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THE BOURBAKI QUASI-UNIFORMITY 

HANS-PETER A. KUNZI* AND CAROLINA RYSER 

ABSTRACT. We study properties of the Bourbaki quasi­
uniformity U* defined on the collection Po(X) of all non­
empty subsets of a given quasi-uniform space (X,U). 

We note that U* is precompact (totally bounded, re­
spectively) if and only ifU is precompact (totally bounded, 
respectively). Examples are given that show that for the 
properties of compactness and hereditary precompact­
ness the corresponding statement does not hold. 

Furthermore we establish that for a quasi-uniform space 
(X,U) the Bourbaki quasi-uniformity U* on Po(X) is 
right 1<-complete if and only if each stable filter on (X, U) 
has a cluster point. This theorem generalizes the well­
known Isbell-Burdick theorem for uniform spaces to the 
quasi-uniform setting. The paper ends with a related 
theorem characterizing bicompleteness of (Po( X), U*) in 
terms of a property of (X,U). 

1. INTRODUCTION 

Let (X, U) be a quasi-uniform space. It has been observed by 
various ~uthors that it is possible to define a quasi-uniformity 
on the collection Po(X) of all nonempty subsets of X in the 
same way as the Hausdorlf uniformity is defined in the theory of 
uniform spaces. In [1,5,15] basic properties of this construction 
in some special cases are derived. In particular the case is 
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studied where U is the Pervin quasi-uniformity of a topological 
space. 

In this paper we are starting a more systematic study of the 
quasi-uniform space (Po(X),U*). In particular we are inter­
ested in the following important question: Suppose that (X, U) 
is a quasi-uniform space possessing a certain property P. Does 
(Po(X),U*) necessarily have property P, too? Of course, it is 
known from the theory of uniform spaces that in general the 
answer to this question is negative. For example, Isbell [8, p. 
31] has given a simple example of a complete uniform space 
whose Hausdorff uniformity is not complete. Recently, based 
on former work of Isbell [8], Burdick [2, Corollary 2] has an­
swered a question of Csaszar [3] in the affirmative by proving 
the following elegant characterization of the uniform spaces 
possessing a complete Hausdorff uniformity: The Hausdorff 
uniformity on Po(X) of a uniform space (X,U) is complete if 
and only if each stable filter on (X,U) has a cluster point. In 
this paper we wish to present a surprising extension of this re­
sult to quasi-uniform spaces. Since the concept of a complete 
quasi-uniformity is highly controversial, it is at first not clear 
how to proceed. However it turns out that the appropriate con­
cept of completeness has already been studied in the literature. 
In fact, for sequences in quasi-metric spaces it was considered 
long ago [9,18] under the name of right I{-completeness; in 
quasi-uniform spaces the corresponding notion for filters and 
nets has been studied by Stoltenberg and Romaguera [20,22]. 
Using this simple concept of completeness, which for unifor­
mities coincides with the usual one, Burdick's result can be 
generalized without any further formal change. Of course, the 
method of proof has to be adjusted to the nonsymmetric situ­
ation considered in this paper. 

We also prove that the hyperspace (Po(X),U*) of a quasi­
uniform space (X,U) is precompact (totally bounded, respec­
tively) if and only if (X,U) is precompact (totally bounded, 
respectively). Examples are given that show that the corre­
sponding result does not obtain for the properties of heredi­
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tary precompactness and compactness. Finally we character­
ize bicompleteness of (Po(X),U*) in terms of & property of the 
quasi-uniform space (X, U). 

For basic facts about (quasi-)uniform (hyper)spaces we refer 
the reader to [4,16,17]. A discussion of further characteriza­
tions of those uniform spaces that possess a complete Hausdorff 
uniformity can be found in [7]. 

2. PRELIMINARY RESULTS 

Let (X, U) be a quasi-uniform space. We denote the asso­
ciated uniformity U V U-1 by Us. For any U E U let U+ == 
{(A,B) E Po(X) X Po(X) : B ~ U(A)} and U_ == {(A,B) E 
Po(X) x Po(X) : A ~ U-1(B)}. Furthermore set U* == U_ n 
(U+) whenever U E U. Then {U_ : U E U} is a base for 
the lower quasi-uniformity on Po(X) and {U+ : U E U} is a 
base for the upper quasi-uniformity on Po(X). Moreover U* == 
U+ V U_ is the so-called Bourbaki quasi-uniformity of X (see 
[1]). 

For a given quasi-pseudometric space (X, d) we shall denote 
the open ball of radius 2-n at x E X by Bn(x). 

Lemma 1. (aJ Let (X,U) be a quasi-uniform space. Then 
x ~ {x} is an embedding of (X,U) into (Po(X),U*). 

(bJ Let (X,U) and (Y, V) be quasi-uniform spaces and let f : 
(X,U) ---+ (Y, V) be a quasi-uniformly continuous map. Then 
the map f : (Po(X),U*) ---+ ('Po(Y), V*) defined by f(A) 
{/(a) : a E A} is quasi-uniformly continuous, too. 

Proof. (a) The assertion is readily verified. 
(b) If (f x f)(U) C V where U E U and V E V, then 

(/ x /)(U*) ~ V*. 

For a uniform space (X,U), it is usually the To-quotient of 
(Po(X),U*), rather than (Po(X),U*) itself, that is studied. It 
is well known that t11is quotient can be described as follows: 
Each nonempty subset A of X is identified with its closure A 
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and then the Hausdorff uniformity is restricted to the collection 
of nonempty closed subsets of X. 

