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WEAK NORMALITY IN DOWKER SPACES 

PAUL J. SZEPTYCKI 

ABSTRACT. It is shown that the product of Rudin's 
Dowker space with the closed unit interval is weakly nor­
mal. This answers a question of Arhangel'skii and gives 
further evidence for his conjecture that weak normality is 
preserved under products with a compact second count­
able factor. Also, an analogue to Dowker's Theorem for 
weakly normal spaces is proven. 

A space X is said to be weakly normal (over RW) if for each 
pair of disjoint closed subsets A and B there is a continuous 
function F : X ---+ RW such that F(A)nF(B) == 0~. The concept 
of weak normality was introduced by A.V. Arhangel'skii in [A] 
where one may find the basic results on weakly normal spaces. 

N denotes the set of natural numbers and throughout this 
note we let X denote M.E. Rudin's Dowker space [R1]: 

X == {x E IIiEN(wi + 1) : 3n E N Vi E N W < cof(x(i)) < wn }. 

The box product topology on IIiEN(wi+1) is denoted QENWi+1 
and X ~ QENWi + 1 inherits the subspace topology. X is zero­
dimensional and is a P-space (i.e., countable intersections of 
open sets are open). 

Theorem 1. X x [0,1] is weakly normal. 

was motivated by the following conjecture of A.V. Arhangel'skii. 

Conjecture 2. (Arhangel'skii): ffY is normal, then Y x [0, 1] 
is weakly normal. 
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Even the stronger conjecture that weak normality is pre­
served under products with a compact second countable space 
IS open. 

Conjecture 3. (Arhangel'skii): If Y is weakly normal, then 
Y x [0, 1] is weakly normal. 

Note that it is easy to prove that the product of a weakly 
normal space with any countable Tychonoff space is weakly 
normal. In particular, if Y is weakly normal, then Y x (w + 1) 
is weakly normal. 

We will say that a space Y is strongly-Dowker if it is nor­
mal, while Y x [0,1] is not weakly normal. Any stronger topol­
ogy on a subspace of RW is weakly normal (the identity map 
uniformly separates all pairs of disjoint closed sets). There­
fore the Dowker spaces constructed by refining the Euclidean 
topology on a set of reals are not strongly-Dowker. Likewise 
it is easy to see that Dowker spaces with the property that 
any two uncountable closed subsets intersect are not strongly­
Dowker. Therefore, the deCaux type Dowker spaces are not 
strongly-Dowker. See Rudin's survey article [R2] or for a more 
recent survey of Dowker spaces see [SW]. Recently Z. Balogh 
has constructed another ZFC Dowker space [B]. We don't know 
whether this space is strongly-Dowker. 

Before we prove Theorem 1.1 need some notation. For any 
space Y, any set A ~ Y x [0,1] and any r E [0,1] let 

Ar = {y E Y : (y, r) E A} 

For i E N let 1ri denote the projection map 1ri : X --+ Wi + 1. 
For any open set U ~ X, tu E I1iENWi +1 is defined by 

Vi E N, tu(i) = 8up{x(i) : x E U}. 

For functions f,9 E I1iENw i + 1, f < 9 means that f(i) < g(i) 
for each i E Nand ! ~ 9 means that !(i) ~ g(i) for each 
i E N. The half open interval (!,g] denotes the set {h EX: 
f < h ~ g}, a basic open subset of X. 
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Lemma 4. Let X be Rudin's Dowker space. For any pair of 
disjoint closed sets A and B ~ X x [0, 1] there is a disjoint 
clopen cover U of X such that 

(1)	 lUI ~ 2w 
• 

(2)	 For each U E U and each r E [0, 1] either U n Ar == 0 
or un B r == 0. 

Proof: The proof is similar to Rudin's proof that X is collec­
tionwise normal. For each Q < WI we define a pairwise disjoint 
clopen cover Ta of X such that 

(a)	 ITal ~ 2W 
• 

(b) For each (3 < Q < WI and each VETa, there is a U E T{3 
such that 

(1)	 V ~ U. 
(2) If there is an r E [0, 1] such that both V n Ar =I- 0 

and V n Br =I- 0 then tu =I- tv. 
(3) If for each r E [0,1] either UnAr == 0or UnBr == 0 

then u== V. 

The Ta are defined by induction on Q <WI. Let To == {X} and 
suppose that for each (3 < Q, T{3 has been defined. 

