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SEQUENTIALITY OF PRODUCTS OF SPACES
 
WITH POINT-COUNTABLE k-NETWORKS
 

ALEXANDER SHIBAKOV 

ABSTRACT. We use the Continuum Hypothesis to prove 
a theorem on sequentiality of products of Frechet spaces 
with point-countable k-networks. Examples are constructed 
to show that under CH or MA+...,CH our theorem can­
not be extended to the wider class of sequential spaces 
with point-countable k-networks. Example 3.2 shows 
that the gap in the paper [H] pointed out in [G 1] can­
not be bridged. We also prove that the main result of 
[H] is valid for spaces of the sequential order less than or 
equal to 2 only. 

1. INTRODUCTION 

Recall that a family, is a k-network for X if whenever 
!{ ~ U ~ X, K is compact and U is open there exists a finite 
subfamily ,K ~ , such that !{ ~. U,K ~ U. If, satisfies 
I{ e E , I x E e}1 ~ ~o for every x E X it is called point­
countable. That point-countable k-networks are of special in­
terest is demonstrated in several papers (see [GMT], [T2], [Fo] 
and bibliography there). A space X is sequential [Fr] if when­
ever A C X and A is not closed, there is a sequence from A con­
verging to a point outside the set A. Sequentiality of products 
of spaces with point-countable k-networks and spaces closely 
related to them was studied in [G2], [H], [Tl], [T3]. The paper 
[H] is an attempt to obtain a full characterization for the prod­
uct of two k-spaces with closed point-countable k-networks to 
be sequential (recall that a k-network is closed if it consists of 
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closed sets). The following theorem was suggested in [H] as­
suming CH and the existstence of an uncountable measurable 
cardinal: 

(Wrong) Statement 1.1 (CH+MC) Let X and Y be reg­
ular k-spaces with point-countable closed k-networks. Then 
X X Y is sequential if and only if one of the three properties 
below holds: 
(a) X and Y have point-countable bases. 
(b) X or Y is locally compact. 
(c) X and Yare locally kw-spaces. 

The statement was then applied to prove similar facts about 
closed images of metric spaces, quotient s-images of locally 
compact metric spaces etc. Unfortunately in the final part of 
the proof for the "only if" implication a wrong assumption 
was used as it was pointed out in [Gl] so the statement may 
be considered only as a hypothesis. In section 3 we construct 
assuming CH a counterexample to Statement 1.1. The ex­
ample has a a-disjoint closed k-network. By Theorem 2.11 
it cannot have k-network which is a-locally finite. Although 
Statement 1.1 fails to be true in full, the use of CH permits 
us to obtain some of its particular versions. Thus in [H] it was 
shown using CH that if X and Yare as in Statement 1.1 and 
X x Y is sequential then either both X and Yare locally (J"­

compact, or (a) or (b) of Statement 1.1 holds (see [H, lemmas 
4-5]). Example 3.1 constructed under MA+--,CH shows that 
CH is essential even for such a weak version of Statement 1.1. 
Proposition 2.6 shows that under CH closedness of k-networks 
in this case may be omitted. Theorems 2.1 and 2.5 strengthen 
Statement 1.1 in case of Frechet X and Y. Theorem 2.10 shows 
that Statement 1.1 is true for spaces of sequential order less 
than or equal to 2. It is easily seen from the construction of 
Example 3.2 that the example has sequential order 3 so 2 is the 
exact boundary for sequential order under which Statement 1.1 
remains true. Also it is easy to obtain from Example 3.2 an 
example of a sequential space of sequential order 2 with (non 
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closed) point-countable k-network such that it is not locally 
a kw-space and its product with the sequential fan is sequen­
tial; so one cannot omit closedness of k-network in Theorem 
2.10 and the boundary for the sequential order is then given by 
Theorem 2.1. The question whether Statement 1.1 is false in 
ZFC naturally raised by the pair of Examples 3.1-3.2 remains 
open. 

All spaces are assumed to be Hausdorff. A space X is Frechet 
(or Frechet-Urysohn) if whenever x E A, there is a sequence 
from A converging to x. A point x E X is a strongly Frechet 
point [M] if whenever x E An for every nEw, then there is 
a point X n E n{ Ak : k ::; n} for every nEw such that the 
sequence {xn : nEw} converges to x. If A is a subset of a 
space X, then [A]seq denotes the sequential closure of A, i.e. the 
set of limits of convergent sequences consisting of points of A. 
Obviously A ~ [A]seq 

• We define [A]a by induction on Q E WI + 
1 as follows: [A]a == A, [A]a+l == [[A]a]seq and [A]a == U{ [A]{3 I 
(3 < Q } for a limit Q. One can easily see that [A]Wl +1 == [A]wl' 
and that a space X is sequential if and only if A == [A]Wl for 
every A C X. Now let us introduce the sequential order of 
X and denote so(X) == min{ Q I [AJa == A for every A ~ X}. 
For an infinite cardinal number (J' we denote by Sa the space 
obtained by identifying all the nonisolated points of a disjoint 
sum of (J' convergent sequences to a single point. S2 and S3 
denote the standard sequential spaces of sequential order 2 
and 3 respectively; the first of them is also called Arens' space 
(see [R], [NT]). The problem with Statement 1.1 occurs when 
one tries to prove the implication: 
(I) X X Sw is sequential =} X is locally a Kw-space 
for X having a point-countable closed k-network. On the other 
hand implication (I) is necessary for Statement 1.1 to be true. 
Example 3.2 in section 3 shows that (I) is not valid under CH. 
We will need the following easy lemma which is an immediate 
corollary of [E, Theorem 3.7.14 and Theorem 3.7.25]: 

Lemma 1.2. Let f : X --+ Y be a perfect map. Then X x Z 
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is a k-space if and only if Y x Z is a k-space. 

