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In this paper, I am going to give a generalization of a re­
cent metrization theorem of Stares [5] and show that it can be 
obtained from the main theorem of [1]. 

o. Notations and Terminology 

0.1 Definitions. On a T1-space X, a pair-network is a 
collection A of pairs {A, A'} of sets, A' being open and nonvoid 
and contained in A, such that, for any neighbourhood U of any 
x EX, there is such a {B, B'} E A that x E B' C B cU. 
On A, we define a partial order -< so that, given {A, A'} and 
{B, B'} of A, {A, A'} -< {B, B'} {::} A' ;2 B. A nest B is 
an infinite subcollection of A, well-ordered by -<. If n{A' : 
A, A'} E B} is nonvoid (and contains e) we say B is fixed (at 
e). Given a nest B, its first element {I, I'}; if there is, for 
every {B, B'} E B, one {.8, .8'} E A such that .8' n B' =I 0 
and iJ'\I f:. 0, we say C {{iJ,iJ'}: {B,B'} E B} is a 
companion of B. We call a companion C of a B fixed at eclose 
if C consists of but one pair {e, e'} and is such that eE e'. 
We also say that C captures B if U{e: {e, e'} E C} ~ B for 
some {B, E /} E B and that it closes in on B fixed at eif eE e 
for some {e, e'} E C. 
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0.2 Theorem [1]. A T1-space is metrizable if (and only 
if) there is on it such a pair-network that every fixed nest in it 
'ItS 

(i) (order) isomorphic to W J and 
(ii) captured by each of its companions. 

Remark: Implicit in the proof of the Theorem above in [1], 
ii) can be replaced by 

ii)' closed in on by each of its companions and captured by 
each of its close companions [3]. 

1. Main Theorem 

1.1 Theorem. A (necessary and) sufficient condition for 
the metrizability of a T1-space X is: For any open neighbour­
hood V of any y E X J there is an open neighbourhood V; C V J 
with which a natural number n(y, V) is associated in such a 
manner that 

(tJ V; nux =I 0 and V;\U =I 0 :::} n(y, V) ~ n(x,U)J the 
inequality being strict if in addition U c V;. 

Proof: Clearly, the family A {{U, Ux } : x E U, U is 
open} is a pair-network. Given any fixed nest B C A. If 
B is not (order) isomorphic to w, there is {V, V;} E B that 
has infinitely many predecessors, associated with which is a 
strictly increasing sequence of natural numbers, bounded above 
by n(y, V), which is of course impossible. B is therefore (order) 
isomorphic to wand i) of Theorem 0.2 is satisfied. On the 
other hand let {U, Ux }, {V, V;} be two elements of B so that 
{U,Ux } -< {V, Vy }. Let C be a companion of Band {W, Wz } E 
C be such that Wz n V; # 0 and Wz \U # 0. Clearly, n(z, W) :s; 
n(x, U) < n(y, V) and we have V; C Wand the capture of B by 
C. For, otherwise, V;\W =I 0and n(y, V) :::; n(z, W) which is a 
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contradiction. B is therefore captured by C and ii) of Theorem 
0.2 is satisfied and metrizability follows. 

Remarks Stares' metrizing condition, c) of Theorem 2.9 of 
[5], amounts to the insistence on a strict inequality in (t) on 
all occasions, which implies that 1) if ~ n Ux -I 0, then either 
~ \U -I 0 or Ux \ V -I 0but never both, and 2) given a natural 
number v and an x EX, writing (x, v) for the collection {U : 
x E U, n(x,U) == v}, we have U{Ux : U E (x,v)} C n(x,v), 
enabling us to define Wv ( x), unless x is isolated, to be U{UX : 

n(x, U) == Il} where Il is the smallest natural member greater 
than or equal to v so that (x, Il) =I 0. Clearly, the Wv ( x) 's 
so defined constitute a local base at x. Indeed, we have in 
{Wv(p) : v E w, P E X} the classical metrizing structure of 
Frink as described in the Corollary to Theorem VI.2 of [4]. For, 
the m(n, p) required of every nand p can, for example, unless p 
is isolated, be defined to be n(p, W) for some (definite) choice 
of U among the summands of Wn(p), some (definite) choice 
of V ~ Up, and some (definite) choice of W ~ \1;. That is, 
Stares' metrizing condition begets Frink's metrizing structure. 
See also Example 4 of [1] for the converse. 

Condition b) of Theorem 2.9 of [5] can be seen to be a very 
special case of the Theorem in [2] if one sees 3(x, n) in {x} U 
lnt W(n,x). 
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