Case 1: Q is a limit. 
For each x E X and each (3 < Q let Ux ((3) be the unique element 
of T{3 containing x. For each x E X let Ux == n{3<a Ux((3). Since 
X is a P-space, if we let 

TO! == {Ux : x E X} 

then Ta is a pairwise disjoint clopen cover of X. It is easy to
 
verify that the inductive hypotheses (a) and (b) are preserved
 
(see [R]).
 

Case 2: a == (3 + 1.
 
For each U E T{3 we define Tu , a disjoint clopen cover of U
 
of size 2W such that for each V E Tu, U and V satisfy (1)­

(3) of inductive hypothesis (b). Having done this we will let 
TO! == U{Tu : U E T{3}. If for each r E [0,1] either U n Ar == 0 
or UnBr == 0, then we must let Tu == {U}. So suppose that U 
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intersects both A r and B r for some r E [0,1] and consider tu. 
As in [R1] our proof depends on the cofinalities of the range 
values of tu. If there is an i E N such that cof(tu(i)) == w, 
then we fix such an i and fix an increasing sequence of ordinals 
(On)nEw cofinal in tu(i). Let 

Tu == {U n (1ri1((on' On+l])) : nEw} 

Since tv(i) < tu(i) for each V E Tu , the family Tu is as re­
quired. 

Therefore we may assume that cof(tu(i)) > w for each i E N. 
One may take care of this case as in Rudin's proof of Lemma 
5 in [R1]. However, the following elementary submodel proof 
distills the essential closing off argument in that proof. The 
survey [D] is a good reference for the reader unfamiliar with 
elementary submodel techniques. Fix () a regular cardinal large 
enough so that any relevant properties are absolute for V, H(0) 

22Nw(() == suffices). For each n E N fix an elementary submodel 
M n ~ H(O) of size W n containing X, A, B, U and anything 
else relevant. We also require that M n is w-covering, i.e., for 
each countable subset D ~ M n there is a countable E E M n 

such that D ~ E. Define a function hn on N by 

Notice that for each i EN, 

The first inequality holds since M n is w-covering, and the sec­
ond is true since W n is both an element and a subset of M n . 

Therefore hn EX. Also, for each i E N if cof(tu( i)) ~ Wn then 
hn(i) == tu(i). For each r E [0,1], hn is not in both Ar and Br . 

Therefore there is a finite open cover W of [0,1] and for each 
W E W a function 9w < hn such that for each W E W either 
An ((9w, hn] x W) == 0 or B n ((9w, hn] x W) == 0. Note that 
the 9W'S may be chosen so that 9w(i) E M n for each i E N. 
Now let 9n be defined by 9n(i) == max{9w(i) : W E W}. 
Then 9n < hn and for each r E [0,1] either (9n, hn]n Ar == 0or 
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(gn, hn]nBr == 0. We now claim that there is a function g~ satis­
fying the previous statement which is an element of M n • To see 
this, use w-covering to fix a countable set DE M n containing 
gn and let g~ be defined by g~(i) == sup{a < tu(i): (i,a) E D} 
for each i E N. Then g~ E M n and since each hn(i) has 
uncountable cofinality gn(i) ~ g~(i) < hn(i) for each i E N. 
We need one more bit of notation: for each Y ~ X and each 
n E N let (y)n == {f E Y : Vi E N cof(f(i)) ~ wn}. No­
tice that hn(i) == tu(i) whenever cof(tu(i)) ~ W n and that 
[hn(i), tu(i)) n M n ==" 0 whenever cof(tu(i)) > W n. Therefore 
M n n {f E (x)n : g~ < f ~ tu} == M n n {f E (x)n : g~ < 
f ~ hn } and 

By elementarity this statement is true. Therefore, if we let 
9 == sup(g~)nEN, then Vr E [0,1] either (g,tu] n Ar == 0 or 
(g, t u] n Br == 0. Now we are ready to define Tu. For each 
S ~ N let 

Us == {x E U : x(i) ~ g(i) ¢::=> i E 5}. 

Then Tu == {Us: S ~ N} is a disjoint clopen cover of U. 
Clearly tu -I tus for each nonempty 5 ~ N andU0 == (g, tu] n 
U. Furthermore for each r E [0,1] either U0 n Ar == 0 or 
U0 n Br == 0. Therefore Tu is as required. 

