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Introduction 

Let X be a space, and let P be a collection of subsets of X. We 
recall that P is point-countable (resp. star-countable) if every 
x E X (resp, PEP) meets at most countably many Q E P. 
Also, P is compact-jinite (resp. compact-countable) if every 
compact subset of X meets at most finitely (resp. countably) 
many PEP. A collection U{Pn : n E N} is u-compact-jinite 
if each Pn is compact-finite. Clearly, every u-compact-finite 
collection is compact-countable, and thus, point-countable. 

Let X be a space, and let P be a cover of X. Recall that 
P is a k-network if whenever !{ C U with !{ compact and U 
open in X, then !{ C U pI C U for some finite p' C P. As 
is well-known, spaces with a countable ( resp. u-locally finite) 
k-network are called 'No-spaces (resp. 'N-spaces). 

Every CW-complex, more generally, every space dominated 
by locally separable metric subspaces has a star-countable k­
network. Also, every Lasnev space has a u-11ereditarily closure 
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preserving (briefly, a-HCP) k-network, and every space domi­
nated by LaSnev subspaces has a a-compact-finite k-network. 

We recall that spaces with a star-countable k-network, and 
spaces with a a-HCP k-network have a-compact-finite k­
networks. 

Spaces with a star-countable k-network are investigated 
in [9], [18], [20], and [26]. Spaces with a a-HCP k-network 
are investigated in [16], and so are spaces with a compact­
countable k-network in [19], and [20]. 

In this paper, we shall investigate spaces with a a- compact­
finite k-network as well as related spaces, and their examples 
and applications. 

We assume that all spaces are regular, T1 , and that all maps 
are continous and onto. 

Results 

Let X be a space, and let C be a cover of X. Then X is de­
termined by C [7] ( = X has the weak topology with respect 
to C in the usual sense), if F c X is closed in X if and only 
if F n C is closed in C for every C E C. Every space is deter­
mined by its open cover. We recall that a space X is a k-space 
(resp. sequential space) if it is determined by a cover of com­
pact subsets (resp. compact metric subsets) of X. A space has 
countable tightness if X is determined by a cover of countable 
subsets; cf. [22]. For a cover C of a space X, X is dominated 
by C if the union of any subcollection C' of C is closed in X, 
and the union is determined by C'. Every space is dominted by 
its a-HCP closed cover. As is well-known, every CW-complex 
is dominated by a cover of compact metric subsets. 

Lemma 1 Let X have a point countable k-network. Then 
(1) and (2) below hold, here (1); (2) is due to [2]; [7] respec­
tively. 
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(1)	 If X is compact, then X is metric. 

(2)	 If X is a k-space, then X is sequential, thus, of countable 
tightness. 

Let P be a colletion of subsets of X. Then P is cs­
finite [15] if any convergent sequence meets only finitely many 
PEP. Let P be a cover of X. Then P is a cs-network [8], 
if whenever L == {xn ; n E N} is a sequence converging to a 
point x E X such that x E U with U open in X, then there 
exists PEP such that x E P, P C U, and P contains L 
eventually (i.e., P contains {xn : n ~ m} for some mEN). 
If we replace "eventually" by "frequently ( i.e., P contains a 
subsequence of L)", then P is a cs*-network [6]. Also, if we 
need not require "x E P" in the definition of a cs*-network, 
then such a cover is a wcs*-network [14]. Every cs-network 
and every k-network of closed subsets are cs*-networks, and 
every cs*-network is a wcs*-network. Every quotient s-image 
of a metric space is characterized as a sequential space with a 
point-countable cs*-network [32]. 

In view of the following, we see that, among sequential 
spaces, the theory of spaces with a a-compact-finite k-network 
can be done by means of " convergent sequences" instead of 
"compact subsets". Here, a space has Gs points if every point 
is a Gs-set. We note that not every compact space with a 
cs-finite and star-countable cs-network has a point-countable 
k-network (hence, not a a-compact-finite k-network); indeed, 
the Stone-Cech compactification j3(X) of a non-compact space 
X is such a space by Lemma 1(1 ). 

Proposition 2 (1) For a cover P of a space X, the following 
are equivalent. 

(a)	 P is a a-compact-jinite k-network. 

(b)	 P is a a-cs-finite k-network. 
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(c)	 P is a a-cs-finite wcs*-network, and each compact subset 
of X is sequentl:ally compact. 

(2) Let X be a sequential space, or a space with G8 points. 
Then, a cover of X is a a-compact-finite k-network if and only 
if it is a a-cs-finite wcs* -network. 

Proof: For (1), obviously, (a) implies (b). (b) implies (c), 
because each compact subset of X is metric by Lemma 1(1), 
and thus, sequentially compact. So, we show that (c) ::::} (a) 
holds. Let P == U{Pn : n E N} be a a-cs-finite wcs*-network 
for X. Since P is a point-countable wcs*-network and any 
compact subset oiX is sequentially compact, P is a k-network 
by [32; Proposition 1.2(1)]. To show that P is a-compact­
finite, suppose that some compact set !{ of X meets infinitely 
many P E Pn for some n E N. Then, there exist {x n : n E 
N} c !{ and {Pn : n E N} c Pn such that X n E Pn , and 
the X n are distinct, and so are the Pn . Since!{ is sequentially 
compact, there exists a convergent subsequence C of {xn : n E 
N}. But the convergent sequence C meets infinitely many 
P E Pn . This is a contradiction. Thus, P is a a-compact­
finite k-network. For (2), note that if X is a sequential space, 
or a space with G8 points, then each compact subset of X is 
sequentially compact. Thus, (2) follows from (1). 

Now, let us consider the operations: (i) Subsets; (ii) Domi­
nation; (iii) Countable products; (iv) Closed maps with k-space 
domain; and (v) Perfect maps. 

