a space X the set of all continuous map
pings f : X ---+ !W such that 

trdim Cl f(X) ::; trdim X 
is residual in C(X,JW). 

Proof: Let r be a finite collection of pairs of disjoint closed 
subsets of X and let f : X ---+ JW be continuous. Let us set 

f(r) == {(Cl f(A),Cl f(B): (A,B) E r} and 

U(r) == Int{g E C(X, JW) : g(r) is inessential in Cl g(X)} 

By [K3], if r is inessential in X, then U (r) is open and dense 
in C(X, JW). Take a countable base B for JW with V · B == B 
and let 9 == {Cl B : B E B}. Since the set :F == {r : r is a 
finite collection of pairs of disjoint sets from g} is countable., 
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enumerate :F as :F == {Ti : i < w}. For every f E C(X, JW) and 
for any n < w we set 

f-l( Ti) is inessential in X}, 

where f-l(Ti) == {(f- 1 (A),f- 1(B)) : (A,B) E Ti}. Then 
U(f, n) is open and dense in C(X, JW). By induction on n, 
we shall construdct a pairwise disjoint collection gn of open 
subsets of C(X, JW) and a continuous mapping fu E U for 
every U E gn satisfying the following conditions: 

(a) UYn is dense in C(X, jW), 
(b) mesh Yn ~ lin, 
(c) Yn+l refines Yn and 
(d) U{V E Yn+l : V C U} c U(fu, n) for every U E Yn. 

Let go == {C(X, JW) land fC(X,IW) == f for some f E C(X, JW). 
Suppose that gn has been constructed. For every U E Qn let 
fu == f for some fEU. Since U(fu, n) is open and dense 
in C(X, jW), we can take a pairwise disjoint collection y(U) of 
open subsets of U n U(fu, n) such that mesh Q(U) ~ n~l and 
Uy(U) is dense in U. Let us set 

Qn+l == U{Q(U) : U E Qn}. 
Then, obviously, all the conditions are satisfied. Let us set 

Gn == UQn and G == n{Gn : n <ow}. 
Then G is residual in C(X, JW). Thus it suffices to show that 

trdim Cl f(X) ~ trdim X 
for every f E G. Let f E G. Take Un E gn with f E Un. We 
set fn == fUn for every n < w. For A, BEg with A n B == 
otake A*, B* E 'Q such that A C lnt A*, B C lnt B* and 
A* n B* == 0. Since {fn : n < w} converges to !, there exists 
N == N(A, B) > 0 such that 

f;l(A*) =:) f-l(A) for every n ~ N, 
f~l(B*) =:) f-l(B) for every n ~ Nand 
]{(A) n ]{(B) == 0, 

where ]((A) == Cl{f~l(A*) : n 2:: N} and I{(B) == Cl{f~l(B*) : 
n ~ N}. For every n < w let us set 
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Tt == {(A*,B*): (A,B) E Ti}, 
!«Ti) == {(!«A),!«B)): (A,B) E Ti} and 
Ti# == {(Cl((lntA) n f(X), Cl((lntB) n f(X))) : (A,B) E 

Ti}.
 
By Lemmas 3.1 and 3.2, to prove trdim Cl f(X) :::; trdim X,
 
if suffices to show that if Ti# is essential in Clf(X) then so
 
is !{(Ti) in X. Suppose that Ti# is essential in Cl f(X) and
 
Ti# == Tm · Take n < w such that n ~ m and n ~ N(A, B) for
 
every	 (A,B) E Ti. For every (A*,B*) E Tm , we have 

Cl ff;l(A*) :J Cl ((lntA) n f(X)) and 
Cl ff;l(B*) :JCl ((lntB) n f(X)). 