The next lemma is folklore. 

Lemma 1.3. Let f : X --+ X' be a mapping shrinking a single 
compact !{ ~ X to a point and let X be a Frechet space. If X' 
contains a (closed) copy of Sq then X also contains a (closed) 
copy of Sq. 

2.	 PRODUCTS OF k-SPACES WITH POINT-COUNTABLE 

k-NETWORKS 

Using results of [T3] it may be (in ZFC) shown that State­
ment 1.1 is valid for Frechet X and Y. Under CH we show that 
the assumption of closedness of the k-network may be omitted. 
Since every closed image of a metric space is a Frechet space 
with a point-countable k-network ([Fo]) the result may be ap­
plied to Lasnev spaces too. 

Theorem 2.1 (CH). Let X and Y be regular Frechet spaces 
with point-countable k-networks (in particular Lasnev spaces). 
Then X x Y is sequential if and only if one of the three prop­
erties below holds: 

(a)	 X and Y have point-countable bases (metrizable for 
Lasnev X and Y). 

(b) X or Y is a locally compact metrizable space:. 
(c)	 X and Yare topological sums of ~o-kw-spaces. 

To prove this we need some lemmas. The following one was 
proved in [NS] 

Lemma 2.2. Let X be a Frechet space with a point-countable 
k-network. If X is not first-countable then it contains a closed 
subspace homeomorphic to Sw. 

Before mentioning the next lemma let us recall the definition 
of the space T as it is described in [G2]. The space is the union 
T == UiEN Di U {x} where every Di is an infinite countable 
set. All points of T \ {x} are isolated. The base of open 
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neighborhoods for the P9int x consists of sets of the form: T \ 
finitely many Di's. 

Lemma 2.3. Let X be a regular k-space with a point-countable 
k-network. If X has no point-countable k-network consisting 
of sets with compact closures then X contains a closed copy of 
T. 

Proof: Let I be a point-countable k-network for X. Assume 
without loss of generality that I is closed under finite inter­
sections. Put " = {e E I I eis compact}. Suppose I' is 
not a k-network for X. Then (see [T2, Proposition 1.2(1)]) 
there exists a sequence S = {xn I nEw} such that X n ~ x 
as n ~ 00 and an open set U :1 x so that there is no finite 
IU,S ~ " such that U,u,s ~ U and S \ U,u,s is finite. Let now 
r = {,i liE w } be all finite subfamilies of I such that for 
each eE Ii holds ens =f. 0 and U,i ~ U, S \ U/i is finite. 
It is easy to see that U,i is not compact for any i E w. Put 
ei = nk~i(U'k). Since I is closed under finite intersections, 
then ei = U/ji for some Iji E r. So no ei is compact. Using 
regularity of X and the fact that I is a k-network one can see 
that for any open V :1 x there is nEw such that ei ~ V 
for i 2:: n. Now by [GMT, Theorem 4.1] ei is not countably 
compact so for every i E w there is a countable closed discrete 
subset D i ~ ei. Without loss of generality one can assume that 
D i n Dj = 0 if i =f. j. It is easy to see now that UiEW Di U {x} 
is homeomorphic to T. D 

Lemma 2.4. Let X be a regular k-space having point-countable 
k-network I consisting of sets with compact closures. If X is 
not locally a-compact then its image Y under some perfect map 
contains a closed copy of SWI . 

Proof: Consider the following property: 
(P)	 For any compact !{ ~ X there is a countable family 

8K = {ei liE w} ~ I such that for any sequence 
S = {Xi liE w} ~ X such that Xi ~ x E !{ 
as i ~ 00 we have S n UiEW ei =f. 0. 
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Let us prove that if (P) does not hold for X then the perfect 
map f : X --+ Y shrinking a compact !{ violating (P) to a point 
satisfies the conclusion of the lemma. Let To == {x? liE W } 

be an arbitrary nontrivial sequence converging to Xo E K and,0 == {~ E , I ~ n To t 0}. Suppose we have constructed 
Ta == {xi liE w} and 1{3 == {~ E I I ~ n Ta t 0 for a ~ (3} 
so that 

1. xi --+ X a E !{ as i --+ 00 and 

2. Ta n (U, {3) == 0 for (3 < a 
for all a < a < WI. Put I~ == {e E I len Ta =J 0 for a < a}. 
Obviously I~ == Ua<o- la. Since I~ is countable due to point 
countability of I and K violates (P) one can choose a nontrivial 
sequence To- == {xi liE w} such that xi --+ Xo- E !{ as 
i --+ 00 and To- n U{ ~ I ~ E I~} == 0. Now one can see that 
properties 1 and 2 take place for all a ~ a. So by induction 
we have constructed Ta for all a < WI so that 1 and 2 take 
place. Suppose not that there exists an increasing sequence of 

nordinals {an I an+1 > an } and a set of points R == {xin I in E 
n

W} ~ S == {xi liE w, a < WI} such that xin --+ x' EX. 
Since I is a k-network there is ~ E I such that ~ n R is infinite. 
But this contradicts condition 2 because the condition and the 
construction of 1{3 imply that each eE, intersects no more 
than one Ta . Thus for any increasing sequence of ordinals 
{an I an+1 > an } any set of the form R == {x~nn I in E W } ~ S 
is a closed discrete subset of X. Then obviously conditions 1-2 
and the construction of 1{3 imply that Ta n T{3 == 0 if a =J (3. 
This and the previous fact and nontriviality of Ta imply that 
I(S) is a closed subset of Y homeomorphic to SW1. 