Similarly, our first result can be used to show that for a 
quasi-uniform space (X,U) the To-quotient of (Po(X),U*) can 
be described as follows: Identify an arbitrary nonempty sub­
set A of X with clT(u)A n C1T(U-l)A and study the Bourbaki 
quasi-uniformity restricted to the collection of all subsets of X 
obtained in that way. 

Lemma 2. Let (-X,U) be a quasi-uniform space and A,B E 

Po(X). We have (A, B) E nU* n(nU*)-l iff clT(U)A = clT(u)B 
and c0-(u-l)A = clT(u-l}B. In particular for any A E 'Po(X), 
(A, C) E nU* n (nU*)- where C = clT(U) AnC1T(U-l )A. 

Proof: Note that (A, B) E (nu+)-l implies that 

A ~ n U(B) ~ n U(CIT(U-l)(B)) ~ n U2 (B),
 
UeU UeU UeU
 

and thus 

CIT(U-l)A ~ nCIT(U-l)U2 (B) ~ nU3 (B) = CIT(U-l)B 
UEU UEU 

and CIT(U-l)A ~ CIT(U-l )B. The other three inequalities fol­
low similarly. On the other hand, suppose that CIT(U-l)A ~ 

CIT(U-l)B. Then A ~ CIT(U-l)A ~ CIT(U-l)B ~ nUEuU(B). 
Therefore (A,B) E (nU+)-l. Again, the three remaining in­
equalities follow similarly. 

We have A ~ C ~ cIT(u)A. Thus cIT(u)A ~ clT(u)C ~ 

cIT(u)A. Analogously, we obtain CIT(U-l)A == CIT(U-l )C. The 
second assertion follows. 

We omit the proofs of the following remark, which are obvi­
ous. (A quasi-uniform space is called transitive provided that 
its quasi-uniformity has a base of transitive relations.) 

Remark 1. Let (X,U) be a quasi-uniform space. 
(aJ Then the space (X,U) is transitive if and only if U* zs 

transitive. 
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(b) The quasi-uniformity U has a base of cardinality K if and 
only if U* has a base of cardinality K. 

(c) The space (X,U) is uniform if and only if (Po(X),U*) 
is uniform. (In fact for a uniformity U, U* is the well-known 
Hausdorff uniformity on Po(X).) 

Recall (see e.g. [11]) that a quasi-uniform space (X,U) is 
totally bounded provided that for each U E U there is a finite 
cover A of X such that A x A ~ U whenever A E A. It is 
said to be precompact.if for each U E U there is a finite subset 
F of X such that U(F) == X. A quasi-uniform space is called 
hereditarily precompact if each of its subspaces is precompact. 
Clearly "totally bounded" implies "hereditarily precompact" 
implies "precompact". It is well l<nown that in the class of 
quasi-uniform spaces the converses do not obtain in general. 

Proposition 1. Let (X,U) be a quasi-uniform space. Then 
('Po(X),U*) is precompact if and only if (X,U) is precompact. 

Proof: Let (X,U) be precompact and let V E U*. There is 
U E U such that U* ~ V. Since U is precompact, there exists a 
finite set F ~ X such that UjEF U(f) == X. Set M == 'Po(F). 
We want to show that 'Po(X) == UEEM U*(E) : Consider an 
arbitrary B E Po(X). Set FB == {f E F : B n U(f) =I- 0}. 
Thus FB ~ U- 1 (B) and therefore B E U_(FB ). Furthermore 
B E U+(FB ), because B ~ UjEFB U(f). Hence B E U*(FB ). 

We conclude that (Po(X),U*) is precompact. 
On the other hand, suppose that (Po(X),U*) and thus 

(Po(X),U_) is precompact. Let V E U. Then there is a fi­
nite subcollection A of Po(X) such that for each B E Po(X) 
there is A E A with A ~ V-1(B). Choose some XA E A for 
each A E A. Then B == X \ UAEA V(XA) is necessarily empty. 
Therefore (X,U) is precompact. 

Corollary 1. Let (X,U) be a quasi-uniform space. Then 
(Po(X),U_) is precompact if and only if (Po(X),U*) 'ts pre­
compact. 
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Proof: The second part of the proof of the preceding proposi­
tion shows that (X,U) is precompact provided that (Po(X),U_) 
is precompact. Moreover the first part of the proof given above 
shows that (Po(X),U*) is precompact if (X,U) is precompact. 
Hence the assertion follows. 

Lemma 3. Let (X,U) be a quasi-uniform space. Then (U*)S ~ 

(US)* on Po(X). 

Proof: It suffices to show that for any U E U we have (U n 
U- 1)* ~ u*n(u*)-l : Let (A,B) E (UnU-1 )*. Then A ~ (Un 
U-1 )(B) and B ~ (UnU-1 )(A). Thus A ~ U(B)nU-1(B) and 
B ~ U(A)nU-1(A). Therefore A E U*(B) and A E (U*)-l(B). 

Corollary 2. A quasi-uniform space (X,U) is totally bounded 
if and only if (Po(X), U*) is totally bounded. 

Proof: Suppose that (X,U) is totally bounded. Then (X,US) 
is precompact. Thus (Po(X), (US)*) is precompact by the pre­
ceding proposition. Since (US)* is a uniformity, it is totally 
bounded. By Lemma 3, (U*)S is coarser than (US)*; hence it is 
totally bounded, too. Therefore U* is totally bounded. For the 
converse, suppose that (Po(X),U*) is totally bounded. Since 
total boundedness is a hereditary property of quasi-uniform 
spaces, the assertion follows from Lemma l(a). 

Proposition 2. A quasi-uniform space (X,U) is compact pro­
vided that (Po(X),U_) is compact. 