We now define the clopen cover U from the sequence of covers 
(TO)O<Wl. For x E X and a < WI fix U~ E To such that x E U~. 

If (3 < a then tu~ ~ tU$. If in addition U~ meets both Ar 

and B r for some r E [0, 1], then there is an i E N such that 
tu~ (i) < tu~ (i). By well foundedness, for each x E X there 
is an ax < WI such that U~x n Ar =/:. 0, then U~x n Br == 0 
whenever r E [0,1]. Therefore U~ == U~x for each a ~ ax. 
Letting U == {U~x : x E X} completes the proof of Lemma 
4. D 

Proof of Theorem 1: Fix A and B disjoint closed subsets of 



294 PAUL J. SZEPTYCKI 

x X [0,1]. Fix U given by Lemma 4. Since lUI::; 2w 
, there 

is a countable point separating family of functions for U. I.e. 
there is a family {9n : n E N} such that 

(c) for each n E N, 9n : U ---+ 2, and 
(d) for each U =I V from U there is an n E N, 9n (U) =I 

9n(V). 

For example, if for each s E 2<W Is : 2W ---+ 2 is defined by 
fs(x) == 1 iff Vi < Isl,x(i) == s(i), then {is: s E 2<W} is a 
countable point separating family for 2W. 
Note that each 9n defines a partition of X into two clopen sets 
U9~1(0) and U9~1(1). From the family {9n : n E N} we define 
for each nEw functions in : X X [0,1] ---+ [0,1]. 
n == 0 : For each x E X and r E [0,1] let fo((x, r)) == r. 
n > 0 : For each x E X and r E [0,1] let fn((x,r)) == 9n(x). 
Clearly for nEw each fn is continuous. Now define F : X X 

[0, 1] ~ [0,1] X 2N by F == IInEwfn. Then F is continuous. 

The next claim completes the proof of Theorem 1. 

Claim 5. F(A) n F(B) == 0. 

Proof: Fix (x,r) E A and (y,s) E B. 

Case 1: r =I s. 
Then io((x,r)) == r =I s == fo((Y,s)), therefore F((x,r)) i­

F((y,s)). 

Case 2: r == s. 
Let U, V E U such that x E U and Y E V. Since x E A r and 

y E B r , Lemma 4(2) implies that U =1= V. Therefore by (d) 
there is an n > 0 such that 9n(U) i- 9n(V). This implies that 
!n((x,r)) =I !n((y,r)) and therefore F((x,r)) =I F((y,r)). 0 

A similar proof yields the following lemma. 

Lemma 6. Suppose that Y is weakly normal and suppose that 
for any two disjoint closed subsets A and B of Y x [0, 1] there 
is a point finite open cover U of Y such that 

(1) lUI:::; 2w, and 
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(2)	 for each U E U and each r E [0,1], either U n A r == 0 
or U n Br == 0. 

Then Y x [0, 1] is weakly normal. 

Proof: Since lUI ~ 2W there is a countable finitely separating 
family of functions for U. I.e., there is a family {9n : n E N} 
such that 

(e) for each n E N, 9n:U ~ 2, and 
(f)	 for each pair of disjoint finite subsets F, G ~ U there 

is an n E N such that either 9n(F) == 0 and 9n(G) == 1 
or 9n(F) == 1 and 9n(G) == O. 

For each n let Fn == X \ U9;1(0) and let Gn == X \ Ug;l(l). 
Then Fn and Gn are disjoint possibly empty closed subsets of 
X.	 As U is point finite and {9n : n E N} is finitely separating, 
(2) implies that for any r E [0, 1] and any pair of points x E Ar 

and y E Br there is an n E N such that x E Gn and y E Fn . 

By weak normality, for each n there is a continuous function 
In : Y ~ [0,1] such that In(Gn)n fn(Fn) = 0. As in the proof 
of Theorem 1 this implies that Y x [0, 1] is weakly normal. D 

One proof that X x [0, 1] is normal assuming X is normal and 
countably metacompact entails defining a countable open cover 
of X that satisfies (2) of Lemma 6 (this involves no assumptions 
on X -see [E]). Therefore we have the proven the following. 

Theorem 7. If X is weakly normal and countably metacom­
pact, then X x [0, 1] is weakly normal. 
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