Now let us show that (P) implies that every point x E X 
has a a-compact neighborhood. For a compact !{ ~ X let 
8~ == {e leE 8K } where 8K is the family mentioned in (P). 
Of course every fJK is countable and consists of compact sets. 
Put 80 == {{x}}, fJi+1 == UKE8i 8~, 8 == UiEW fJi, U == UfJ. It is 
easy to see that every fJi is countable and consists of compact 
sets. So U is a-compact. Let us show that U is open. Consider 
the set F == X\U. Let x E U be an arbitrary point. Let x E F 
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then x E [F]a for some Q < WI. Obviously Q > o. Then there 
exists i E wand !{x E hi ~ h such that x E !{x. We have that 
there is a sequence S = {Xi liE w } ~ X such that Xi --+ X as 
i ~ 00 and Xi E [F],ei' f3i < Q. But by (P) and construction 
of h there is !{Xn E hi+1 ~ h such that !(Xn 3 X n E S for some 
nEw. Thus there is x' E U such that x E [F],e for f3 < Q. 

Repeating the previous argument and using the fact that there 
are no infinite decreasing sequences of ordinals we come to a 
conclusion that there is x" E [F]o = F such that x" E U. A 
contradiction. Thus U is open. The proof is complete. D 

Proof of theorem 2.1. "If" part is well known. We show "only 
if". There are three possible cases: 

(1) both X and Y are first-countable. 
(2) neither X nor Y is first-countable. 
(3) one space is first-countable while the other is not. 
If 1 holds then by [GMT, Corollary 3.6] both spaces have 

point-countable bases. If 2 holds then by Lemma 2.2, X x Sw 
and Y x Sw are sequential. Thus by Lemma 2.3 and the fact 
that T x Sw is not sequential (see [G2, Lemma 4]), X and Y 
have point-countable k-networks consisting of relatively com­
pact sets. Since under CH SWl x Sw is not sequential (see 
for example [G2]) one has by Lemma 2.4 and Lemma 1.2 that 
X and Yare locally a-compact and thus locally separable. 
By virtue of [GMT, Proposition 8.8] both spaces are topologi­
cal sums of ~o-spaces. Thus both have closed point-countable 
k-networks. By Lemma 2.3 X and Y have point-countable k­
networks consisting of compacts. By an argument similar to 
the proof of [GMT, Theorem 5.2] it may be shown that each 
Frechet ~o-space in X and Y has countable k-network con­
sisting of compacts. Thus every ~o-space in X and Y is a 
kw-space. 

Suppose that 3 holds. Without loss of generality we may 
assume that X is first-countable and Y is not. By lemma 2.2 
X x Sw is sequential. So by [G2, Lemma 3] X is locally com­
pact. Now by [GMT, Proposition 8.8] X is a topological sum of 
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locally compact ~o-spaces. So X is metrizable as a topological 
sum of metrizable spaces, and the proof is complete. D 

We have the following ZFC statement. 

Theorem 2.5. Let X and Y be regular Frechet quotient s­
images of metric spaces. Then X x Y is sequential if and only 
if one of the three properties below holds: 
(a) X and Y have point-countable bases. 
(b) X or Y is a locally compact metrizable space. 
(c) X and Yare topological sums of ~o-kw-spaces. 

Proof: By [GMT, Corollary 6.2] X and Y have point-countable 
k-networks.As in the proof of Theorem 2.1 we have cases (1)­
(3). Cases (1) and (3) are considered by the same argument. 
We consider case (2). We again have that X and Y have point­
countable k-networks consisting of relatively compact sets. To 
complete the proof let us show that both X and Yare locally 
a-compact. Suppose the contrary. As is seen from the proof of 
Lemnla 2.4, there exist continuous mappings 91 : X --+ X' and 
g2 : Y --+ Y' such that each of them shrinks a single compact to 
a point and either X' or Y' contains a subspace homeomorphic 
to SW1. Then by Lemma 1.3 either X or Y contains a subspace 
homeomorphic to SW1' which is a contradiction by [GMT, Ex­
ample 9.2. Thus both X and Yare locally a-compact and 
the proof may be completed similarly to the proof of Theorem 
2.1. D 

Recall that a space X belongs to class T' [T1] if it is the 
union of countably many closed and locally compact subsets 
X n such that A ~ X is closed whenever A n X n is closed for 
all nEw. It may be seen from the ,proof above that condition 
(c) in Theorem 2.1 may be replaced by c': X and Yare in the 
class T'. So the following theorem holds: 

Theorem 2.6 (CH). Let X and Y be regular Frechet spaces 
with point-countable k-networks. Then X x Y is sequential if 
and only if one of the three properties below holds: 
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(a) X and Y have point-countable bases. 
(b) X or Y is a locally compact metrizable space. 
(c) X and Yare in the class T'. 