Proof: Let F be a filter on (X,U). Since (Po(X),U_) is com­
pact, the net (F)FE(:F,2) has a cluster point C in Po(X). Sup­
pose that x E C. For any U E U and Fo E F, there is F E :F 
such that F ~ Fo and C ~ U- 1 (F). Thus U(x) n Fo =I 0. 
We conclude that x is a cluster point of :F. Hence (X,U) is 
compact. 

Corollary 3. Let (X,U) be a quasi-uniform space. Then (X,U) 
is compact if (Po(X),U*) is compact. 
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Example 1. If (X,U) is compact, (Po(X),U*) need not be: 
Let X = {OJ U {~ : nEw \ {O}} be equipped with its usual 
metric uniformity Ud • Set qo = 0, and qn = ~ if nEw \ 
{OJ. Let T(qn) = {qk : k E wand k ~ n} whenever nEw 
and consider the compatible quasi-uniformity U on X that is 
generated by Ud U {T} where T = UXEX( {x} x T(x)). We show 
that (Po(X),U*) is not (countably) compact, although (X,U) 
is compact: To this end consider the sequence (Fn)nEw in Po(X) 
where Fn = {qk : k ::; nand k E w} whenever nEw. Suppose 
that C is a cluster point of (Fn)nEw in (Po(X),U*). There is 
nEw such that C ~ T- 1 (Fn ). Since T- 1 (x) is finite whenever 
x E X, we conclude that C is finite. Choose nEw such that 
X \ B~(C) -# 0 and mEw such that qm f/. B~(C). But then 
Fk Cl B~(C) whenever k E wand k ~ m- a contradiction. 
We have shown that (Fn)nEw does not have a cluster point in 
(Po(X),U*). Thus (Po(X),U*) is not (countably) compact. 

Lemma 4. Let (X,U) be a quasi-uniform space. Then 
(Po(X),U+) is hereditarily precompact if and only if(Po(X),U_) 
is hereditarily precompact. 

Proof: Suppose that (Po(X),U_) is hereditarily precompact, 
but that (Po(X),U+) is not hereditarily precompact. Hence 
there is U E U and a sequence (An)nEw in Po(X) such that 
Ai Cl U(Aj ) whenever i,j E wand i > j. Choose V E U such 
that V 2 ~ U and fix i,j E w such that i > j. It follows that 
V(A i ) %V 2 (A j ). Therefore X \ V 2 (A j ) %X \ V(A i ). Since 
V- 1 (X \ V 2 (A i )) ~ X \ V(A i ), we have that X \ V 2 (Aj ) Ci 
V- 1 (X \ V 2 (Ai )). Set B s = X \ V 2 (As ) whenever sEw. Then 
{Bs : sEw} is a nonprecompact subspace of (Po(X),U_)­
a contradiction. Thus (Po(X),U+) is hereditarily precompact 
provided that (Po(X),U_) is hereditarily precompact. The 
converse is shown analogously. 

Corollary 4. Let (X,U) be a quasi-uniform space. Then 
(Po(X),U*) is hereditarily precompact if and only i!(Po(X),U+) 
is hereditarily precompact. 
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Proof: It is well-known that the supremum of hereditarily 
precompact quasi-uniformities is hereditarily precompact [11, 
Corollary 8]. The nontrivial part of the assertion follows. 

Example 2. We construct a hereditarily precompact quasi­
uniform space (X,U) such that (Po(X),U*) is not hereditar­
ily precompact. Let X = w X w. For any nEw set An = 
(n x n)U( { n} X w). Furthermore set C = {X \ An : nEw}U{ X} . 
Finally, for each x E X, set T(x) = n{C E C : x E C}. 
Consider the quasi-uniformity U = fil{T} on X, where T = 
UXEX({x} X T(x)). 

We first show that (X, U) is hereditarily precompact. Note 
that for each x E X, there is jo E w such that x E A j for all 
jEw whenever j ~ jo; thus X\T(x) = U{An : x fI- An,n E w} 
is equal to the union of finitely many sets Aj . Suppose that 
(X,U) is not hereditarily precompact. Then there is a sequence 
(Zn)nEw of points of X such that Zj fI- T(Zi) whenever i,j E w 
and i < j. 

Since 0 =1= X \ T(zo) consists of the union of finitely many 
sets Aj and since the elements (Zi)iEW are pairwise distinct, 
we conclude that there exists nEw such that Zj E {n} x w 
for infinitely many j. Thus there are ml, m2 E w such that 
ml < m2 and (n, m2) t/:. T(n, ml). Clearly this is impossible, 
since (n,m2) E Aj ~ X \ T(n,ml) for some jEw implies 
that (n, ml) E A j . We conclude that (X,U) is hereditarily 
precompact. 

Finally we prove that (Po(X),U_) is not hereditarily pre­
compact. In fact we show that (£',U_I(t' x £')) is not precom­
pact where £' = {An: nEw}. Observe first that T-1(An) = An 
for each nEw.' If (£',U_I(£' x £')) is precompact, then there 
are i,j E w such that i < j and Ai Cl T-1(Aj). But Ai ~ Aj 
clearly does not hold, since {i} x w Cl Aj . We have shown that 
£' is not precompact in (Po(X),U_). 

Let us note that an example having better separation prop­
erties can be obtained by putting V = sup{P,U} where P is 



169 THE BOURBAKI QUASI-UNIFORMITY 

the Pervin quasi-uniformity for the discrete topology on X. Of 
course, the same argument as given above applies. 