The property of having a star-countable k-network is pre­
served by the all operations; see [9], [19], etc. However, the 
property of having a a-HCP k-network need not be preserved 
by (ii); nor (iii); see [34]; [11] respectively. But, the property 
of having a a-compact-finite k-network is preserved by the all 
operations in view of Theorem 3 below (for (iii), cf. [7; The­
orem 7.1]). We note that every closed image of a space with 
a compact-finite k-network of singletons need not have even 
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a point-countable k-network; see [25]. Thus, the additional 
assumptions on X in case (d) of Theorem 3 are essential. 

Theorem 3 Each of the following (a) '" (d) implies that Y 
has a a-compact-jinite k-network. 

(a)	 Y has a star-countable k-network. 

(b)	 Y has a a-Hep k-network. 

(c)	 Y is dominated by spaces with a a-compact-jinite k-network. 

(d)	 Y is the closed image of a space X with a a-compact­
jinite k-network, and one of the following properties holds. 

(i)	 X is a k-space. 

(ii)	 X is a space with G8 points. 

(iii)	 X is a normal space, and each countably compact closed
 
subset is compact.
 

(iv)	 X is realcompact 

(v)	 Each 8f-l(y) is Lindelof. 

Proof: For case (a); (b); or (c), the result is due to [18]; [15]; 
or [19] respectively. So, we show the result for (d) holds. Let 
f : X ~ Y be a closed map, and let X be a space with a 
a-compact-finite k-network P == U{Pn : n EN}. For each 
y E Y, choose X y E 1-1 (y), and let A == U{ X y : y E V}. 
For each n E N, let en == {f(A n P) : P E Pn}. Then 
C == U{Cn : n E N} is a-point-finite. Let us consider the 
following conditions (C1 ) and (C2 ) with respect to the closed 
map I. 

(C1 ): For any infinite compact subset /< of Y, and any 
sequence 3 in f-l(/<) with f(3) infinite, there exists a conver­
gent subsequence of 3. 
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(C2): f is compact-covering (i.e., every compact subset of 
Y is the image of a compact subset of X), and for any sequence 
{Yn : n E N} in Y converging to Y E Y, and any points X n E 
f- 1 (Yn), a closed map flF is also compact-covering, where 
F = 8f-l(y) U {xn : n E N} which is closed in X. 

Then, (C1 ) holds for (i) & (ii) by Lemma 1(2) and [14: 
Lemma 2]. Also, (C2 ) holds for (iii) & (v); and (iv) by [14; 
Lemma 4]; and [4; Theorem 3.4] respectively. But, (C1 ) or (C2 ) 

implies that each compact subset of Y is sequentially compact 
by Lemma 1(1), besides, C is a wcs*-network. To show that C is 
a-cs-finite, for some n E N, suppose that an infinite convergent 
sequence /< in Y meets infinitely many distinct members f(An 
Pk ) E Cn. Since Cn is point-finite, we can assume that each 
point of /< is contained in some of these f(A n Pk). Then, 
there exists a sequence S = {xm : mEN} in A n f-l(/<) 
such that X m E pk(m) E Pn , and the X m are distinct, and also 
so are the pk(m). But, (C1 ) or (C2 ) implies that there exists a 
convergent subsequence C of S. Then C meets infinitely many 
elements of Pn . This is a contradiction. Thus, C is a a-cs­
finite wcs*-network for Y. Thus, by Proposition 2(1), C is a 
a-compact-finite k-network for X. 

For a space X, the character x(X) of X is the smallest 
cardinal number of the form IBx I, here Bx is a local base at 
x EX. A space X is Wl- compact if every subset of cardinality 
WI has an accumulation point in X. 

Lemma 4 Let X be a k-space, and lefC = U{Cn : n E N} be a 
a-compact-jinite collection in X. Then (1) and (2) below hold. 

(1) If x(X) ~ WI, then C is a-locally countable. 

(2) If X is locally WI -compact, then C is locally countable. 

Proof: For (1), let x EX, and let {Vfj : {3 < WI} be a local base 
at x in X. Then, for each n EN, there exists some Vfj such 
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that V,6 meets only countably many C E Cn . Indeed, for some 
n E N, suppose not. Then, by induction, there exist a subset 
S = {x,6 : (3 < WI} of X and a subcollection {C,6 : (3 < WI} 

of Cn such that X,6 E V,6 n C,6, where X,6 f= x, and the C,6 are 
distinct. But, S has an accumulation point in X, so it can be 
assumed to be not closed in X. Then, since X is a k-space, 
there exists a compact subset !{ of X which contains infinitely 
many points in S. This shows that the compact set !{ meets 
infinitely many elements of Cn. This is a contradiction. Thus, 
for each n EN, any point of X has a nbd V such that V meets 
only countably many C E Cn. Hence, C is a-locally countable. 
For (2), let x E X, and let V be a nbd of x which is WI-compact. 

Then V meets only countably many elements of C in view of 
the proof of (1). Thus, C is locally countable. 

Remark 5 We note that not every k-space with a a-compact­
finite k-network has a a-HCP k-network in view of [11] & [15], 
and not every space with a compact-finite and locally countable 
k-network consisting of singletons is a a-space [25]. In [15], the 
first author shows that the following hold. 

(1) Among Frechet spaces, everya-compact-finite k-network 
is a-Hep. Thus, a space is Lasnev if and only if it is a Frechet 
space with a a-compact-finite k-network. 

(2) Among k-spaces, every a-compact-finite k-network of 
closed subsets is a-locally finite. Thus, a k-space is an N-space 
if and only if it has a a-compact-finite k-network of closed 
subsets. 