In fact condition (c) in Theorem 2.1 may be strengthened to 
the following: X and Yare topological sums of ~o-kw-spaces 

and in each of them the set of non-first-countable points is 
closed and discrete. 

Using the fact proved in [G2, Lemma 5] that S~l is not a k­
space one can prove the following ZFC statement by argument 
similar to the proof of Theorem 2.1. 

Theorem 2.7. Let X be a regular Frechet space with a point­
countable k-network. Then X 2 is sequential if and only if either 
X has a point-countable base or X is a topological sum of ~o­
kw-spaces. 

Lemmas 2.2-2.4 permit one to obtain some results on prod­
ucts of sequential spaces with point-countable k-networks. By 
a method similar to the proof of Theorem 2.1 one can get the 
following proposition: 

Proposition 2.8 (CH). Let X and Y be regular k-spaces with 
point-countable k-networks. If X x Y is sequential then at least 
one of the three properties below holds: 
(a) X and Y have point-countable bases. 
(b) X or Y is a locally compact metrizable space. 
(c) X and Yare locally a-compact. 

Proof of this theorem uses another canonical space-so called 
Arens' space 52 (for the definition of 52 and discussion of "gen­
eral sequential" properties of Sw and 52 see [NT]) and the ob­
vious analog of Lemma 2.2 which can be proved by a similar 
argument. 

Lemma 2.9. Let X be a a-compact sequential space with a 
point-countable k-network consisting of compacts such that 
so(X) ~ 2. Then X is a kw-space. 
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Sketch of Proof Let, be a point countable k-network for X 
consisting of compacts. Let us prove the following property of 
X: 

(*) for every compact !{ there is a countable " ~ , such 
that if X n ~ x E !{ as n ~ 00 and X n =I Xk if n =I- k then there 
is e E " such that Ie n {X n I nEw} I ~ No 

Suppose (*) is false. Then let us show the following fact. 

Fact 1. There is a map t : WI X W -t X such that t(a, n) ~ 

X ex E!{ as n ~ 00, X ex =I- x{3 if a =I (3, t(a,n) =I- t(a,k) ifn =I­
k, K is compact and I{a lie n {t(a,n) In E w}1 ~ No}1 ~ 1 
for any eE ,. 

Proof of fact 1: Let !{ be a compact violating property (*). 
If S ~ X is a countable set then let us denote ,(S) == {e E 
, len S =I 0}. Construct by induction on a < WI the points 
t(a,n), nEw so that: 

(1) t(a, n) ~ X ex E K as n ~ 00 

(2) t(a, n) =I t(a, k) if n 1 k 
(3) put Sex == {t(,B,n) I,B < a,n E w}u{xl3l,B < a}; 

then for any e E ,(Sex) Ie n {t(a,n) In E w}1 < No 
Let {t(O, n) I nEw} be an arbitrary sequence such that 
t(O,n) ~ Xo E !( as n ~ 00 and t(O,n) =I- t(O,k) if n =I- k. 
Such sequence obviously exists. Suppose we have already con­
structed the points t(f3, n) for all f3 < Q, nEw such that 
they satisfy conditions (1)-(3). Since ,(Sex) is a countable 
family and !{ violates property (*) there exists a sequence 
{ t(a, n) I nEw} such that t(a, n) ~ X ex E !( as n ~ 00, 

t(a,n) =I- t(a,k) if n =I- k and for anye E ,(Sex) Ie n {t(a,n) I 
nEw}1 < No. So properties (1)-(3) hold. Now prove that 
t : WI XW ~ X and points X ex satisfy what is required. It follows 
from (3) and, being closed k-network that X ex =1= X{3 if a =I- (3. 
Suppose now that eE , and Ie n {t(a,n) I nEw}1 ~ No. 
Consider an arbitrary {3 > a. Then e E ,(S{3) and thus 
Ie n {t({3, n I nEw}1 <No by (3). It easily follows that 
I{ a I Ie n { t(a, n) I nEw} I ~ No }I ::; 1 for any eE ,. So fact 
1 holds. D 
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Let us denote 10 = {e EI lie n {t(a,n) In Ew}1 ~ ~o}. 
It follows from fact 1 that 10 n If3 = 0 if a =f (3. Suppose 
x E U ~ X and U has the property: for any {xn } such that 
X n ---+- x as n ---+- 00 there is k E w such that Xk E U. We shall 
say for brevity that U is an o-neighborhood of x. Consider the 
set 

A =	 {a < WI I there is finite bOt ~ 'Ot~ such that 
Uba is an o-neighborhood of some t(a, nOt)} 

Now	 prove the following fact. 

Fact 2. A is countable. 