3.	 RIGHT]<-COMPLETENESS OF THE BOURBAKI 

QUASI-UNIFORMITY 

It is known (compare [19, Lemma] and [20, Proposition 2]) 
that in any quasi-pseudometric space (X, d) the following prop­
erties are equivalent: 

(a) each left ]<-Cauchy sequence converges in (X,d). 
(b) each left ]<-Cauchy filter on (X, Ud ) converges. 
(c) each Uil-stable filter has a cluster point in (X,d). 
Moreover it is shown in [13, Proposition 1] that the well-

monotone quasi-uniformity of any topological space is left ]<­
complete. It will follow from the results presented in this sec­
tion that the property of right ]<-completeness behaves differ­
ently. Let us recall the necessary definitions first. 

A sequence (Xn)nEw in a quasi-pseudometric space (X, d) is 
called right ]<-Cauchy [18, Definition I} if for each E > °there 
is k E w such that d(x n , x m ) < E whenever n, mEw and n 2:: 
m ~ k. A quasi-pseudometric space (X, d) is said to be right]<­
sequentially complete [18, Definition 3] if each right ]<-Cauchy 
sequence converges. A filter on a quasi-uniform space (X,U) is 
called a right ]<- Cauchy filter [20, D,efinition 1] if for each U E 
U there is an F E F such that U-1(x) E F whenever x E F. A 
quasi-uniform space is called right !{-complete [20, Definition 
2] provided that any right ]<-Cauchy filter converges. A net 
(Xd)dED in a quasi-uniform space (X, U) is called a right ]<­
Cauchy net [12] (compare [22, p. 229]) if for any U E U there 
exists du E D such that for any d1 , d2 E D satisfying d1 ~ 

d2 2:: du we have that (Xdl' Xd2) E U. 
Obviously, the concepts of ,Cauchy filters and completeness 

discussed above agree all with the usual ones in uniform and 
metric spaces. In [12, Lemma 1] it is shown that a quasi­
uniform space is right ]<-complete if and only if each right ]<­
Cauchy net converges. Obviously a quasi-pseudometric space 



170 HANS-PETER A. KUNZI AND CAROLINA RYSER 

(X, d) is right ]<-sequentially complete provided that the quasi­
pseudometric quasi-uniformity Ud is right !<-complete. It is 
known that the converse holds for regular spaces [21, Proposi­
tion 3], but not in general [22, Example 2.4]. 

Finally we recall that a filter :F on a quasi-uniform space 
(X,U) is called stable (compare [8, p. 29]) provided that for 
any U E U, nFEF U(F) belongs to F. 

The following result belongs to the folklore of the subject 
and is included here for completeness. In fact, according to 
[20, Proposition 1] an ultrafilter on a quasi-uniform space is 
right !<-Cauchy if and only if it is stable. 

Lemma 5. On a quasi-uniform space (X,U) each right !<­
Cauchy filter is stable. 

Proof: Let F be a right ]<-Cauchy filter on (X,U) and let 
U E U. Then there is M(U) E F such that for any y E M(U) 
we have U- 1 (y) E F. Consider any x E M(U). Note that 
U- 1(x) n F =I 0 whenever F E :F. Thus x E nFEFU(F) 
and, consequently, M(U) ~ nFEF U(F). We conclude that 
nFEF U(F) E F. Therefore, F is stable. 

Corollary 5. Let (X,U) be a quasi-uniform space in which 
each stable filter has a cluster point. Then (X, U) is right ]<­
complete. 

Proof: We use the preceding lemma and the fact that each 
right ]<-Cauchy filter converges to any of its cluster points [20, 
Lemma 1]. 

Not much seems to be known about quasi-uniform spaces in 
which each stable filter has a cluster point. In the following we 
collect some pertinent results. 

Proposition 3. For any Lindelof right ]< -sequentially com­
plete quasi-pseudometric space (X, d) each stable filter on (X,Ud ) 

has a cluster point. 
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Proof: In order to obtain a contradiction, let F be a stable 
filter on (X, Ud) such that nFEF F == 0. Since X is a Lin­
delof space, there is a countable subcollection {Fn : nEw} 

of :F such that nnEw Fn == 0. Choose Xo E nFEF Bo(F) n Fo. 
Define inductively a sequence (Xn)nEw of points in X by choos­
ing Xn E [nFEF Bn(F) n nk=o Fk n B~~l(Xn-l)] for any nEw 
such that n > O. Then clearly (Xn)nEw is a right !<-Cauchy 
sequence. It has a limit point x in X, because (X, d) is right 
!<-sequentially complete. Therefore x E nkEw Fk -a contra­
diction. We conclude that each stable filter on (X,Ud) has a 
cluster point. 

Corollary 6. The quasi-metric Sorgenfrey line (R, ds ) has the 
property that each stable filter on (R, Uds ) has a cluster point. 
(Recall that the quasi-metric ds is defined as follows: For any 
X,Y E R set ds(x,y) == 1 if y < x and ds(x,y) == y - x if 
x ::; y.) 

Proof: It is well-known [21, Remark l(a)] and easy to see that 
the quasi-metric Sorgenfrey line is right !<-(sequentially) com­
plete. Thus the assertion is a consequence of the preceding 
lemma, since the space has the Lindelof property. 

Next we present an example of a right !<-complete quasi­
metric space that possesses a stable filter without cluster point. 