Theorem 6 (CH) Let X be a k-space with a a-compact-jinite 
k-network. Then X is locally separable if and only if X is the 
topological sum of No-spaces. 

Proof: For x EX, let V be a nbd of x which is separable. 
Then V is sequential by Lemma 1(2), and it has a a-compact­
finite k-network. Also, V is separable, so X(V) ~ 2W = WI un­
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der (CH). Thus, V is a sequential space with a a-locally count­
able k-network by Lemma 4(1). While, by [12; Proposition 1], 
every sequential space with a a-locally countable k-network 
is meta-Lindelof (i.e., every open cover has a point-countable 
refinement). Then the separable space V is meta-Lindelof. 
But, every separable, meta-Lindelof space is Lindelof. Then 
V is Lindelof, thus, wI-compact. This shows that X is locally 
wI-compact. Hence, X has a locally countable k-network by 
Lemma 4(2). Since X is a k-space, X is the topological sum 
of ~o-spaces by [12; Theorem 1] (or [9]). 

We note that not every separable, ~-space with a compact­
finite, locally countable k-network need be an ~o-space [9; Ex­
ample 4.1]. And, not every separable, k-space with a point­
countable closed cs-network need be an ~o-space [7; Example 
9.3]. Also, we note that not every cosmic, k-space with a point­
countable closed k-network need be an ~o-space [35; Example 
1.6], where a space is cosmic if it has a countable network. 

As for conditions for separable spaces to be ~o-spaces, the 
following holds. In (1), case (c) gives an affirmative answer to 
[20:	 Question 3.1] under (CH). 

Theorem 7 (1) Let X be a separable space. Then each of the 
following implies that X is an ~o-space. 

(a)	 X is a Frechet space with a point-countable k-net'lDOrk. 

(b)	 X is a k-space with a star-countable k-network. 

(c)	 (CH). X is a k-space with a a-compact-jinite k-network. 
(When X is meta-LindeloJ, or X(X) ~ WI, (CH) can be 
omitted). 

(2) Let X be a cosmic space. If X has a point-countable 
cs-network, then X is an ~o-space. 

Proof: In (1), for case (a); (b), the result is respectively due 
to [7]; [26]. For case (c), the result holds in view of the proof 
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of Theorem 6. To see (2) holds, let P be a point-countable 
cs-network for X. Since X is cosmic, it is easy to show that 
X has a countable subset D such that, for any x EX, there 
exists a sequence in D converging to x. Let P' = {P E P : 
P n D =1= 0}. Then, P' is countable. To see that P' is a cs­
network for X, let {xn : n E N} be a sequence converging 
to x E X, U be a nbd of x. But, th~re exists a sequence 
{Yn; n E N} in D converging to the point x. Clearly, L = 

{XI,YI,X2,Y2, ... ,Xn ,Yn, ... } converges to the point x. Since 
P is a cs-network, there exists PEP such that P contains 
x, and L eventually, thus, PEP'. Then, P' is countable 
cs-network. Thus, X is an ~o-space by [8; Theorem 1]. 

Lemma 8 Let P be a point-countable cs* -Tl,etwork for a space 

X. Let!{ = {x n : n E N} U {x} be a sequence with a limit 
point x, and let U be an open set with U ~ !{. Then there 
exists a finite P' C P such that, for some i E N, {x n : n ~ 

i} U {x} CUP' c U, and, for each PEP', P n!{ is closed in 
!{ (thus, if P n!{ is infinite then P contains the point x). 

Proof: Let {P E P : P C U, and P n !{ is non-empty, closed 
in !{} = {Pn : n EN}. Then, for some i, j E N, {xn : 

n ~ i} U {x} C U{Pn : n ~ j}. Indeed, suppose not. Then 
there exists a subsequence L = {Xn(i) : i E N} of !{ such that 
Xn(i) E X - U{Pn : n ~ i}. Since L U {x} C U, there exists 
Po E P such that Po C U, and Po contains the point x and L 
frequently. Thus, pon!{ is non-empty, closed in !{, so Po == Pm 
for some mEN, hence Pm contains L frequently. This is a 
contradiction 

Theorem 9 (1) Let X be a k-space with a O"-compact-jinite 
k-network. Then X has a star-countable k-network if and 
only if every metric closed subset of X is locally WI -compact. 

(2) Let X be a sequential space with a O"-compact-jinite 
(resp. compact-countable) cs* -network. Then X is the topo­
logical sum of No-spaces (resp. kw-and-No-spaces) if and only 
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if every metric closed subset of X is locally WI -compact (resp. 
locally compact). Here) a space is a kw-space [21] if it is deter­
mined by a countable cover of compact subsets. 