Proof of fact 2: Suppose A is uncountable. Let X = UiEw!{i 
where every K i is compact. Then every !{i is metrizable and 
it easily follows that if t(a, no) E !{i for some i Ew, a E A 
then UbOt n !{i has the non empty interior in the topology of 
!{i. It easily follows that there is uncountable A' ~ A and a 
compact !{n ~ X such that for any a E A' the set UbOt n !{n 
has the non empty interior in the topology of !{n. But K n is 
separable. Then there is a point x E !{n such that x E (Uba)K

n 

for any a E A" ~ A' where A" is uncountable. It follows that 
x E eo E ba ~ 10 ~ I for any a E AI!. But eOt =f ef3 if 
a =f (3 which contradicts the point-countability of I. So A is 
countable. D 

Com.bining fact 1 and fact 2 one can construct an injection 
s	 : w 2 ---+- X such that: 

1) s(n, k) ---+- X n as k ---+- 00 

2) X n ---+- x as n ---+- 00 

3) x =f X n =f Xk t/. s(w2
) if n =f k 

4) I{ n I Ie n { s(n, k) IkE W } I ~ ~o }I ::; 1 for any eE, 
5) if ei E" i ::; m, lei n {s(n, k) IkE w}1 ~ ~o then Ui<m ei 

is not	 an o-neighborhood for any s(n, k), k E w. ­
Let us show that for any nEw there is an injection sn 

w2 ---+- X such that: 
6) sn(m,i) ---+- s(n, km ) as i ---+- 00, km +1 > km 
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7) sn(w2 
) U { sn(n, km) I mEw} U {xn} is a closed subset of 

X homeomorphic to S2 
First introduce some notation. If S ~ X is countable then 

,(S) is also countable so set ,(S) = {en(S) I nEw}. If the 
points sn(l,j), 1 < m, jEw have been already constructed 
then denote Sm = {sn(l,j) I 1 < m,j E w} U {s(n, kl ) I 1 < 
m}. For any mEw we choose a sequence Tm = {sn(m, i) I 
i E w} such that sn(m,i) 1= sn(m,j) if i 1= j, Tm ~ X \ 
Ui,j<m~i(Sj) and sn(m,i) --+ s(n,km) as i --+ 00 for some km E 
w. It is easily seen that 5) and closedness of elements of , 
implies that if " ~ , is finite then there is k E w, k > maxi ki I 
i < m} such that U,' is not an o-neighborhood for s(n, k). 
Using this it is easy to construct Tm to satisfy the requirement. 
Let us show 7). It is enough to prove that any set of the form 
{ Sn(mk' ik) IkE w} where mk+l > mk is a closed discrete 
subset of X. Suppose not. Then we may assume without loss 
of generality that sn(mk,ik) --+ y E X as k --+ 00. Choose 
~ E , such that ~ n {Sn(mk' ik) IkE w} is infinite. Then 
e= ei(Sj) for som~ i,j E w. But sn(mk,ik) f/. Ui,j<mk ei(Sj) 
thus Sn(mk' ik) cf. ~t(Sj) if mk > max{i,j}. This contradicts 
the fact that ~n{ Sn(mk' ik) IkE w} is infinite and mk+l > mk. 

Using 4) it is easy to construct by induction a sequence 
{(ni' li)}iEw so that ni+l > ni and 

{s(nm+l,k) I k > lm+l} n ( U ei({s(j,k) IkE w })) == 0 
i,j<nm 

Considerations similar to the proof of 7) give that the set 
{s(ni' k) liE w, k > li }U{ xni liE w }U{x} is a closed subset 
of X homeomorphic to 52. Using 6), 7) and the proved above 
one can construct three injections t 1 : w --+ X, t 2 : w 2 --+ X 
and t3 : w3 --+ X so that: 

j(a) ti(Wi 
) n tj(W ) == 0 if i 1= j, x cf. Ui~3 ti(Wi 

) 

(b) t3 (m,n,k) --+ t 2 (n,k) as m --+ 00 

(c) t2 ( n, k) --+ t1 ( n) as k --+ 00 

(d) i 1 (n) --+ x as n --+ 00 



263 SEQUENTIALITY OF PRODUCTS ... 

(e) for any nEw the set {t3 (m, n, k) 1m, k E w }U{ t 2 (n, k) I 
k E w } U {t 1 (n)} is a closed subset of X homeomorphic to 8 2 

(f) the set {t 2(n,k) In,kEw}U{t1(n) InEw}U{x}isa 
closed subset of X homeomorphic to 82 

Using (e), (f) and compactness of elements of , one can 
easily prove: 

(g) for any ~ E , there is n(~) E w such that ~ n {t2(n, k) I 
n > n(~), k E w } == 0 

(h) for any ~ E " any nEw there is k(e) E w such that 
~ n {t3(m,n,k) I k > k(e),m E w} == 0 

Now consider the family ,(Ui<3 ti(Wi) U {x}) == {~n}nEw It is 
easy to choose ni E w, ki E w uSIng g. and h. so that: 

8) ni+l '> ni 
9) (Uj<i ~j) n ({ t3 (m, ni, k) Ik > ki, mEw} U {t 2 (ni' k) I 

k > ki } u {t 1 (ni)}) == 0 . 
Now using routine considerations, properties (a)-(h), 8) and 

9) one can easily show that the set UiEW( {t3 (m, ni, k) I k > 
ki,mEw } U { (t 2 ( ni, k) I k > ki } u {t 1 ( ni )}) u {x} is a closed 
subset of X homeomorphic to 83 . 

Thus if so(X) ~ 2 then (*) takes place. It follows easily 
from (*), sequentiality and a-compactness of X and the fact 
that , consists of compact sets that X is a kw-space. D 

Using Lemma 2.9 and Proposition 2.8 we obtain the follow­
ing theorem (we use Lemma 2.2, Lemma 2.3 and the fact that 
T x Sw is not sequential proved in [G2] to show that we can as­
sume X and Y to have point-countable k-networks consisting 
of compacts). 