Example 3. The quasi-metric Sorgenfrey plane (R X R, ds X 

ds) where (ds X dS )((Xl,X2),(Yl,Y2)) == max{dS(xl,Yl), 
dS(X2,Y2)} (Xl,X2,Yl,Y2 E R) is right ]<-complete, but it con­
tains a stable filter without cluster point: Indeed, since a prod­
uct of right !{-complete quasi-uniform spaces is right !<-complete 
(see e.g. [20, Remark 3(c)]), the quasi-metric Sorgenfrey plane 
is right ]<-complete. Consider the filter fil{A8,F : 8 > 0 and F 
is a finite subset of R} on RxR where A8,F == {(x, y) E RxR: 
-x < Y < -x+8}\UxEF[Bg(x)xBg(x)]. Clearly that filter has 
no cluster point. But it is stable, since A8,0 ~ nf,F B8(Af ,F) 

for any 8 > o. 
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Let X be a topological space. Consider a point-finite open 
cover C of X. For any x EX, set Tc(x) = n{C : x E C E C}. 
Moreover set Tc = UXEX({x} X Tc(x)). Then {Tc : C is a 
point-finite open cover of X} generates a compatible quasi­
uniformity on X. It is called the point-finite covering quasi­
uniformity of X [4 p. 30]. 

Example 4. The point-finite covering quasi-uniformity PF of 
a metacompact space X has the property that each stable filter 
has a cluster point. 

Proof: Suppose that F is a filter on X such that nFEF F = 0. 
Since X is metacompact, the open cover {X \ F : F E F} of X 
has a point-finite open refinement M. Thus TM E PF. Then 
for each x E X, T;:,l (x) is contained in the union of finitely 
many open sets belonging to M. Consequently nFEF TM (F) = 
0. We conclude that F is not stable. Hence each stable filter 
on (X, PF) has a cluster point. 

Example 5. Equip WI with the order topology. We want to 
show that the space X so defined does not admit any quasi­
uniformity that is right ]{ -complete. Indeed, let U be a com­
patible quasi-uniformity on X and set F = fil{F ~ X : F is 
closed and unbounded} on X. Then F has no cluster point. We 
prove that it is a right ]<-Cauchy filter on (X,U). Suppose that 
U E U and that V E U such that V 2 ~ U. For any x E WI \ {O} 
there is {3x E WI such that {3x < x and ]{3x, x] ~ V(x). By the 
Pressing-Down Lemma (see e.g. [14, p. 153]), there are {3 E WI 

and an uncountable subset S of WI such that {3x < {3 whenever 
xES. Consider an arbitrary 0 E WI such that 0 ~ {3. Then 
S n [0, ---+ [~ V-I(o). 

Thus S n [0, ---+ [ ~ V- 2
( 0) ~ U- I 

( 0). Since S n [0, ---+ [ E 
F, U- I ( 0) E F. Because [{3, ---+ [E F, we have shown that F is 
a right ]<-Cauchy filter on (X,U). 

It is well known that a uniform space in which each sta­
ble filter has a cluster point induces a paracompact topology 
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[8, Chapter VII, Theorem 41]. Our next result shows that a 
quasi-uniformity with the property that each stable filter has 
a cluster point need not induce a metacompact topology. 

Example 6. Let (X,U) be a quasi-uniform space having an 
entourage V E U such that for each x E X, V(x) or V-I(x) is a 
singleton. Then each stable filter on (X, U) has a cluster point. 
Indeed, let F be a stable filter on (X,U). Set H == nFEF V(F). 
Suppose that nF == 0. If x E Hand V-I(x) == {x}, then 
x E nF. Thus H ~ {x EX: V(x) == {x}}. Consequently for 
any F E F such that F ~ H, we have that H ~ V(F) == F. 
Thus 0 == nF == H E :F -a contradiction. Therefore n:F -=f 0. 
In particular :F has a cluster point in (X,U). 

Corollary 7. The space \11 [6,51] equipped with its usual quasi­
metric quasi-uniformity Ud has the property that each stable 
jilter has a cluster point: We have B I (x) == {x} for an isolated 
point x and BI I (x) == {x} otherwise. It is well known (and 
easy to see) that \II is not metacompact. 

Proposition 4. (Compare [2, Corollary 5].) Any quasi-uniform 
space (X,U) that possesses an entourage V such that for each 
x E X the set V-I (x) is compact in (X, U) has the property 
that each stable filter on (X,U) has a cluster point. 

Proof: Let F be a stable filter on (X,U). Then there exists 
some x E nFEF V(F). Thus V-I(x) n F =I- 0 whenever F E F. 
Since V-I(x) is compact, we conclude that F has a cluster 
point in V-I(x). 

Let d be a bounded quasi-pseudometric on X. We shall con­
sider the Hausdorff quasi-pseudometric on Po(X) defined by 

d*(A, B) == max{sup d(A, y), sup d(a, B)} 
yEB aEA 

whenever A, B E Po(X). Of course (see [1]) this quasi-
pseudometric induces on Po(X) the Bourbaki quasi-uniformity 
of the quasi-uniform space (X,Ud). The following proposition 
generalizes the well-known result that the Hausdorff metric of a 
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(bounded) metric space (X, d) is complete if and only if (X, d) 
is complete (see e.g. [2, Corollary 6]). We include a proof of 
Proposition 5, because - although many ideas are related to 
the proof of the generalized Isbell-Burdick Theorem presented 
below - the use of sequences allows some simplifications. 

Proposition 5. Let (X, d) be a bounded quasi-pseudometric 
space. Then (X, d) is right !<-sequentially complete if and only 
if (Po(X), d*) is right !<-sequentially complete. 

Proof: Suppose that (Po(X), d*) is right J<-sequentially com­
plete. Let (Xn)nEw be a right !<-Cauchy sequence in (X, d). 
We first verify that ({ Xn : nEw and n ~ k} )kEW is a right 
J<-Cauchy sequence in Po(X): Let sEw. Then there is ks E w 
such that for all n, mEw with n ~ m ~ ks we have that 
d(xn, xm ) < 2- S 

• Thus {xn : nEw and n ~ k2 } ~ B s ( {xn : 
nEw and n ~ kI }) whenever kI , k2 E wand kI ~ k2 ~ ks . 