Proof: The "only if" part of (1) holds, because every first 
countable space with a star-countable k-network is locally sep­
arable metric [9; Theorem 1.4]. For the "if" part of (1), let X 
have a a-compact-finite k-network P which is closed urlder 
finite intersections, and let every first countable closed subset 
of X be locally wI-compact. Let !{ be a compact subset of X, 
and let PK == {P E P; P n !{ =I 0}, and let {Pn : n E N} be 
the collection of all covers of !{ consisting of finite subcollec­
tion of PK. For each n E N, let Cn == {n{Pi : Pi E Pi, i :::; n}}, 
and An == U Cn. Then {An : n E N} is a decreasing se­
quence such that An are finite unions of elements of P, An ~ !{, 
and any open subset containing !{ contains some clAm. Sup­
pose that any clAn is not wI-compact in X. Then any clAn 
contains a closed discrete subset Dn of X with cardinality 
WI. Let F == !{ U (U{Dn : n E N}). Then F is a closed 
subset of _X" which is a a-space, and an M-space, for X is 
the perfect pre-image of a metric space F / !{. Then, as is 
well-known, F is metric. (We can also see that F is met­
ric by Lemma 13 below, because F is a first countable space, 
and it has a a-compact-finite k-network by Proposition 2(2)). 
But, F is not locally wI-compact. This is a contradiction. 
Then, for some n E N, clAn is WI-compact. While, any open 
subset containing !{ contains some clAm. This implies that, 
P* == {P E P : clP is wI-compact in X} is a k-network for X. 
Also, since each closure of elements of P* is wI-compact, P* is 
star-countable in view of the proof of Lemma 4. Then, X has 
a star-countable k-network P*. For the "if" part of (2), let 
!{ == {xn : n E N} U {x} be a sequence with a limit point x, 
and let PK == {P E P: Pn!{ is non-empty, closed in !{}, and 
let {Pn : n E N} be the collection of all finite subcollections 
of PK such that any UPn contains x, and !{ eventually. Then, 
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replacing " k-network " by " cs*-network" in the above proof, 
P* is a O"-compact-finite cs*-network by Lemma 8, and P* is 
star-countable. Then, P* is a star-countable k-network for 
X by Proposition 2(2). But, since X is sequential, X is de­
termined by P*. Thus, X is the topological sum of No-spaces 
by [9; Corollary 1.2]. For the parenthetic part, the "only if" 
holds, because, as is well-known, every finst countable kw-space 
is locally compact (note that each point has a nbd which is con­
tained in a finite union of compact subsets). For the "if" part, 
similarly, X is the topological sum of No-spaces Xa(a E A). 
Since every metric closed subset of X is locally compact, simi­
larly, each X a has a countable k-network of compact subsets. 
Then X a is a kw-space, for it is a k-space. Then, X is the 
topological sum of kw-and-No-spaces. 

Lemma 10 ([35]). Suppose that X is determined by a point­
countable cover C, or X is dominated by cover C. Let {An : 
n E N} be a collection of subsets of X such that if X n E An' 
then {Xn : n E N} has an accumulation point in X. Then, for 
some mEN, Am is contained in a finite union of elements of 
C. 

Corollary 11 Suppose that X is determined by a point-countable 
cover of locally WI -compact subsets, or dominated by a cover of 
locally wI-compact subsets. Then (1) and (2) below hold. 

(1) If X is k-space with a O"-compact-jinite cs*-network, 
then X has a star-countable k-network. 

(2) If X is a sequential space with a a-compact-jinite cs*­
network, then X is the topological sum of No-spaces (hence, X 
is an N-space). 

Under (CH) , it is possible to replace "locally wI-compact" 
by "locally separable". 

Proof: Let F be a metric closed subset of X. Suppose that 
X is determined by a point-countable cover {Xa : a E A} of 
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locally wI-compact subsets. Since F is closed, F is determined 
by a point-countable cover {F n X a : Q' E A}. Since each 
F n X a is locally separable metric, F n X a is determined by 
a point-countable cover {Xa {3 : f3 E Ba } of separable metric 
subsets. Hence, F is determined by a point-countable cover 
{Xa {3 : Q' E A, f3 E Ba } of separable metric subsets. Next, 
suppose that X is dominated by a cover {Xa : Q' E A} of 
locally wI-compact subsets. Then, F is dominated by a cover 
{FnXa : Q' E A} of locally separable metric subsets. Then, for 
any case, F is locally wI-compact by Lemma 10. Then, every 
metric closed subset is locally wI-compact. Then, (1) and (2) 
holds by Theorem 9. For the latter part holds by means of 
Theorem 6 and Corollary 7. 

It is well-known that every quotient s-image of a locally 
compact metric space is precisely a space determined by a 
point-countable cover of compact metric subsets, and that ev­
ery CW-complex is dominated by a cover of compact metric 
subsets. Also, recall that every space determined by a point­
countable cover of metric subsets has a point-countable cs*­
network ([32]), and that every space X dominated by metric 
subsets X a has a a-compact-finite k-network (Theorem 3), 
and, in particular, X has a star-countable k-network if the 
X a are locally separable ([9]). However, every CW-complex 
need not have a point-countable cs*-network, also every CW­
complex determined by a point-finite cover of compact metric 
subsets need not have a point-countable cs-network ([18]). But, 
for spaces determined by locally separable metric subsets, we 
have the following theorem. 

Theorem 12 (1) Suppose that X is determined by a point­
countable cover of locally separable metric subsets. If X has 
a a-compact-jinite k-network, then X has a star-countable k­
network. 

(2) Suppose that X is determined by a point-countable cover 
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of locally separable (resp. locally compact) metric subsets, or 
X is dominated by a cover of locally separable (resp. locally 
compact) metric subsets. If X has a a-compact-jinite (resp. 
compact-sountable) cs* -network, then X is the topological sum 

of ~o-spaces (resp. kw-and-~o-spaces). 

(3) (i) Suppose that X is determined by a point-countable 
closed cover of locally separable metric subsets (in particular, 
X is determined by a point-countable cover of locally compact 

metric subsets). If X has a point-countable cs-network, then 

X is a locally ~o-spaces. When X is meta-LindeloJ, X is the 
topological sum of ~o-spaces. 

(ii) Suppose that X is dominated by a cover of locally sep­
arable metric subsets. If X has a point-countable cs-network, 
then X is the topological sum of ~o-spaces [18}. 