Theorem 2.10 (CH). Let X and Y be regular k-spaces with 
point-countable closed k-networks such that so(X) ~ 2 and 
so(Y) ~ 2. Then X x Y is sequential if and only if one of the 
three properties below holds: 
(aJ X and Y have point-countable bases. 
(bJ X or Y is a locally compact metrizable space. 
(cJ X and Yare locally kw-spaces. 0 
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It is not possible to change (c) in the above theorem to 'are 
topological sums of kw-~o-spaces' (see [GMT, Example 9.3] for 
details). Let us note without proof the following theorem. 

Theorem 2.11. Let X and Y be regular k-spaces with a-locally 
finite k-networks. Then X x Y is sequential if and only if one 
of the three properties below holds: 
(a) X and Y have point-countable bases. 
(b) X or Y is a locally co'mpact metrizable space. 
(c) X and Yare topological sums of ~o-kw-spaces. 

3. EXAMPLES 

Example 3.1 (MA+-,CH). There is a space Y with a 
point-countable closed k-network such that Y is not locally 
a-compact and Y x Sw is sequential. 

Proof: Let B ~ I == [0,1] be an arbitrary subset of cardinality 
WI. Let {Sb I b E B} be a family of spaces so that each of 
Sb has unique nonisolated point Xb and is homeomorphic to a 
convergent sequence. Finally let Y be the space obtained by 
identifying Xb and b E B ~ I. It is easy to see that the space 
obtained from Y by identifying I to a point is homeomorphic 
to SWI. MA+-,CH implies that SWI x Sw is sequential (see 
[G2]). The obvious quotient map p : Y ~ SWI is perfect. So 
Y x Sw is also sequential by Lemma 1.2. Obviously Y is not 
locally a-compact. D 

Example 3.2 (CH) There is a a-compact space f B with a 
point-countable closed k-network such that f B is not locally a 
kw-space and r B x Sw is sequential. 

Proof: Let S == {Yi(j)}i,jEN U {a}. Putting every point Yi(j) 
isolated and the base of open neighborhoods of aconsisting of 
the sets: 

O(nl, .. . , ni, ... ) == U{yj(i) I j ~ ni } U {a} 
iEN 
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we get the sequential fan Sw. Let r == UiEN Ii where Ii == 
[0,1]. The obvious projection 1r : r ~ 1 0 will be needed. Let 
B ~ 1 0 == I == [0,1]. By rB we denote the set r equipped 
with the maximal topology such that every subspace Ii ~ r B 

has its usual euclidean topology and for every b E B the set 
1r-

1 (b) is a countable compact with unique nonisolated point 
b E 1 0 == I. Then pi(j) == r x ({Yk(j) I k > i} U {O}) and 
Ilk : P-l(k) ~ f is the obvious projection. 

To construct the example violating (I) and Statement 1.1 it 
suffices to show that there exists uncountable B ~ I such that 
any set G ~ r B x Sw such that G n (Ii x Sw) is closed in the 
usual topology of Ii x Sw either has no cluster point in 1 0 x {O} 
or contains a sequence converging to a point x E 1 0 x Sw. 
Indeed consider the space Y obtained from f B by shrinking 
the set 10 ~ r B to a point and corresponding perfect maps: 
p : r B ~ Y and p x idsw : r B x Sw ~ Y x Sw. By Lemma 1.2 
Y x Sw is sequential if and only if r B x Sw is sequential. At 
every point except Yo == (p(lo), 0) the space Y x Sw is locally a 
product of a compact and a sequential space. Thus Y x Sw is 
not sequential if and only if there is a set Gil ~ Y X Sw \ {Yo} 
such that Gil is closed in Y x Sw \ {Yo}, Gil :3 Yo and there 
is no sequence in Gil converging to Yo. For every such Gil one 
can choose an open and closed neighborhood 0 of 0 in Sw so 
that (p(Io) x 0) n Gil == 0. Put C' == Y x a n Gil. Now if 
f B x Sw is not sequential then we can find G' ~ Y x Sw with the 
properties listed above. Using closedness of p x idsw one can 
show that C == (p X idsw )-l(C') has the following properties: 
C ~ rB x Sw, C has a ~luster point in 10 X {O}, C n (Ii x Sw) is 
closed in the usual topology of Ii x Sw and there is no sequence 
in G converging to any point x E 10 x Sw. Also it is easy to 
see that uncountability of B implies that f B is not locally a 
kw-space. 

Let C be the class of all sets G ~ r x Sw such that C n (Ii X 

Sw) is closed in the usual topology of Ii x Sw and Cn(Iox Sw) == 
0. It may be checked that lei == 2No • Thus by the Continuum 
Hypothesis C == {Go:} o:EW1. Let J.l be the Lebesgue measure on 
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I. We will not prove the measurability of certain sets since it 
will be obvious in all the cases. 

We construct by induction on Q E WI two families of sets I 2 
... 2 SQ 2 SQ+l 2 ... and .. · ~ BQ~ BQ+l ~ · .. ~ I such 
that every BQis countable and BQ +l \ BQ=I 0, ((U Q<Wl BQ ) \ 

B(3) ~ S{3, Jl(S{3) == 1 and every CQ E C either has a cluster 
point in loin the topology of r Bo X Sw or is closed in r So x Sw. 