Furthermore {xn : nEw and n ~ kI } ~ B;I( {xn : nEw 
and n ~ k2 }). Since (Po(X), d*) is right J<-sequentially com­
plete, there is C in Po(X) such that ({ Xn : nEw and n ~ 

k} )kEW ---+ C in (Po(X), d*). Hence for any nEw there is 
Pn E w such that C ~ B;;~I ({xn : nEw and n ~ k}) for 
any k E w satisfying k ~ Pn. Fix x E C. We conclude that x 
is a cluster point of (Xn)nEw. Hence (Xn)nEw converges to x : 
Indeed, consider any E > o. There is no E w such that for 
n, mEw with n ~ m ~ no we have that d(xn, xm ) < E/2. 
Given mEw with m 2 no, choose nEw such that n 2 m 
and d(x,xn) < f/2. Hence d(x,xm ) < f for all mEw such that 
m ~ no and (Xn)EW converges to x. We have shown that (X, d) 
is right !<-sequentially complete. 

In order to prove the converse, suppose that (X, d) is right 
!<-sequentially complete. Let (An)nEw be a right !<-Cauchy 
sequence in ('Po(X), d*). Thus for each nEw there is m n E w 
such that for all hI, h2 E w satisfying hI 2 h2 ~ m n we have 
that d* (Ah1 , A h2 ) < 2-n. Consequently, A h2 ~ Bn(Ah1 ) and 
Ah1 ~ B;, 1(Ah2 ) whenever hI, h2 E w such that hI 2 h2 2 m n . 

Without loss of generality we can suppose that (mn)nEw is a 
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strictly increasing sequence. Let C ==. {x EX: For each nEw 
we have B n(x) n Am =I 0 for infinitely many mEw}. We first 
show that C =1= 0. In fact, we shall verify that whenever there 
are given some fixed k E w, ek E w such that ek 2: mk+l, and 
ak E Aek , then inductively we can find sequences (en)n>k and 
(an)n~k such that for all n 2 k, ­

(1) en E wand en 2 mn+l, 
(2) an E Aen and 
(3) d(an+l, an) < 2-(n+l). 
Let us first note that then (an)n>k is a right Ii-Cauchy se­

quence in (X, d). Indeed by the tri~ngle inequality d( as, an) < 
2-n whenever s, nEw such that s 2 n 2 k. Thus (an)n>k con­
verges in (X, d) to some x E X. Obviously x E C. We ~bserve 
that in particular we can find such an x E C by choosing first 
some al E Ae1 where el 2 m2. Thus C =10. 

We are going to verify now that the described induction can 
be completed: 

Suppose that for some q E w such that q > k we have cho­
sen (en)q>n>k and (an)q>n>k as described above. Since aq-l E 
A eq_1 ~ Bq(Ah ) whenevei hEw and h 2: eq-l, we can find 
eq E w such that eq 2 {mq+l' eq-l} and choose aq E Aeq such 
that d(aq,aq_l) < 2-q. This concludes the induction. 

Next we prove that (An)nEw converges in (Po(X), d*) to C. 
Suppose that there exists no E w such that An C1 Bno (C) for 
infinitely many nEw. Then find some element in w, say eno+l' 

such that eno+l ~ m no +2 and A eno +1 \ B~o+2 (C) =f 0. Further­
more choose ano+l E Aeno +1 \ B~o+2(C). Thus B~l+l(ano+l) n 
Bno+1(C) == 0. Inductively we construct a right Ii-Cauchy se­
quence (an)n~no+l in the way as described above by starting 
with the point ano+l in X. Then for any nEw such that 
n ~ no + 1 we have that d(an , ano+l) < 2-(no+l) and thus 
an t/:. B no+l (C). Since (X, d) is right Ii-sequentially complete, 
there is Xo E X such that (an)n>no+l converges to Xo in (X, d). 
Hence Xo E Cn(X\Bno+1(C)) -=--a contradiction. We conclude 
that for any no E w there exists sEw such that An ~ B no (C) 
whenever nEw and n 2: s. 
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Let sEw. We finally show that C ~ B:;I(An ) whenever n E 
w such that n 2:: m s+l. Fix nEw such that n ~ ms+l. Consider 
any x E C. By the definition of C there is t E w such that t ~ n 
and B s+1 (x) nAt -=10. Because At ~ B;';I(An ) we have x E 
B;';I(At ) ~ B;;I(An) ~ B;I(An). We have shown that C ~ 
B;I(An). Consequently (An)nEw converges to C in (Po(X), d*). 
Hence (Po(X), d*) is right /<-sequentially complete. 

Next we are going to generalize the Isbell-Burdick theorem 
to quasi-uniform spaces. As we have mentioned above, it says 
that the Hausdorff uniformity on Po(X) of a uniform space 
(X,U) is complete if and only if each stable filter on (X,U) 
has a cluster point. (A proof of this theorem based on nets 
instead of filters is presented in [2].) 

The main ingredient of our result is the following lemma. 

Lemma 6. Suppose that (X, U) is a quasi-uniform space in 
which each stable jilter has a cluster point. Let F be a stable 
jilter on (X, U) and let C be its set of cluster points in (X, U). 
Then for each U E U there is F E F such that F ~ U(C). 

Proof: Suppose the contrary. Hence there is Uo E U such that 
E \ U~( C) =1= 0 whenever E E F. For each U E U and E E :F 
set HUE == {a EX: There is V E U such that V 2 ~ U, 
V- 2 (a) n Uo(C) is empty and a E nFEF V(F) n E}. Observe 
that each such set HUE =1= 0 : To this end choose V E U such 
that V 2 ~ Uo n U. Then any a E (nFEF V(F) n E) \ U~(C) 
belongs to HUE. 