Proof: Since X is sequential, (1) and (2) holds by Corollary 
11. For the parenthetic part of (2), suppose that X is deter­
mined by a point-countable cover of locally compact metric 
subsets. Since any locally compact metric space is determined 
by a point-finite cover of compact metric, X is determined by 
a poin~-countable cover of compact metric subsets. Thus, X is 
the topological sum of kw-and-~o spaces by means Lemma 10 
and the parenthetic part of Theorem 9(2). For (3), let P be a 
point-countable cs-network for X which is closed under finite 
intersections. Let !{ == {x n : n E N}'U {x} be a sequence with 
a limit point x, and let PK == {P E P : P :1 x, and P contains 
]{ eventually} == {Pn : n EN}. Let An == n(Pi : i ~ n} for 
each n E N. Then {An: n E N} is a decreasing sequence 
such that An E P, An :1 x, An contains ]{ eventually, and 
any nbd of x contains some An. For (i), since any sequence 
{xn : n E N} with X n E An has an accumulation point in X, 
by Lemma 10, for some i E N, Ai is contained in a locally 
separable metric space. Since Ai contains x and !{ eventually, 
for some j E N with j ~ i, A j is separable metric. Then X is a 
sequential space with a point-countable cs-network of separa­
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ble metric subsets. Thus, in view of the proof of Theorem 2.4 
in [13], X has a locally ~o-space. When X is meta-Lindelof, 
X has a point-countable open cover of ~o-spaces, thus, X is 
determined by this star-countable cover. Then, X is the topo­
logical sum of ~o-spaces by means of [9; Lemma 1.2]. For (ii), 
similarly, X is a locally ~o-space. But, as is well-known, every 
space dominated by metric subsets is paracompact, so X is 
paracompact. Thus, X is the topological sum of ~o-spaces. 

Let us consider a canonical space dominatede by metric 
subsets (not every piece is locally separable). 

Example 13 Let M be a metric space. For each x EM, let 
Lx be a sequence converging to the point x such that Lx nM == 
0, and the Lx are pairwise disjoint. Let Sx == M U Lx, and let 
Xx == Lx U { x }. Let S be the space determined by a point-finite 
cover {M, Xx : x EN!} of metric subsets. Equivalently, S is 
dominated by a cover {Sx : x E M} of metric subsets. When 
M is an infinite convergent sequence with a limit point x, a 
subspace (S - Lx) of 8 is called the Arens' space 8 2 • 

M. Sakai [27] ask the following questions on the space S. 

Questions (1) What are topological properties of 8 in terms of 
k-network? 

(2) When does 8 have a point-countable cs-network? Also, 
if 8 has a point-countable cs-network, then is S an ~-space? 

We shall give answers to (1) and (2), and give characteri­
zations for 8 to have certain k-networks in terms of the metric 
space M. First, let us recall definitions. For a space X, let Tx 

be a collection of subsets of X such that any element of Tx con­
tains x. The collection Tx == U{Tx : x E X} is a weak base [1] 
for X if it satisfies: The T1 , T2 E Tx , there exists T3 E Tx with 
T3 C T1 n T2 ; and, U C X is open in X if and only if for each 
x E U, there exists T E Tx with T c U. The Tx is a lo'cal weak 
base at x in X. Every weak base is a cs-network [14]. A space 
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X is g-first countable [28] (or X satisfies the weak first axiom 
of countability [1]) if X has a weak base Tx == U{Tx : x E X} 
such that each Tx is countable. 

Properties of the space S: (A) S is a g-first countable, para­
compact, and a-space. Besides, S has a a-compact-finite k­
network, and a point-countable closed cs*-network. 

(B) S is metric {:} S is locally compact {:} S is Frechet 
{:} M is discrete. 

(C) S has a star-countable k-network {:} M is locally sep­
arable. 

(D) S has a locally countable k-network ¢:> S has a star­
countable closed k-network ¢:> S is locally separable ¢:> M is 
the topological sum of countable subsets. In particular, S is 
an ~o-space ¢:> S is separable ¢:> M is countable. 

(E) S has a star-countable (or locally countable) k-network 
of compact subsets ¢:> S is a locally kw-space ¢:> M is the 
topological sum of countable, compact subsets. In particular, 
S has a countable k-network of compact subsets ¢:> S is a kw­

space {:} M is countable, locally compact. 
(F) S has a point-countable k-network of separable (resp. 

compact) subsets ¢:> M is locally separable (resp. locally com­
pact ). 

(G) The following (a) (g) are equivalent, and (g) implies I'J 

(h). 
(a) S is an ~-space. 

(b) S has a a-locally countable k-network. 
(c) S has a a-HCP k-network. 
(d) S has a a-compact-finite cs*-network. 
(e) S has a point-countable cs-network. 
(f) M is the countable union of closed discrete subsets. 
(g) M has a point-countable open cover V satisfying (*): 

Each V E V contains a point x(V) such that {x(V) : V E 

V} == M. 
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(h) For any subspace A of M, IAI == w(A), here w(A) is the 
weight of A. 

Proof: (A): Since 3 is dominated by metric subsets, as is 
well-known, 3 is a paracompact a-space (indeed, M1-space; 
see [31], for example). Let Xo == M, and let M' == {O} U M. 
For P E Xx (x EM'), let {Vxn(p) : n E N} be a decreasing 
local base at P in Xx. For each pES, and n E N, let Qn(P) == 
U{~n(P) : P E Xx, x EM'}. Since S is determined by a 
point-finite cover C == {Xx : x EM'}, {Qn(P) : n E N} is a 
weak nbd of P in 3. Thus, 3 is g-first countable. Since any 
compact subset of 3 contained in a finite union of elements of 
the closed cover C, it is routine to show that 3 has a point­
countable closed cs*-network. Also, 3 has a a-compact-finite 
k-network by Theorem 3. 

(B): It suffices to show that if S is Frechet, then M is 
discrete. Assume that M is not discrete. Then M has an 
infinite convergent sequence. Hence, S contains a copy 'of 3 2 . 

But, 3 2 is not Frechet. Then, 3 is not Frechet. 