Suppose that {BQ}Q<{3 and {SQ}Q<(3 are already constructed. 
Let us consider the set C l == C,o n r X {O}. Put SI == nQ<,o SQ' 

A) If there exists a point a E Sl such that 17r-1 (a) x {O} n 
C1 

1 == ~o then let 
(*) S{3 == Sl, B{3 == UQ<{3 BQU {a} U {x}, where 

x E S{3 \ UQ<{3 BQ 
Otherwise one can choose C2 2 C1 and S2 ~ I, /1(S2) == 1 
such that C2 ~ (r \ 10 ) x {O} and C2 n I i x {a} == C; is a 
finite union of open intervals and C[2] == UiEN[C;] is such that 
U == r \ C[2] is an open neighborhood of loin r 82, where 
[C;] is the closure of C; in the usual topology of Ii x {a}. 
Such C2 may be constructed in the following way. Every set 
C l n (I i x {O}), i E N is compact. Choose C; 2 (C1 n (Ii x 
{O})) so that C; is a union of finitely many open intervals, 
Jl([C;] \ (C1 n (Ii x {O} ))) < 1/2i and put C2 == UiEN Cr. It is 
easy to see that C2 2 C1

. Then define 

(1) S2 == I 0 \ {a E 10 117r -1 ( a) n C[2] I == ~o} 

Put Ai == [C;l \ (C 1 n Ii) then [C;l == Ai U (C 1 n Ii) and 
Jl( Ai) < 1/2i . Now let A == UiEN Ai. It is easy to see that 
C[2] == A U C1 and thus 

10 \ S2 {a E I oll7r-1 (a) n C[2] I == ~o} 

{a E I oll7r-1 (a) n AI == ~o} 

U {a E I oll7r-1 (a) n C1 1== ~o} 

Then
 
S2 = (10 \ {a E 10 117r-1 (a) n AI == ~o})n
 

(10 \ {a E 10 117r-1 (a) n C1 1== ~o})
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So nonexistence of a point a with the property described in A) 
gives that 

52 2 (10 \ {a E I oll7r- 1(a) n AI == No}) n 51 

It follows that 

S2 2 S1 n (10 \ n7r(U Aj)) == S1 n S' 
iEN j>i 

where /1(5') == 1-/1(niEN 7r(Ui>i Ai)). Now /1 (niEN 7r(Uj>i Ai)) ~ 
/1(7r(Uj>i Ai)) ~ Lj>i /1(Ai) ~ 1/2i for any iE N. It follows that 
/1(5') == 1 and /1(52

) == 1. 
Then it follows from (1) and closedness of every C[2] n Ii 

that U == r \ C[2] is an open neighborhood of loin r S2. So C 2 

has all the required properties. Consider the set 

C3 == Cf3 \ (C 2 
X 5w ) 

and put Ci(j) == C3 n pi(j). Then IIk(Ci(k)) n I j is compact 
for every i,j, kE N. Moreover for every i, kE N there exists 
nk,iE N such that 

(2) IIk(cnkli(k)) n I j == 0 for every j ~ i 

This follows from those easy to observe facts that I k X {O} is 
compact, C3 n r x {O} == 0 and Ci+1 (k) ~ Ci(k). 

B) If for some i, kE N there exists a E 51 n 52 such that 
17r-1(a) n IIk(Ci(k))1 == No then let 
(**) S{3 = s1ns2, B{3 == Ua<{3BaU{a}U{x}, where 

x E S{3 \ Ua<{3 BO! 
In other case for eyery i ~ 1 fix ni E N such that 

(a) IIi(Cni(i)) n I j == 0 for every j ~ i 
(b) /1(1 \ (7r(IIi(cn i (i))))) > 1 - 1/2i

. 

To get (b) it is enough to note that UjEN(I\(7r(IIk(Cj(k)))) 2 
51 n S2 by (2), nonexistence of a and the fact that /1(51 n 
52) == 1, 7r(IIk(Ci+1(k)))) ~ 7r(IIk (Cj(k)))). Let now C == 
UiEN IIi (cni (i)). By (a) C n I j is compact for every j E N. Let 
53 be the set of all points a E I such that 7r-1 (a) n C is fi­
nite. Then r \ C is an open neighborhood of 10 x {O} in fsa. 



268 ALEXANDER SHIBAKOV 

Consider an arbitrary real 0 <c < 1. Find kE N such that 
J1(R) > c + (1 - c)/2, where 

R == I \ (Jr(U IIi (Cni 
( i) ))) 

i~k 

Such k exists due to (b) 
For every i ::; k let us find mi such that J1(Ti ) < (1 - c)/2k, 

where 

Such mi always exists because nonexistance of a E 51 n 52 
having properties listed in B) implies that 

(3) 51 n 52 ~ 1 0 \ nJr(IIk(Cnk(k) \ UIi)) 
iEN i~i 

Denoting Ai == Jr(IIk(Cnk(k) \ Ui<i Ii)) one can rewrite (3) as 
2 2) ­

niEN Ai ~ 10 \ (5 n 5 · Now using the fact that Ai+1 ~ Ai, 
the previous formula and the fact that J1(51 n52) == 1 it is easy 
to find required mi. 