Note also that for any U1 , U2 E U such that U1 ~ U2 and any 
E1 , E 2 E F such that E 1 ~ E2 we have that HUlEl ~ HU2E2 . 

Thus {HUE: U E U, E E F} is a base for a filter H on 
X. In order to show that H is stable on (X,U), we verify 
that for any U, V E U and E E :F we have Hux ~ U(HVE ) : 

Let a E Hux. Then there exists W E U such that W 2 ~ 

U, W- 2 (a) n Uo(C) == 0 and a E nFEF W(F). Choose Z E 
U such that Z2 ~ V n W. There is y E [E n nFEF Z(F)] n 
W- 1 (a), because a E nFE.r W(F) and E n nFE.rZ(F) E :F. 
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Furthermore Z-2(y) ~ W-I(y) ~ W-2(a) and thus Z-2(y) n 
Uo(C) == 0. We conclude that y E HVE and a E W(y) ~ U(y). 
Therefore Hux ~ U(HVE ). We have shown ~hat ?-l is stable 
on (X,U). Hence it has a cluster point x E X. Since HxxXF ~ 

F whenever F E F, it follows that x E C. But Hxxxx n 
int Uo(C) == 0 and x E C ~ int Uo(C). We have obtained 
a contradiction and deduce that our initial assumption was 
wrong. 

Proposition 6. Let (X, U) be a quasi-uniform space. Then 
(Po(X),U*) is right J< -complete if and only if each stable filter 
on (X, U) has a cluster point. 

Proof: Suppose that (Po(X),U*) is right J<-complete. Let Fbe 
a stable filter on (X,U). Consider the net (F)FE(:F,2) on Po(X). 
Let U E U. Since F is stable, there is Fu E F such that Fu ~ 

U(F) whenever F E F. Thus for any FI, F2 E F such that 
FI ~ F2 ~ Fu , we have that F2 ~ U(FI) and FI ~ U- I(F2). 
Therefore (F)FE:F is a right J<-Cauchy net in (Po(X),U*). Since 
(Po(X),U*) is right J<-complete, (F)FE:F converges to some C 
in (Po(X),U*). Fix x E C. As in the proof of Proposition 2 we 
conclude that x is a cluster point of F in (X, U). Hence each 
stable filter on (X,U) has a cluster point. 

In order to prove the convers~ suppose that each stable filter 
on (X,U) has a cluster point. Consider any right J<-Cauchy 
net (Fd)dED on (Po(X),U*). For each U E U there is du E D 
such that for any dl , d2 E D satisfying dl ~ d2 ~ du we 
have that Fd2 ~ U(Fdl ) and Fdl ~ U- I(Fd2 ). Consider the 
filter F == fil{Ee : e ED} on X where E e == UdED d>e Fd 

whenever e E D. We verify that for each U E U w~ have 
Edu ~ ndED U(Ed) : Let x E Edu and d E D. Then x E Fda 
for some do E D such that do ~ du . Choose h E D such 
that h ~ do, d. Observe that x E Fda ~ U(Fh ) ~ U(Ed). We 
conclude that Edu ~ U(Ed) and that :F is a stable filter on 
(X,U). 

Let C be the (nonempty) set of cluster points of :F in (X, U). 
Take any U E U. Choose W E U such that W 2 ~ U. We wish 
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to show that C ~ U- 1 (Fd ) whenever d E D and d ~ dw : 
Let x E C and d E D such that d ~ dw . Then W(x) n 
Ed =1= 0. Hence W(x) n Fp =1= 0 for some p E D with p ~ 
d. Thus x E W-1(Fp ) ~ W-1(W-1(Fd )). We conclude that 
C ~ U- 1 (Fd ) whenever d E D and d ~ dw , as we have 
stated above. By Lemma 6 for each U E U there exists e E D 
such that UdED,d>e Fd ~ U(C). We conclude that (Fd)dED con­
verges in (Po(X~U*) to C. Consequently (Po(X),U*) is right 
!{-complete. 

The following result is well known in the case of uniform 
spaces (see e.g. [2, Corollary 3]). 

Proposition 7. Let (X,U) and (Y, V) be quasi-uniform spaces 
and f : (X,U) ~ (Y, V) be a quasi-uniformly continuous sur­
jection that is perfect. If V* is right !(-complete on Po(Y), 
then U* is right !(-complete on Po(X). 

Proof: Let F be a stable filter on (X,U). Consider any 
V E V. There is U E U such that (f x f)U ~ V, because 
f is quasi-uniformly continuous. Since F is stable on (X, U), 
there is Fo E F such that Fo ~ U(F) whenever F E F. Con­
sequently f(Fo) ~ V(f(F)) whenever F E F. Since the stable 
filter f F :== {fF : F E F} has a cluster point Yo on Y by 
Proposition 6 and since f is perfect (i.e. the mapping f is 
closed and the fibers f-l{y} are compact whenever y E Y), it 
follows that the filter F has a cluster point Xo E f-l{yO}. The 
assertion follows from Proposition 6. 

Corollary 8. Let (X, V) be a quasi-uniform space such that 
(Po(X), V*) is right !(-complete. Then for any quasi-uniformity 
U finer than V on X and generating the topology T(V), the 
Bourbaki quasi-uniformity U* is right !{-complete. 

Proof: Consider the identity map i : (X,U) ~ (X, V) and 
apply Proposition 7. 

Remark 2. Let us note that if (X,U) is compact, then 
(Po(X),U*) is right !{-complete by Proposition 6 and precom­
pact by Proposition 1, but in general not left !{-complete as 
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Example 1 together with the fact that each precompact left !{­
complete quasi-uniform space is compact (see [10, Proposition 
13]) shows. 