(C): If 3 has a star-countable k-network, then so does M. 
Since M is first countable, M is locally separable by [7; Propo­
sition 3.3]. Conversely, if M is locally separable, then, S has a 
star-countable k-network by (a) and Theorem 12(1). 

(D): Suppose that 3 is locally separable. Since every sep­
arable subset of S meets only countably many of Lx's. 3 is a 
locally No-space. But, S is paracompact by (A). Thus, each of 
the first three equivalence holds by [9; Theorem 1.4 and Propo­
sition 1.5]. For the last equivalence, if M is locally separable, 
then M is the topological sum of separable subsets Mo:. But, 
U{ Lx : x E Mo:} U Mo: locally separable, then each Mo: is count­
able. Thus, M is the topological sum of countable subsets. 

(E): This is shown by a similar way as in (D), so we omit 
the proof. 
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(F): Let S have a point-countable k-network of separable 
subsets. Then so does M. Thus, since M is first countable, 
M is locally separable by [7; Proposition 3.2]. Conversely, let 
M be locally separable. Then M is determined by a point­
countable cover of separable metric closed subsets. But, since 
S is determined by a point-finite closed cover {M, Xx : x EM}, 
it is routinely shown that S has a point-countable k-network 
of separable metric closed k-network. 

(G): First, we show that (b) => (a) holds. Let P == UPn 

be a a-locally countable closed k-network for S. For n E N, 
and xES, let Vx n be a nbd of X meeting only countably 
many elements of Pn. Since {Vxn : xES} is an open cover 
of a paracompact space S, there exists a locally finite open 
refinement Un of {Vxn : XES}. For each U E Un' {U n P : 
P E Pn} == {Pni(U) : i EN}. Let Uni == {Pni(U) : U E 
Un}, and Wn == UUni and let W == UWn . Then W is a­

locally finite in S. We show that W is a k-network. Let V 
be open in S, and let {xn : n E N} be a sequence converging 
to x E V. Then, there exists P E Pn for some n E N such 
that P contains a subsequence of {xn : n EN}. But, Un is 
an open cover of S, there exists U E Un containing x. rrhen, 
P n U E W n , P n U c V, and P n U contains a subsequence of 
{xn : n E N}. While, every compact subset of S is sequentially 
compact. Thus, W is a k-network by [32: Proposition 1.2]. 
Then, S is an ~-space, thus, (a) holds. Next, we show that (d) 
=> (f), and (f) => (a) hold. Let (d) hold, and let P == UPn 
be a a-compact-finite cs*-network for S which is closed under 
finite intersections. Since S is dominated by metric subsets, 
in view of the proof of Theorem 9(2), using Lemma 10, we 
can assume that, for each PEP, clP is metric. For each 
PEP, let D(P) == {x EM: x E P, and Lx is contained in 
P frequently}. For each PEP, clP is metric, so it contains 
no copy of S2. Thus, each D(P) is closed discrete in M. For 
each n E N, let Dn == U{D(P) : P E Pn}. Then since P is a 
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cs*-network for S, M is the union of these Dn's. To show each 
Dn is closed discrete in M, suppose not. TheIl, there exists 
an infinite sequence !{ in Dn converging to a point x EM. 
But, for each D(P), the compact set C == !{ U {x} contains 
at most finitely many points in D(P). Then, the compact 
set C meets infinitely many elements of Pn , a contradiction. 
Thus, M is the countable union of closed discrete subsets Dn . 

Thus, (f) holds. Conversely, let (f) hold, and let M be the 
countable union of closed discrete subsets En(n EN). For 
each n E N, let Cn == U{Lx : x E En} U M. Then each Cn 
is a metric closed subset of S. But, each convergent sequence 
in 5 is contained in some Cn, then 5 is determined by a cover 
{Cn : n EN}, for S is sequential. Thus, S is determined 
by a countable cover {Cn : n E N} of metric closed subsets. 
Thus, S is an ~-space by [31; Proposition 11]. Hence, (a) 
holds. For (c) => (a), since S is g-first countable, if 5 has a 
a-HeP k-network, S is an ~-space by means of [33; Theorem 
6]. To show that (e) {:> (g) holds, first, let (e) hold. But, S 
is a g-first countable by (A). Then, S has a point-countable 
weak base Ts == U{Tp : pES} by [14; Lemma 7]. While, 
S is dominated by a cover {Sx : x E M} of metric subsets. 
Then, by Lemma 10, we can assume that, for each p E 5 and 
each T E Tp , T is contained in a finite union of 5x 's. Thus 
we can assume, for any T E T s ' cIT is metric. Since M is 
closed in 5, {T n M : T E Ts } is a weak base for M. We 
recall that, for a space X and for a weak base Tx == U{Tx : 

x E X} for X, any sequence converging to a point x E X is 
contained eventually in any element of Tx . Then, since M is 
first countable, for any x E M and T E Tx , x EintM(T n M). 
Thus, V == {intM(T n M) : T E Ts } is a point-countable open 
cover of M. For each V ==intM(TnM) E V, let Dv == {x E V : 
Lx is contained eventually in T}. Then, U{Xx : x E Dv } c 
cIT. But, since cIT is metric, cIT contains no copy of 52. 
Thus, D v is a discrete closed subset of M with D v c V. Also, 
{Dv : V E V} is a cover of M, because, for any x E M 
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and T E Tx, x EintM(T n M) and T contains Lx eventually. 
Since each Dv == {Xt : t E Dv } is closed discrete in M, there 
exists a discrete open collection {Gt : t E Dv } in M such that 
Xt E Gt C V. Then, {G t : t E Dv , V E V} is a point-countable 
open cover of M with Xt E Gt , and {Xt : t E Dv , V E V} == M. 
Then (g) holds. Conversely, let (g) hold. Then, since M has 
a point-countable base, it is easy to show that S has a point­
countable cs-network, thus, (e) holds. We show that (f) {::} 
(g) holds. Since M is metric, (f) :::}(g) holds. Let (g) hold, 
and let M have a point-countable open cover W satisfying (*). 
Let B be a a-locally finite base for M. For each W E W, 
choose B w E B, with x(W) E Bw C W. since W is point­
countable, for each Bw E B, {Bw' : Bw == Bw'} is countable. 
This shows that {Bw : W E W} is a a-locally finite open cover 
of X satisfying (*). Then, M is the countable union of closed 
discrete subsets. Thus, (f) holds. For (g) :::} (h), let B be a 
base for A. Then, A has a dense subset D with IDI ~ 181. But, 
A has a point-countable open cover V satisfying (*). Thus, 
IVI ~ IDI· Hence, IAI ~ 181, thus, IAI ~ w(A). But, since A is 
metric, IAI ~ w(A). Hence IAI == w(A). 