Then every point a ERn (I \ Ui<k Ti ) has the property: 
Jr-1(a) n C is finite. Now J1(Rn (I\Ui~k Ti)) > c by the choice 
of Ii, R . Hence J1(53 

) == 1 because 5 3
--;}. R n (I \ Ui<k Ti ) and 

there was no restriction on c. Let ­
(***) 5f3 == 51 n 52 n 53, Bf3 == Ua<f3Ba U {x}, where 

x E 5{3 \ Ua<{3 Ba 

Ua == (f n U) \ C, Va == O(n1, ... ,ni, ... ) 

Finally let B == Ua<wl B a . Suppose that F E C. Then F == C{3 
for some f3 < WI. If A) or B) takes place one can choose a 
sequence in C{3 converging to a point of 10 x 5w in the topology 
of fB,a and thus in the topology of f B. Such sequence is easy 
to find in Jr-I(a) X {Yi(k) I j > i} (see (*), (**)). If neither 
A) nor B) takes place then one can find U{3 and V{3 such that 

10 x 6~ U{3 x V{3, U{3 x V{3 n C{3 == 0 

and U{3 is open in fs,a, V{3 is open in 5w • Since B{3 is countable, 
fB,a x Sw is sequential being the product of two kw-spaces and 
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one can either choose a sequence in C(3 converging to a point 
of 1 0 x Sw or an open U~ in rB~ and open Vpin Sw such that 
Ub 2 1 0 and Ub x V~ n C(3 == 0. In the last case we have 

(U(3 U Ub) x (V(3 n V;) n C(3 == 0 

and (U(3 U U~) x (V(3 nVJ) is an open neighborhood of 1 0 x Sw 
in rS ,6UB,6 x Sw and thus is open in rB x Sw since S(3UB(3 2 B. 

Let us now describe in short a procedure that allows to make 
f B a regular space. Light change in the above construction will 
make B intersect every Borel set of nonzero measure in I. Let 
now { Wa I Q < WI } be all subsets of r such that Wa is an open 
neighborhood of 10 in some f Pa where J1(Pa ) == 1. For every 
Q it is possible to find P~, W~ such that P~ ~ Pa' J1(P~) == 1, 
W~ ~ Wa in rp~. Now at each step of the above construction 
one lets S~ == S (3 n p~ and then uses S~ instead of S{3 in further 
steps. Let us note that then B \ p~ is countable for any (3 < WI. 

Let now W be an arbitrary neighborhood of 1 0 in r B . The 
set !( == 1 0 \ niEN 7r((fB \ W) \ Uk<i l k ) is Borel and B ~ !{. 
Thus 1 0 \ !{ is Borel and has measure zero since it does not 
intersect B. Thus W == Wa for some Q < WI. Now W~ ~ Wa == 
W in rp~. Since B \ p~ is countable there exists W; such that 
W: is an open neighborhood of 1 0 in rB\P~ and W~ ~ Wa in 
fB\P~. Now W' == W~ U W: is an open neighborhood of 1 0 

in f BUP~ and thus in f B and it is easy to see that W' ~ W 
in rB. SO for every open neighborhood W of loin rB there 
exists open W' such that W' 2 1 0 and W' ~ W in r B. This 
is enough to prove the regularity of f B . 0 

The author is very grateful to Professor T. Nogura for his 
many valuable suggestions and moral support. 

REFERENCES 

[E] 
[Fa] 

[Fr] 

R. Engelking, General Topology, Heldermann Verlag, 1989 
L. Foged, A characterization of closed images of metric spaces, 
Proc. Amer. Math. Soc., 95 (1985). 
S. P. Franklin, Spaces in which sequences suffice, Fund. Math., 57 
(1965), 102-114. 



.....-._­

ALEXANDER SHIBAKOV 270 

[G1] G. Gruenhage, MR 93i:54018 Math. Reviews, i 1993. 
[G2] --, k-spaces and products of closed images of metric spaces, 

Proc. Amer. Math. Soc., 80 (1980), 478-482. 
[GMT] G. Gruenhage, E. Michael, Y. Tanaka Spaces determined by point­

countable covers, Pacific J. Math., 113 (1984), 303-332. 
[H]	 Chen Huai Peng, The products of k-spaces with point countable 

closed k-networks, Topology Proc., 15 (1990),63-82. 
[M]	 E. Michael, A quintuple quotient quest, Gen. Top. and Appl., 2 

(1972), 91-138. 
[NS] T. Nogura and A. Shibakov, Sequential order of product spaces. 

Topology and Appl., 65 (1995),271-285. 
[NT]	 T. Nogura and Y. Tanaka, Spaces which contain a copy of Sw or 

52 and their applications, Topology and Appl., 30 (1988), 51-62. 
[R]	 M. Raj agopalan , Sequential order and spaces 5n , Proc. Amer. 

Math. Soc., 54 (1976),433-438. 
[TI] Y. Tanaka A characterization for the product of k- and No-spaces 

and related results, Proc. Amer. Math. Soc., 59 (1976), 149-155. 
[T2] Y. Tanaka, Point-countable covers and k-networks, Topology 

Proc., 12 (1987),327-349. 
[T3]	 Y. Tanaka, Point-countable k-systems and products of k-spaces, 

Pacif. J. Math., 101 (1982),199-208. 

Auburn University 
Auburn University, Alabama, 36849-5310 
e-mail address: shobaay@mallard.duc.auburn.edu 