Since Ti# is essential in Cl f (X), either f f; 1
( Tm) is essential in 

Cl f(X) or Cl f f;l(A*)n Cl f f;l(B*) i= 0for some (A*, B*) E 
Tm . Hence ff;l(Tm ) is not inessential. Assume that f;l(Tm ) 

is inessential in X. Since 
f E Un+1 C U(fn,n) c U(f;l(Tm )), 

ff;l(Tm ) is inessential. This is a contradiction. Thus f;l(Tm ) 

is essential in X. Since f;l(A*) c !«A) and f;l(B*) C 
!{(B), !{(Ti) is essential in X. This completes the proof of 
Lemma 4.2. D 

4.3. Lemma. For a space X the set of all continuous map
pings f	 : X ---+ jW such that 

trdim Cl f(X) ~ trdim X is residual in C(X, JW). 

Proof: We distinguish two cases. 
Case 1. trdim X == Q for some ordinal Q. Let M i be as 

in the proof of Theorem 3.6 and let M == U{Mi : i :::; w}. 
Since UM == U{ a : a E M} is countable, we enumerate UM as 
UM == {(Ai, B i ) : i < w}. Then the set 

G == {f E C(X, JW) : Clf(Ai)n Cl f(Bi) == 0 for every 
i < w} 
is residual in C(X, JW). Similarly in the rproof of Theorem 3.6, 
we can prove that trdim Cl f(X) ~ trdim X for every f E G. 

Case 2. trdim X == 00. 

In this case X is not S-w.i.d. Thus there exists a collection 
{(Ai,Bi) : i < w} of pairs of disjoint closed subsets of X such 
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that n{Ti : i ::; n} =I- 0 for every partition Ti in X between Ai 
and Bi and for every n < w. Then the set 

G == {f E C(X, JW) : Clf(Ai)n Cl f(B i ) == 0 for every 
i < w} 
is residual in C(X, JW). It is easy to see that Clf(X) is not 
S-w.i.d. for every f E G. Hence we have trdim Cl f(X) == 00. 

This completes the proof of Lemma 4.3. D 
Since the set of all embeddings from X into the Hilbert cube 

is residual in C(X, JW), Theorem 4.1 follows from Lemmas 4.2 
and 4.3. Applying Luxemburg's theorem, we obtain the fol
lowing corollary. 

4.4. Corollary. If a space X has trInd, then X has a metriz
able compactification aX such that 

trind aX == trind X, trInd aX == trInd X and trdim 
aX == trdim X. 

5. COMMENTS AND QUESTIONS 

In [C2] Chatyrko proved that if trdim X == a < WI and 
if X admits an essential mapping f : X ~ Ja!, then X has 
a compactification aX such that trdim aX == trdim X and 
w(aX) == w(X), where Ja! is Henderson's transfinite cube [He]. 
However, not all spaces X admit an essential mapping f : 
X ~ Ja!, where a == trdim X, even if a < WI (see [B2]). 
Thus Chatyrko's result above does not imply that Corollary 
3.8 remains true. 

In Theorem 3.5 we prove that trdim X < w(X)+ for every S
w.i.d. metacompact space X. However, it is unknown whether 
there exists a S-w.i.d. space X such that trdim X ~ w(X)+. 

5.1. Question. Does there exist a S-w.i.d. space X such that 
trdim X ~ w(X)+? 

The negative answer to Question 5.1 implies that the condi
tion of metacompactness can be dropped in Corollary 3.7. 

Assume that there exists a S-w.i.d. space X such that trdim 
X ~ w(X)+. By Lemma 3.3, for any compactification aX 
of X with w(aX) == w(X), we have trdim aX < w(aX)+ == 
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w(X)+ ~ trdim X. Thus there exists no compactification aX 
such that trdim aX == trdim X and w(aX) == w(X). Hence 
the following statements are equivalent: 

(1) every S-w.i.d. space X has a compactification aX such 
that trdim aX == trdim X and w(aX) == w(X), 

(2) for every S-w.i.d. space X the inequality trdim X < 
w(X)+ holds. 
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