A space X is strongly Frechet [28] (== countably bi-sequential 
in the sense of [22]), if whenever {An: n E N} is a decreasing 
sequence of subsets of X such that clAn :3 X for each n E N, 
there exists a sequence {xn : n E N} coverging to the point 
x with X n E An. A space X is an inner-closed A-space [23] 
(or [24]). if whenever {An: n E N} is a decreasing seqence of 
subsets of X such that cl( An - {x }) :3 x for each n EN, there 
exist Bn C An which are closed in X, but U{Bn : n E N} is not 
closed in X. Every first countable space is strongly Frechet, 
and every strongly Frechet space is Frechet. Every strongly 
Frechet space, more generally, every countable bi-quasi-k-space 
in the sense of [22] is inner-closed A. 

We recall canonical quotient spaces Sw, SW1' and S2. Sw is 
called the sequential fan, and S2 is the Arens' space. Sw, SWl 
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is respectively the space obtained from the topological sum 
of W : Wt many convergent sequences by identifying all limit 
points to a single point 00. For the space S2, see Example 13. 
We note that neither Sw nor S2 is an inner-closed A-space. 

In [10], it is proved that a space X with a a-Hep k-network 
is an ~-space if and only if X contains no closed copy of SWI' 
For a k-space with a a-compact-finite k-network, the following 
holds. 

Theorem 14 Let X be a k-space with a a-compact-jinite k­
network. Then the following are equivalent. 

(a) X contains no closed copy of SWI . 
(b) X has a point-countable cs* -network. 

(c) X is the quotient s-image of a metric space. 

Proof: Since X is sequential, the equivalence between (b) 
and (c) holds by [32; Theorem 2.3]. The implication (b) :::} 
(a) holds, because SWI has no point-countable cs*-networks by 
[32; Lemma 2.4]. For the implication (a) :::} (b), let P == 
U{Pn : n E N} be a a-compact-finite k-network for X. Let 
P* == {S(P) : PEP}, where S(P) is the set of all limit points 
of sequences in P. Then P* is point-countable. Otherwise, 
since P is a a-compact-finite cover, for some point x EX, 
and some Pn , Pn contains uncollntable many elements Pex such 
that each Pex contains an infinite sequence Lex converging to 
the point x, here the sequences Lex are disjoint. Then, the 
space S == U{Lex : a} U {x} is a closed copy of SWl' because 
X is a k-space, and Pn is compact-finite. Thus, X contains 
a closed copy S of SWI' This is a contradiction. Thus, P* is 
point-countable. Next, to show P* is a cs*-network, let L be 
a sequence converging to a point y, and let U be a nbd of y. 
Let V be a nbd of y with clV C U. Since P is a k-network, 
there exists Po E P such that Po C V, and Po contains L 
frequently. Hence, S(Po) C U, and S(Po) contains the point y, 
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and contains L frequently. This show that P* is a cs*-network 
for X. Thus, P* is a point-countable cs*-network for X. 

Lemma 15 ([15]). Every strongly Frecht space with a a­
compact-jinite k-network is metric. 

Lemma 16 ([30]). Let X be a sequential space with G8 points. 
If X contains no closed copy of Sw and no S2 (resp. no 52), 
then X is strongly Frechet (resp. Frecht). 

Not every paracompact space with a a-disjoint base is met­
ric; see [3]. Thus, not every first countable space with a a­

point-finite k-network is metric. But, for spaces with a a­

compact-finite k-network, the following metrization theorem 
holds. In particular, under (CH), every k-space with a a­

compact-finite k-network is metric if it contains no closed copy 
of Sw, and no 52. This gives an affirmative answer to the par­
enthetic part of Question 3.2 in [20] under (CH). 

Theorem 17 Let X be a k-space with a a-compact-jinite k­
network. Then the following are equivalent. When X is a 
space with G8 points, a meta-Lindelof space, or (CH) holds, it 
is possible to omit "X(X) ~ WI" in (b). 

(a) X is metric. 
(b) X(X) ~ WI, and X contains no closed copy of Sw, and 

no 52. 
(c) X is an inner closed A-space. 

Proof: (a) => (b) & (c) is obvious. For (b) => (a) suppose 
(b) holds. Then, X has a a-locally countable k-network by 
Theorem 6. Thus, each point of X is a Gs-set in X. But, X 
is a sequential space which contains no closed copy of Sw, and 
no 52. Thus, X is strongly Frechet by Lemma 16. Then X is 
metric by Lemma 15. For (c) :::} (a), note that X is a k-space 
with a point-countable k-network. Then X is first countable by 
[20; Theorem 1.16]. Thus, X is metric. For the latter part of 
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the theorem, let C be a countable subset of X, and let D ==clC. 
We note that every separable meta-Lindelof space is Lindelof, 
thus wI-compact. Then, if X is meta-Lindelof, or (CH) holds, 
D is an ~o-space in view of Lemma 4 and Theorem 6. Thus, D 
is a space with Gs points. But, D is a k-space, thus sequential, 
and D contains no closed copy of 5w , and no 52. Thus, D is 
strongly Frechet by Lemma 16. Then, C is strongly Frechet. 
Thus, any countable subset of X is strongly Frechet. But, X 
has countable tightness by Lemma 1(2). Thus, X is strongly 
Frechet by [22; Propositions 8.5 & 8.7]. Thus, X is metric by 
Lemma 15. 