A quasi-uniform space (X,U) is called bicomplete [4] if the 
uniformity Us is complete. 

A filter F on a quasi-uniform space (X,U) is said to be dou­
bly stable provided that for any U E U, nFEF(U(F) nU- 1 (F)) 
belongs to F. A point x E X is called a double cluster point 
of a filter F on (X, U) provided that x E nFEF clT(u)F n 
ClT(U-l )F. (In the following we shall denote the set of cluster 
points nFEF clT(u)F of F with respect to the topology T(U) 
by adhT(u)F.) 

Proposition 8. Let (X,U) be a quasi-uniform space. Then 
(Po(X),U*) is bicomplete if and only if for any doubly stable 
filter F on (X,U) and any U E U there is an F E F such that 
F ~ U(C) nU-1(C). (Here C denotes the set of double cluster 
points of F. ) 

Proof: It suffices to sketch the proof, since it is similar to the 
proof of Proposition 6. Suppose that (Po(X), U*) is bicomplete. 
Let F be a doubly stable filter on (X,U). The net (F)FE(F,2) on 
Po(X) is a Cauchy net in (Po(X), (U*)S). Since (Po(X), (U*)S) 
is complete, (F)FEF converges to some C in (Po(X), (U*)S). 
Without loss of generality, by Lemma 2, we can replace C by 
D where D == ClT(U)CnclT(U-l)C. Consider any U E U. There is 
Fo E :F such that F ~ U(C), F ~ U- 1 (C), C ~ U(F) and C ~ 

U- 1 (F) whenever F ~ Fo and F E F. Therefore adhT(u-l)F ~ 

ClT(U-l)C, adhT(u)F ~ clT(u)C, ClT(U-l)C ~ adhT(u-l)F and 
clT(u)C ~ adhT(u)F. Thus D == adhT(u)F n adhT(u-l )F. We 
have shown that D is the set of double cluster points of :F and 
conclude that the stated condition is satisfied. 

In order to prove the converse suppose that each doubly 
stable filter on (X,U) satisfies the given condition. Consider 
any (U*)S-Cauchy net (Fd)dED on Po(X). Define the filter F == 
fil{Ee : e E D} on X where E e == UdED,d~e Fd whenever d E D. 
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Then :F is a doubly stable filter'on (X,U). Let C be the set of 
its double cluster points. In particular C E Po(X). 

Let U E U. Choose W E U such that W 2 ~ U. Similarly 
as in the last part of the proof of Proposition 6, one verifies 
that for some fixed dw E D, C ~ U- 1 (Fd) n U(Fd ) whenever 
d E D and d ~ dw . This fact together with our assumption 
on doubly stable filters implies that (Fd)dED converges to C in 
(Po(X), (U*)S). 

Remark 3. Note that a quasi-uniform space (X,U) is bicom­
plete if (Po(X),U*) is bicomplete. Indeed, let :F be a Cauchy 
filter on (X,US). Then :F is doubly stable on (X,U). Thus it 
has a double cluster point x E X according to the preceding 
proposition. Since:F is a Cauchy filter on (X,US), it is clear 
that :F converges to x with respect to the topology T(US). 
Hence (X,U) is bicomplete. 

Corollary 9. A quasi-uniform space (X,U) is totally bounded 
and bicomplete if and only if (Po(X), U*) is totally bounded and 
bicomplete. 

Proof: Because of the preceding remark and Corollary 2 it re­
mains only to verify the condition stated in Proposition 8 under 
the assumption that (X,U) is totally bounded and bicomplete. 
But then the topology T(US) is compact. Thus any filter on 
X has a T(US)-cluster point x. Clearly such an x is a double 
cluster point of the filter under consideration on (X, U). Hence 
it is readily seen that the condition formulated in Proposition 
8 is satisfied. 

Our final example shows that on a bicomplete quasi-metric 
space a doubly stable filter need not have a (double) cluster 
point. 

Example 7. Equip the set Q of rationals with the Sorgenfrey 
quasi-metric d :== ds\(QxQ). Then obviously (Q,Ud ) is bi­
complete. However (Po(Q), (Ud)*) is not bicomplete. 
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Indeed, let {qn : nEw} be an enumeration of Q. For each 
nEw we choose inductively an open (with respect to the 
usual Euclidean topology Q on Q) interval In with irrational 
end points of length < 2-n containing qn such that 

(1) if qn E Ik for some k < n, then In ~ Ik ; 

(2) if qn t/:. Ik for some k < n, then In and Ik have positive 
distance from each other with respect to the usual metric on 
Q. (Note that this is possible, because each interval In has 
irrational end points.) 

For each nEw set An = Q \ Ui=o Ii. Observe that (An )nEw is 
decreasing. Let mEw. We want to show that Am+1 ~ B~l(As) 

and Am+1 ~ Bm(As) whenever sEw. Fix sEw. Suppose that 
r E wand qr E Am+1 • 

If qr E As, then we are finished. If qr ~ As, then qr E Ii 
for some minimal i such that s ~ i > m + 1. Observe that, 
by the construction of the sequence (In)nEw, if n, k E w, n > k 
and the distance from In to Ik is zero with respect to the usual 
metric on Q, then In ~ Ik • Thus there are points u, v E As 
such that inf Ii - 2-(m+l) < u < inf Ii and sup Ii < V < sup Ii + 
2-(m+l). Since the length of Ii is < 2-(m+l) and since qr Eli, 
we conclude that qr E Bm(As) and qr E B~l(As). Thus :F := 
fil{Am : mEw} is doubly stable on (Q,Ud ). Clearly :F has no 
(double) cluster point on (Q,d). 
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