Corollary 18 (CH) Let X and Y have a-compact-jinite k­
networks. For Z C X x Y, Z is metric if and only if Z is a 
k-space which contains no closed copy of 5 w , and no 52. In 
particular, if X is a Lasnev space or a CW-compaex, and so is 
Y, then it is possible to omit (CH). 

Remark 19 For Z == X x Y, where X and Y have a-compact­
finite k-network, let us consider the k-ness of X. In [20], the 
authors show that a necessary and sufficient condition for the 
product of two k-spaces with a compact-countable k-network 
to be a k-space is independent of the usual axiom of set theory. 
As an application of this, the following holds by [20; Theorem 
2.4], Lemma 15, and the fact that the product of two kw-spaces 
is a kw-space [21]. 

(CH). Let X and Y be k-spaces with a a-compact-finite 
k-network. For Z == X x Y, Z is a k-space if and only if X or 
Y is a locally compact metric space; otherwise, Z is a metric 
space, or a locally kw (equivalently, topological sum of kw-and 
-~o-spaces in view of the proof of Theorem 6). If X == Y, it is 
possible to omit (CH). 

In [17], it is proved that a k-space X with a a-HCP k­
network is g-first countable if and only if X contains no closed 
copy of Sw. The authors don't know whether the result remains 
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true if we replace "a-HCP" by " a-compact-finite". But,the 
following holds. For the definition of g-first countable spaces, 
see Example 13. 

Theorem 20 Let X be a k-space. If (a), (b), (c), or (d) holds, 
then, X is g-first countable (resp. Lasnev) if and only if X 
contains no closed copy of Sw (resp. S2)' 

(a)	 X has a star-countable k-network. 

(b)	 X has a a-HCP k-network; more generally, 

(c)	 X has a O"-compact-jinite k-network, a'nd each point is a 
G8-set in X. 

(d)	 (CH) X has a a-compact-jinite k-network. 

Proof: The "only if" part is obvious, so we prove the "if" 
part holds. For (a), let P be a star-countable k-network for 
X. For x E X, let Px = {P E P : P contains a sequence 
converging to x}. X is sequential, and P is a star-countable 
k-network, then X is a disjoint union of Xa's, where each X a is 
a countable union of elements of P, and, for each finite subset 
Fa of X a, U{Fa : a} is closed discrete in X ([20, 26]). But, 
X contains no closed copy of Sw, then Px is countable. Let 
Px =cl(UPx ). Then, Px is separable, so Px is an ~o-space by 
Theorem 7(1). Thus Px is g-first countable by [17]. Take a 
local weak base Tx at x in Px such that Tx is countable. Then, 
for any sequence L converging to x EX, and any T E Tx , L is 
contained in T eventually. Let U eX, and for each x E U, let 
x ETC U for some T E Tx • Then U is open in X, for X is 
sequential. Then U{Tx : x E X} is a weak base for X. Thus, X 
is g-first countable. For (c), since X contains no closed copy 
of Sw, X has a point-countable cs*-network by Theorem 14. 
Thus, X is g-first countable in view of the proof of Theorem 1 
in [17]. For (d), under (CH), every closed separable subset F 
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of X is an ~o-space by Theorem 7(1), hence each pojnt of F is 
a Gs-set in F. Thus, X is also g-first countable in view of the 
proof of Theorem 1 in [17]. For the parenthetic part, the result 
for (c) holds by Lemma 16 and Remark 5(1). For (d), since X 
contains no closed copy of 52, X is Frechet by the same way 
as in the proof of Theorem 17, thus, X is LaSnev. For (a), the 
proof is similar to (d), but use Theorems 3 and 7(1). 

In conclusion of this paper, we shall pose a question on 
spaces with a a-compact-finite k-network. 

Question 21 Let X be a separable k-space with a a-compact­
finite k-network P . Then, is X an ~o-space, a a-space, or a 
space with Gs points? 

Remark 22 We shall give the following comments related to 
Question 21. 

(1) The space X is an ~o-space when (CH) holds (Theorem 
6); P is star-countable ([25]); or P contsits of closed subsets 
(because, by Remark 5(2), X is an ~-space, so X is meta­
Lindelof [5], then X is Lindelof, hence X is an ~o-space). 

(2) If Question 21 is afirmative, then Corollary 18 remains 
valid without (CH), for example. 

(3) Every k-space Y is meta-Lindelof if Y has a star-countable 
k-network ([20]), or a a-compact-finite k-network of closed 
subsets (see(1)). (For case where Y ,has a star-countable k­
network, Y is actually a paracompact a-space ([26])). But, 
the k-ness of Y is essential. Indeed, in view of [25], every space 
with a star-countable, compact-finite, and locally countable 
closed k-network is not a a-space, thus meta-Lindelof by [9; 
Proposition 1.5]. Also, every space with a star-countable and 
compact-finite closed k-network is not a space with Gs points 
[25]. In terms of these, we have the following (more general) 
questions related to Question 21. 
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Questions: (i) Is every k-space with a O"-compact-finite (or 
a-HCP) k-network a meta-Lindelof space? 

(ii) Is every k-space with a a-compact-finite (or star-countable) 
k-network a a-space, or a space with Gs points? 
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